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CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT

QUANTIZATION FORMULA

SANDRO GRAFFI AND THIERRY PAUL

Abstract. Let the quantization of the linear flow of diophantine frequencies ω over the torus
Tl, l > 1, namely the Schrödinger operator −i~ω ·∇ on L2(Tl), be perturbed by the quantization
of a function Vω : Rl × Tl → R of the form

Vω(ξ, x) = V(z ◦ Lω(ξ), x), Lω(ξ) := ω1ξ1 + . . . + ωlξl

where z 7→ V(z, x) : R × Tl → R is real-holomorphic. We prove that the corresponding quantum
normal form converges uniformly with respect to ~ ∈ [0, 1]. Since the quantum normal form
reduces to the classical one for ~ = 0, this result simultaneously yields an exact quantization
formula for the quantum spectrum, as well as a convergence criterion for the Birkhoff normal form,
valid for a class of perturbations holomorphic away from the origin. The main technical aspect
concerns the quantum homological equation [F (−i~ω · ∇), W ]/i~ + V = N , F : R → R being
a smooth function ε−close to the identity. Its solution is constructed, and estimated uniformly
with respect to ~ ∈ [0, 1], by solving the equation {F (Lω),W}M + V = N for the corresponding
symbols. Here {·, ·}M stands for the Moyal bracket. As a consequence, the KAM iteration for the
symbols of the quantum operators can be implemented, and its convergence proved, uniformly
with respect to (ξ, ~, ε) ∈ Rl × [0, 1] × {ε ∈ C | |ε| < ε∗}, where ε∗ > 0 is explicitly estimated
in terms only of the diophantine constants. This in turn entails the uniform convergence of the
quantum normal form.
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1. Introduction

1.1. Quantization formulae. The establishment of a quantization formula (QF) for the eigen-

values of the Schrödinger operators is a classical mathematical problem of quantum mechanics (see

e.g.[FM]). To review the notion of QF, consider first a semiclassical pseudodifferential operator

H (for this notion, see e.g.[Ro]) acting on L2(Rl), l ≥ 1, of order m, self-adjoint with pure-point

spectrum, with (Weyl) symbol σH(ξ, x) ∈ C∞(Rl × Rl; R).

Definition 1.1. We say that H admits an M -smooth exact QF, M ≥ 2, if there exists a function

µ : (A, ~) 7→ µ(A, ~) ∈ CM (Rl × [0, 1]; R) such that:

(1) µ(A, ~) admits an asymptotic expansion up to order M in ~ uniformly on compacts with

respect to A ∈ Rl;

(2) ∀~ ∈]0, 1], there is a sequence nk := (nk1 , . . . , nkl
) ⊂ Zl such that all eigenvalues λk(~) of

H admit the representation:

λk(~) = µ(nk~, ~). (1.1)

Remark 1.2. (Link with the Maslov index) Consider any function f : Rl → Rl with the property

〈f(A),∇µ(A, 0)〉 = ∂~µ(A, 0). Then we can rewrite the asymptotic expansion of µ at second order

as :

µ(nk~, ~) = µ(nk~ + ~f(nk~)) + O(~2). (1.2)

When f(m~) = ν, ν ∈ Ql, the Maslov index [Ma] is recovered. Moreover, when

|λk(~) − µ(nk~, ~)| = O(~M ), ~ → 0, M ≥ 2 (1.3)

then we speak of approximate QF of order M .

Example 1.3. (Bohr-Sommerfeld-Einstein formula). Let σH fulfill the conditions of the Liouville-

Arnold theorem (see e.g.[Ar1], §50). Denote A = (A1, . . . , Al) ∈ Rl the action variables, and
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E(A1, . . . , Al) the symbol σH expressed as a function of the action variables. Then the Bohr-

Sommerfeld-Einstein formula (BSE) QF is

λn,~ = E((n1 + ν/4)~, . . . , (nl + ν/4)~) + O(~2) (1.4)

where ν = ν(l) ∈ N ∪ {0} is the Maslov index [Ma]. When H is the Schrödinger operator,

and σH the corresponding classical Hamiltonian, (1.4) yields the approximate eigenvalues, i.e.

the approximate quantum energy levels. In the particular case of a quadratic, positive definite

Hamiltonian, which can always be reduced to the harmonic oscillator with frequencies ω1 >

0, . . . , ωl > 0, the BSE is an exact quantization formula in the sense of Definition 1.1 with ν = 2,

namely:

µ(A, ~) = E(A1 + ~/2, . . . , Al + ~/2) =

l∑

k=1

ωk(Ak + ~/2)

To our knowledge, if l > 1 the only known examples of exact QF in the sense of Definition

1.1 correspond to classical systems integrable by separation of variables, such that each separated

system admits in turn an exact QF, as in the case of the Coulomb potential (for exact QFs for

general one-dimensional Schrödinger operators see [Vo]). For general integrable systems, only the

approximate BSE formula is valid. Non-integrable systems admit a formal approximate QF, the

so-called Einstein-Brillouin-Keller (EBK), recalled below, provided they possess a normal form to

all orders.

In this paper we consider a perturbation of a linear Hamiltonian on T ∗Tl = Rl × Tl, and

prove that the corresponding quantized operator can be unitarily conjugated to a function of the

differentiation operators via the construction of a quantum normal form which converges uniformly

with respect to ~ ∈ [0, 1]. This yields immediately an exact, ∞-smooth QF. The uniformity with

respect to ~ yields also an explicit family of classical Hamiltonians admitting a convergent normal

form, thus making the system integrable.

1.2. Statement of the results. Consider the Hamiltonian family Hε : Rl × Tl → R, (ξ, x) 7→
Hε(ξ, x), indexed by ε ∈ R, defined as follows:

Hε(ξ, x) := Lω(ξ) + εV(x, ξ); Lω(ξ) := 〈ω, ξ〉, ω ∈ R
l, V ∈ C∞(Rl × T

l; R). (1.5)

Here ξ ∈ Rl, x ∈ Tl are canonical coordinates on the phase space Rl × Tl, the 2l−cylinder. Lω(ξ)

generates the linear Hamiltonian flow ξi 7→ ξi, xi 7→ xi + ωit on Rl × Tl. For l > 1 the dependence

of V on ξ makes non-trivial the integrability of the flow of Hε when ε 6= 0, provided the frequencies

ω := (ω1, . . . , ωl) are independent over Q and fulfill a diophantine condition such as (1.25) below.

Under this assumption it is well known that Hε admits a normal form at any order (for this
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notion, see e.g. [Ar2], [SM]). Namely, ∀N ∈ N a canonical bijection Cε,N : Rl ×Tl ↔ Rl ×Tl close

to the identity can be constructed in such a way that:

(Hε ◦ Cε,N )(ξ, x) = Lω(ξ) +

N∑

k=1

Bk(ξ;ω)εk + εN+1RN+1,ε(ξ, x) (1.6)

This makes the flow of Hε(ξ, x) integrable up to an error of order εN+1. In turn, Cε,N is the

Hamiltonian flow at time 1 generated by

WN
ε (ξ, x) := 〈ξ, x〉 +

N∑

k=1

Wk(ξ, x)εk, (1.7)

where the functions Wk(ξ, x) : Rl × Tl → R are recursively computed by canonical perturbation

theory via the standard Lie transform method of Deprit[De] and Hori[Ho] (see also e.g [Ca]).

To describe the quantum counterpart, let Hε = Lω + εV be the operator in L2(Tl) of symbol

Hε, with domain D(Hε) = H1(Tl) and action specified as follows:

∀u ∈ D(Hε), Hεu = Lωu + V u, Lωu =

l∑

k=1

ωkDku, Dku := −i~∂xk
u, (1.8)

and V is the Weyl quantization of V (formula (1.26) below).

Since uniform quantum normal forms (see e.g. [Sj],[BGP],[Po1], [Po2]) are not so well known

as the classical ones, let us recall here their definition. The construction is reviewed in Appendix.

Definition 1.4. [Quantum normal form (QNF)] We say that a family of operators Hε ε-close (in

the norm resolvent topology) to H0 = Lω admits a uniform quantum normal form (QNF) at any

order if

(i) There exists a sequence of continuous self-adjoint operators Wk(~) in L2(Tl), k = 1, . . . and

a sequence of functions Bk(ξ1, . . . , ξl, ~) ∈ C∞(Rl × [0, 1]; R), such that, defining ∀N ∈ N

the family of unitary operators:

UN,ε(~) = eiWN,ε(~)/~, WN,ε(~) =
N∑

k=1

Wk(~)εk (1.9)

we have:

UN,ε(~)HεU
∗
N,ε(~) = Lω +

N∑

k=1

Bk(D1, . . . , Dl, ~)εk + εN+1RN+1,ε(~). (1.10)

(ii) The operators Bk(D, ~) : k = 1, 2 . . ., RN+1 are continuous in L2(Tl); the corresponding

symbols Wk,Bk,RN+1(ε) belong to C∞(Rl ×Tl × [0, 1]), and reduce to the classical normal

form construction (1.6) and (1.7) as ~ → 0:

Bk(ξ; 0) = Bk(ξ); Wk(ξ, x, 0) = Wk(ξ, x), RN+1,ε(x, ξ; 0) = RN+1,ε(x, ξ) (1.11)
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(1.10) entails that Hε commutes with H0 up to an error of order εN+1; hence the following

approximate QF formula holds for the eigenvalues of Hε:

λn,ε(~) = ~〈n, ω〉 +

N∑

k=1

Bk(n1~, . . . , nl~, ~)εk + O(εN+1). (1.12)

Definition 1.5. (Uniformly convergent quantum normal forms) We say that the QNF converges

M -smoothly, M > 2l, uniformly with respect to the Planck constant ~, if there is ε∗ > 0 such

that

∞∑

k=1

sup
Rl×Tl×[0,1]

∑

|α|≤M

|DαWk(ξ, x; ~)εk| < +∞ (1.13)

∞∑

k=1

sup
Rl×[0,1]

∑

|α|≤M

|DαBk(ξ, ~)εk| < +∞, |ε| < ε∗. (1.14)

Here Dα = ∂α1
ξ ∂α2

x ∂α3
~

, |α| = |α1| + |α2| + α3.

(1.13,1.14) entail that, if |ε| < ε∗, we can define the symbols

W∞(ξ, x; ε, ~) := 〈ξ, x〉 +
∞∑

k=1

Wk(ξ, x; ~)εk ∈ CM (Rl × T
l × [0, ε∗] × [0, 1]; C), (1.15)

B∞(ξ; ε, ~) := Lω(ξ) +
∞∑

k=1

Bk(ξ; ~)εk ∈ CM (Rl × [0, ε∗] × [0, 1]; C) (1.16)

By the Calderon-Vaillancourt theorem (see §3 below) their Weyl quantizations W∞(ε, ~), B∞(ε, ~)

are continuous operator in L2(Tl). Then:

eiW∞(ε,~)/~Hεe
−iW∞(ε,~)/~ = B∞(D1, . . . , Dl; ε, ~). (1.17)

Therefore the uniform convergence of the QNF has the following straightforward consequences:

(A1) The eigenvalues of Hε are given by the exact quantization formula:

λn(~, ε) = B∞(n~, ~, ε), n ∈ Z
l, ε ∈ D

∗ := {ε ∈ R | |ε| < ε∗} (1.18)

(A2) The classical normal form is convergent, uniformly on compacts with respect to ξ ∈ Rl,

and therefore if ε ∈ D
∗ the Hamiltonian Hε(ξ, x) is integrable.

Let us now state explicit conditions on V ensuring the uniform convergence of the QNF.

Given F(t, x) ∈ C∞(R × Tl; R), consider its Fourier expansion

F(t, x) =
∑

q∈Zl

Fq(t)e
i〈q,x〉. (1.19)

and define furthermore Fω : Rl × Tl → R;Fω ∈ C∞(Rl × Tl; R) in the following way:
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Fω(ξ, x) := F(Lω(ξ), x) =
∑

q∈Zl

Fω,q(ξ)e
i〈q,x〉, (1.20)

Fω,q(ξ) := (Fq ◦ Lω)(ξ) =
1

(2π)l/2

∫

R

F̂q(p)e−ipLω(ξ) dp = (1.21)

=
1

(2π)l/2

∫

R

F̂q(p)e−i〈pω,ξ〉 dp, pω := (pω1, . . . , pωl). (1.22)

Here, as above, Lω(ξ) = 〈ω, ξ〉.

Given ρ > 0, introduce the weighted norms:

‖Fω,q(ξ)‖ρ :=

∫

R

|F̂q(p)|eρ|p|| dp (1.23)

‖Fω(x, ξ)‖ρ :=
∑

q∈Zl

eρ|q|‖Fω,q‖ρ (1.24)

We can now formulate the main result of this paper. Assume:

(H1) There exist γ > 1, τ > l − 1 such that the frequencies ω fulfill the diophantine condition

|〈ω, q〉|−1 ≤ γ|q|τ , q ∈ Z
l, q 6= 0. (1.25)

(H2) Vω is the Weyl quantization of Vω(ξ, x) (see Sect.3 below), that is:

Vωf(x) =

∫

R

∑

q∈Zl

V̂q(p)ei〈q,x〉+~p〈ω,q〉/2f(x + ~pω) dp, f ∈ L2(Tl). (1.26)

with V(ξ, x; ~) = V(〈ω, ξ〉, x) = Vω(ξ, x) for some function V(t; x) : R × Tl → R.

(H3)

‖Vω‖ρ < +∞, ρ > 1 + 16γτ τ .

Clearly under these conditions the operator family Hε := Lω + εVω, D(Hε) = H1(Tl), ε ∈ R, is

self-adjoint in L2(Tl) and has pure point spectrum. We can then state the main results.

Theorem 1.6. Under conditions (H1-H3), Hε admits a uniformly convergent quantum normal

form B∞,ω(ξ, ε, ~) in the sense of Definition 1.5, with radius of convergence no smaller than:

ε∗(γ, τ) :=
1

e24(3+2τ)22τ‖V‖ρ
. (1.27)

If in addition to (H1-H2) we assume, for any fixed r ∈ N:

(H4)

ρ > λ(γ, τ, r) := 1 + 8γτ [(2(r + 1)2] (1.28)

we can sharpen the above result proving smoothness with respect to ~:



CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA 7

Theorem 1.7. Let conditions (H1-H2-H4) be fulfilled. For r ∈ N define D
∗
r := {ε ∈ C | |ε| <

ε∗(γ, τ, r)}, where:

ε∗(γ, τ, r) :=
1

e24(3+2τ)(r + 2)2τ‖V‖ρ
(1.29)

Then ~ 7→ B∞(t, ε, ~) ∈ C∞([0, 1];Cω({t ∈ C | |ℑt| < ρ/2 × D
∗
r(ρ)}); i.e. there exist Cr(ε

∗) > 0

such that, for ε ∈ D
∗
r:

r∑

γ=0

max
~∈[0,1]

‖∂γ
~
B∞,ω(ξ; ε, ~)‖ρ/2 ≤ Cr, r = 0, 1, . . . (1.30)

In view of Definition 1.1, the following statement is a straightforward consequence of the above

Theorems:

Corollary 1.8 (Quantization formula). Hε admits an ∞-smooth quantization formula in the

sense of Definition 1.1. That is, ∀ r ∈ N, ∀ |ǫ| < ε∗(γ, τ, r) given by (1.29), the eigenvalues of Hε

are expressed by the formula:

λ(n, ~, ε) = B∞,ω(n~, ε, ~) = Lω(n~) +
∞∑

s=1

Bs(Lω(n~), ~)εs (1.31)

where B∞,ω(ξ, ε, ~) belongs to Cr(Rl × [0, ε∗(·, r)]× [0, 1]), and admits an asymptotic expansion at

order r in ~, uniformly on compacts with respect to (ξ, ε) ∈ Rl × [0, ε∗(·, r)].

Remarks

(i) (1.30) and (1.31) entail also that the Einstein-Brillouin-Keller (EBK) quantization for-

mula:

λEBK
n,ε (~) := Lω(n~) +

∞∑

s=1

Bs(Lω(n~))εs = B∞,ω(n~, ε), n ∈ Z
l (1.32)

reproduces here Spec(Hε) up to order ~.

(ii) Apart the classical Cherry theorem yielding convergence of the Birkhoff normal form for

smooth perturbations of the harmonic flow with complex frequencies when l = 2 (see e.g.

[SM], §30; the uniform convergence of the QNF under these conditions is proved in [GV]),

no simple convergence criterion seems to be known for the QNF nor for the classical NF as

well. (See e.g.[PM], [Zu], [St] for reviews on convergence of normal forms). Assumptions

(1) and (2) of Theorem 1.6 entail Assertion (A2) above. Hence they represent, to our

knowledge, a first explicit convergence criterion for the NF.
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Remark that Lω(ξ) is also the form taken by harmonic-oscillator Hamiltonian in R2l,

P0(η, y;ω) :=

l∑

s=1

ωs(η
2
s + y2

s), (ηs, ys) ∈ R
2, s = 1, . . . , l

if expressed in terms of the action variables ξs > 0, s = 1, . . . , l, where

ξs := η2
s + y2

s = zszs, zs := ys + iηs.

Assuming (1.25) and the property

Bk(ξ) = (Fk ◦ Lω(ξ)) = Fk(

l∑

s=1

ωszszs), k = 0, 1, . . . (1.33)

Rüssmann [Ru] (see also [Ga]) proved convergence of the Birkhoff NF if the perturbation V,

expressed as a function of (z, z), is in addition holomorphic at the origin in C2l. No explicit

condition on V seems to be known ensuring both (1.33) and the holomorphy. In this case instead

we prove that the assumption V(ξ, x) = V(Lω(ξ), x) entails (1.33), uniformly in ~ ∈ [0, 1]; namely,

we construct Fs(t; ~) : R × [0, 1] → R such that:

Bs(ξ; ~) = Fs(Lω(ξ); ~) := Fω,s(ξ; ~), s = 0, 1, . . . (1.34)

The conditions of Theorem 1.6 cannot however be transported to Rüssmann’s case: the map

T (ξ, x) = (η, y) :=

{
ηi = −√

ξi sin xi,

yi =
√

ξi cos xi,
i = 1, . . . , l,

namely, the inverse transformation into action-angle variable, is defined only on Rl
+ ×Tl and does

not preserve the analyticity at the origin. On the other hand, T is an analytic, canonical map

between Rl
+ × Tl and R2l \ {0, 0}. Assuming for the sake of simplicity V0 = 0 the image of Hε

under T is:

(Hε ◦ T )(η, y) =
l∑

s=1

ωs(η
2
s + y2

s) + ε(V ◦ T )(η, y) := P0(η, y) + εP1(η, y) (1.35)

where

P1(η, y) = (V ◦ T )(η, y) = P1,R(η, y) + P1,I(η, y), (η, y) ∈ R
2l \ {0, 0}. (1.36)

P1,R(η, y) =
1

2

∑

k∈Zl

(ℜVk ◦ H0)(η, y)
l∏

s=1

(
ηs − iys√
η2

s + y2
s

)ks

P1,I(η, y) =
1

2

∑

k∈Zl

(ℑVk ◦ H0)(η, y)
l∏

s=1

(
ηs − iys√
η2

s + y2
s

)ks
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If V fulfills Assumption (H3) of Theorem 1.6, both these series converge uniformly in any compact

of R2l away from the origin and P1 is holomorphic on R2l \ {0, 0}. Therefore Theorem 1.6 imme-

diately entails a convergence criterion for the Birkhoff normal form generated by perturbations

holomorphic away from the origin. We state it under the form of a corollary:

Corollary 1.9. (A convergence criterion for the Birkhoff normal form) Under the assumptions of

Theorem 1.6 on ω and V, consider on R2l \{0, 0} the holomorphic Hamiltonian family Pε(η, y) :=

P0(η, y)+εP1(η, y), ε ∈ R, where P0 and P1 are defined by (1.35,1.36). Then the Birkhoff normal

form of Hε is uniformly convergent on any compact of R2l \ {0, 0} if |ε| < ε∗(γ, τ).

1.3. Strategy of the paper. The proof of Theorem 1.6 rests on an implementation in the quan-

tum context of Rüssmann’s argument[Ru] yielding convergence of the KAM iteration when the

complex variables (z, z) belong to an open neighbourhood of the origin in C2l. Conditions (1.25,

1.34) prevent the occurrence of accidental degeneracies among eigenvalues at any step of the quan-

tum KAM iteration, in the same way as they prevent the formation of resonances at the same

step in the classical case. However, the global nature of quantum mechanics prevents phase-space

localization; therefore, and this is the main difference, at each step the coefficients of the homo-

logical equation for the operator symbols not only have an additional dependence on ~ but also

have to be controlled up to infinity. These difficulties are overcome by exploiting the closeness to

the identity of the whole procedure, introducing adapted spaces of symbols i(Section 2), which

account also for the properties of differentiability with respect to the Planck constant. The link

between quantum and classical settings is provided by a sharp (i.e. without ~∞ approximation)

Egorov Theorem established in section 4. Estimates for the solution of the quantum homological

equation and their recursive properties are obtained in sections 5.1 (Theorem 5.3) and 5.2 (The-

orem 5.5) respectively. Recursive estimates are established in Section 6 (Theorem 6.4) and the

proof of our main result is completed in section 7. The link with the usual construction of the

quantum normal form described in Appendix.

2. Norms and first estimates

Let m, l = 1, 2, . . . . For F ∈ C∞(Rm × Tl × [0, 1]; C), (ξ, x, ~) → F(ξ, x; ~), and G ∈ C∞(Rm ×
[0, 1]; C), (ξ, ~) → G(ξ; ~), consider the Fourier transforms

Ĝ(p; ~) =
1

(2π)m/2

∫

Rm

G(ξ; ~)e−i〈p,ξ〉 dx (2.1)
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F(ξ, q; ~) :=
1

(2π)m/2

∫

Tl

F(ξ, x; ~)e−i〈q,x〉 dx. (2.2)

F(ξ, x; ~) =
∑

q∈Zl

F(ξ, q; ~)e−i〈q,x〉 (2.3)

F̂(p, q; ~) =
1

(2π)m/2

∫

Rm

F(ξ, q; ~)e−i〈p,ξ〉 dx (2.4)

It is convenient to rewrite the Fourier representations (2.3, 2.4) under the form a single Lebesgue-

Stieltjes integral. Consider the product measure on Rm × Rl:

dλ(t) := dp dν(s), t := (p, s) ∈ R
m × R

l; (2.5)

dp :=
m∏

k=1

dpk; dν(s) :=
l∏

h=1

∑

qh≤sh

δ(sh − qh), qh ∈ Z, h = 1, . . . , l (2.6)

Then:

F(ξ, x; ~) =

∫

Rm×Rl

F̂(p, s; ~)ei〈p,ξ〉+i〈s,x〉 dλ(p, s) (2.7)

Definition 2.1. For ρ ≥ 0, σ ≥ 0, we introduce the weighted norms

|G|†σ := max
~∈[0,1]

‖Ĝ(.; ~)‖L1(Rm,eσ|p|dp) = max
~∈[0,1]

∫

Rl

‖Ĝ(.; ~)‖ eσ|p| dp. (2.8)

|G|†σ,k := max
~∈[0,1]

k∑

j=0

‖(1 + |p|2) k−j

2 ∂j
~
Ĝ(.; ~)‖L1(Rm,eσ|p|dp); |G|†σ;0 := |G|†σ. (2.9)

Remark 2.2. By noticing that |p| ≤ |p′ − p| + |p′| and that, for x ≥ 0, xje−δx ≤ 1

e
(
j

δ
)j , we

immediately get the inequalities

|FG|†σ ≤ |F|σ|G|σ, (2.10)

|(I − ∆j/2)F|σ−δ ≤ 1

e

(
j

δ

)j

|F|σ, k ≥ 0. (2.11)

Set now for k ∈ N ∪ {0}:

µk(t) := (1 + |t|2) k
2 = (1 + |p|2 + |s|2) k

2 . (2.12)

and note that

µk(t − t′) ≤ 2
k
2 µk(t)µk(t

′). (2.13)

because |x − x′|2 ≤ 2(|x|2 + |x′|2).

Definition 2.3. Consider F(ξ, x; ~) ∈ C∞(Rm × Tl × [0, 1]; C), with Fourier expansion

F(ξ, x; ~) =
∑

q∈Zl

F(ξ, q; ~)ei〈q,x〉 (2.14)



CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA 11

(1) Set:

‖F‖†ρ,k := max
~∈[0,1]

k∑

γ=0

∫

Rm×Rl

|µk−γ(p, s)∂γ
~
F̂(p, s; ~)|eρ(|s|+|p|) dλ(p, s). (2.15)

(2) Let Oω be the set of functions Φ : Rl × Tl × [0, 1] such that Φ(ξ, x; ~) = F(Lω(ξ), x; ~) for

some F : R × Tl × [0, 1] → C. Define, for Φ ∈ Oω:

‖Φ‖ρ,k := max
~∈[0,1]

k∑

γ=0

∫

R

|µk−γ(pω, q)∂γ
~
F̂(p, s; ~)|eρ(|s|+|p| dλ(p, s). (2.16)

(3) Finally we denote OpW (F) the Weyl quantization of F recalled in Section 3 and

J †
k (ρ) = {F | ‖F‖†ρ,k < ∞}, (2.17)

J†
k(ρ) = {OpW (F) | F ∈ J †(ρ, k)}, (2.18)

Jk(ρ) = {F ∈ Oω | ‖F‖ρ,k < ∞}, (2.19)

Jk(ρ) = {F | ‖F‖ρ,k < ∞}, (2.20)

Finally we denote: L1
σ(Rm) := L1(Rm, eσ|p|dp).

Remark 2.4. Note that, if F(ξ, q, ~) is independent of q, i.e. F(ξ, q, ~) = F(ξ, ~)δq,0, then:

‖F‖†ρ,k = |F|†ρ,k; ‖F‖ρ,k = |F|ρ,k (2.21)

while in general

‖F‖ρ,k ≤ ‖F‖ρ′,k′ whenever k ≥ k′, ρ ≤ ρ′; (2.22)

Remark 2.5. (Regularity properties)

Let F ∈ J †
k (ρ), k ≥ 0. Then:

(1) There exists K(α, ρ, k) such that

max
~∈[0,1]

‖F(ξ, x; ~)‖Cα(Rm×Tl) ≤ K‖F‖†ρ,k, α ∈ N (2.23)

and analogous statement for the norm ‖ · ‖ρ,k.

(2) Let ρ > 0, k ≥ 0. Then F(ξ, x; ~) ∈ Ck([0, 1];Cω({|ℑξ| < ρ} × {|ℑx| < ρ}) and

sup
{|ℑξ|<d}×{|ℑx|<d}

≤ ‖F‖†ρ,k. (2.24)

Analogous statements for F ∈ Jk(ρ).

We will show in section 3 that:

‖OpW (F )‖B(L2) ≤ ‖F‖ρ,k ∀k, ρ > 0. (2.25)
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In what follows we will often use the notation F also to denote the function F(Lω(ξ)), because the

indication of the belonging to J or J†, respectively, is already sufficient to mark the distinction

of the two cases.

Remark 2.6. Without loss of generality we may assume:

|ω| := |ω1| + . . . + |ωl| ≤ 1 (2.26)

Indeed, the general case |ω| = α|ω′|, |ω′| ≤ 1, α > 0 arbitrary reduces to the former one just by

the rescaling ε → αε.

3. Weyl quantization, matrix elements, commutator estimates

3.1. Weyl quantization: action and matrix elements. We sum up here the canonical (Weyl)

quantization procedure for functions (classical observables) defined on the phase space Rl ×Tl. In

the present case it seems more convenient to consider the representation (unique up to unitary

equivalences) of the natural Heisenberg group on Rl × Tl. Of course this procedure yields the

same quantization as the standard one via the Brézin-Weil-Zak transform (see e.g. [Fo], §1.10)

and has already been employed in [CdV], [Po1],[Po2]).

Let Hl(R
l × Rl × R) be the Heisenberg group over R

2l+1 (see e.g.[Fo], Chapt.1). Since the dual

space of Rl × Tl under the Fourier transformation is Rl × Zl, the relevant Heisenberg group here

is the subgroup of Hl(R
l × Rl × R), denoted by Hl(R

l × Zl × R), defined as follows:

Definition 3.1. Let u := (p, q), p ∈ Rl, q ∈ Zl, and let t ∈ R. Then Hl(R
l×Zl×R) is the subgroup

of Hl(R
l × Rl × R) topologically equivalent to Rl × Zl × R with group law

(u, t) · (v, s) = (u + v, t + s +
1

2
Ω(u, v)) (3.1)

Here Ω(u, v) is the canonical 2−form on Rl × Zl:

Ω(u, v) := 〈u1, v2〉 − 〈v1, u2〉 (3.2)

Hl(R
l × Zl × R) is the Lie group generated via the exponential map from the Heisenberg Lie

algebra HLl(Z
l × Rl × R) defined as the vector space Rl × Zl × R with Lie bracket

[(u, t) · (v, s)] = (0, 0,Ω(u, v)) (3.3)

The unitary representations of Hl(R
l × Zl × R) in L2(Tl) are defined as follows

(U~(p, q, t)f)(x) := ei~t+i〈q,x〉+~〈p.q〉/2f(x + ~p) (3.4)
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∀ ~ 6= 0, ∀ (p, q, t) ∈ Hl, ∀ f ∈ L2(Tl). These representations fulfill the Weyl commutation relations

U~(u)∗ = U~(−u), U~(u)U~(v) = ei~Ω(u,v)U(u + v) (3.5)

For any fixed ~ > 0 U~ defines the Schrödinger representation of the Weyl commutation relations,

which also in this case is unique up to unitary equivalences (see e.g. [Fo], §1.10).

Consider now a family of smooth phase-space functions indexed by ~, A(ξ, x, ~) : Rl×Tl×[0, 1] →
C, written under its Fourier representation

A(ξ, x, ~) =

∫

Rl

∑

q∈Zl

Â(p, q; ~)ei(〈p.ξ〉+〈q,x〉) dp =

∫

Rl×Rl

Â(p, s; ~)ei(〈p.ξ〉+〈s,x〉) dλ(p, s) (3.6)

Definition 3.2. The (Weyl) quantization of A(ξ, x; ~) is the operator A(~) definde as

(A(~)f)(x) :=

∫

Rl

∑

q∈Zl

Â(p, q; ~)U~(p, q)f(x) dp (3.7)

=

∫

Rl×Rl

Â(p, s; ~)U~(p, s)f(x) dλ(p, s) f ∈ L2(Tl)

Remark 3.3. Formula (3.7) can be also be written as

(A(~)f)(x) =
∑

q∈Zl

A(q, ~)f, (A(q, ~)f)(x) =

∫

Rl

Â(p, q; ~)U~(p, q)f(x) dp (3.8)

From this we compute the action of A(~) on the canonical basis in L2(Tl):

em(x) := (2π)−l/2ei〈m,x〉, x ∈ T
l, m ∈ Z

l.

Lemma 3.4.

A(~)em(x) =
∑

q∈Zl

ei〈(m+q),x〉A(~(m + q/2), q, ~) (3.9)

Proof. By (3.8), it is enough to prove that the action of A(q, ~) is

A(q, ~)em(x) = ei〈(m+q),x〉A(~(m + q/2), q, ~) (3.10)

Applying Definition 3.2 we can indeed write:

(A(q, ~)em)(x) = (2π)−l/2

∫

Rl

Â(p, q; ~)ei〈q,x〉+i~〈p,q〉/2ei〈m,(x+~p)〉 dp

= (2π)−l/2ei〈(m+q),x〉

∫

Rl

Â(p; q, ~)ei~〈p,(m+q/2)〉 dp = ei〈(m+q),x〉A(~(m + q/2), q, ~).

. �

We note for further reference an obvious consequence of (3.10):

〈A(q, ~)em, A(q, ~)en〉L2(Tl) = 0, m 6= n; 〈A(r, ~)em, A(q, ~)en〉L2(Tl) = 0, r 6= q. (3.11)
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As in the case of the usual Weyl quantization, formula (3.7) makes sense for tempered distributions

A(ξ, x; ~) [Fo]. Indeed we prove in this context, for the sake of completeness, a simpler, but less

general, version of the standard Calderon-Vaillancourt criterion:

Proposition 3.5. Let A(~) by defined by (3.7). Then

‖A(~)‖L2→L2 ≤ 2l+1

l + 2
· π(3l−1)/2

Γ( l+1
2 )

∑

|α|≤2k

‖∂k
xA(ξ, x; ~)‖L∞(Rl×Tl). (3.12)

where

k =





l
2 + 1, l even

l+1
2 + 1, l odd.

Proof. Consider the Fourier expansion

u(x) =
∑

m∈Zl

ûmem(x), u ∈ L2(Tl).

Since:

‖A(q, ~)ûmem‖2 = |A(~(m + q/2), q, ~)|2 · |ûm|2

by Lemma 3.4 and (3.11) we get:

‖A(~)u‖2 ≤
∑

(q,m)∈Zl×Zl

‖A(q, ~)ûmem‖2 =
∑

(q,m)∈Zl×Zl

|A(~(m + q/2), q, ~)|2 · |ûm|2

≤
∑

q∈Zl

sup
ξ∈Rl

|A(ξ, q, ~)|2
∑

m∈Zl

|ûm|2 =
∑

q∈Zl

sup
ξ∈Rl

|A(ξ, q, ~)|2‖u‖2

≤
[∑

q∈Zl

sup
ξ∈Rl

|A(ξ, q, ~)|
]2‖u‖2

Therefore:

‖A(~)‖L2→L2 ≤
∑

q∈Zl

sup
ξ∈Rl

|A(ξ, q, ~)|.

Integration by parts entails that, for k ∈ N, and ∀ g ∈ C∞(Tl):

∣∣∣∣
∫

Tl

ei〈q,x〉g(x)dx

∣∣∣∣ =
1

1 + |q|2k

∣∣∣∣
∫

Tl

ei〈q,x〉(1 + (−△x)k)g(x)dx

∣∣∣∣

≤ 1

1 + |q|2k
(2π)l sup

Tl

∑

|α|≤2k

|∂α
x g(x)|.

Let us now take:

k =





l
2 + 1, l even

l+1
2 + 1, l odd

=⇒
{

2k − l + 1 = 3, l even

2k − l + 1 = 2, l odd
(3.13)
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Then 2k − l + 1 ≥ 2, and hence:

∑

q∈Zl

1

1 + |q|2k
≤ 2

∫

Rl

du1 · · · dul

1 + ‖u‖2k
≤ 2

π(l−1)/2

Γ( l+1
2 )

∫ ∞

0

ρl−1

1 + ρ2k
dρ.

Now:
∫ ∞

0

ρl−1

1 + ρ2k
dρ =

1

2k

∫ ∞

0

ul/2k−1

1 + u
du

≤ 1

2k

(∫ 1

0
ul/2k−1 du +

∫ ∞

1
ul/2k−2 du

)
=

1

(4k − l)(2k − l)

This allows us to conclude:
∑

q∈Zl

sup
ξ

|A(ξ, q, ~)| ≤ (2π)l
∑

|α|≤2k

‖∂α
xA(ξ, x; ~)‖L∞(Rl×Tl) ·

∑

q∈Zl

1

1 + |q|2k

≤ 2l+1 · π(3l−1)/2

Γ( l+1
2 )

1

l + 2

∑

|α|≤2k

‖∂k
xA(ξ, x; ~)‖L∞(Rl×Tl).

with k given by (3.13). This proves the assertion. �

Remark 3.6. Thanks to Lemma 3.4 we immediately see that, when A(ξ, x, ~) = F(Lω(ξ), x; ~),

A(~)f =

∫

R

∑

q∈Zl

F̂(p, q; ~)Uh(pω, q)f dp (3.14)

=

∫

R

∑

q∈Zl

F̂(p, q; ~)ei〈q,x〉+i~p〈ω,q〉/2f(x + ~pω) dp f ∈ L2(Tl)

where, again, pω := (pω1, . . . , pωl). Explicitly, (3.10) and (3.9) become:

A(~)em(x) =
∑

q∈Zl

ei〈(m+q),x〉A(~〈ω, (m + q/2)〉, q, ~) (3.15)

A(q, ~)em(x) = ei〈(m+q),x〉A(~〈ω, (m + q/2)〉, q, ~) (3.16)

Remark 3.7. If A does not depend on x, then A(ξ, q, ~) = 0, q 6= 0, and (3.9) reduces to the

standard (pseudo) differential action

(A(~)u)(x) =
∑

m∈Zl

A(m~, ~)ûmei〈m,x〉 =
∑

m∈Zl

A(−i~∇, ~)ûmei〈m,x〉 (3.17)

because −i~∇em = m~em. On the other hand, if F does not depend on ξ (3.9) reduces to the

standard multiplicative action

(A(~)u)(x) =
∑

q∈Zl

A(q, ~)ei〈q,x〉
∑

m∈Zl

ûmei〈m,x〉 = A(x, ~)u(x) (3.18)

Corollary 3.8. Let A(~) : L2(Tl) → L2(Tl) be defined as in 3.2. Then:
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(1) ∀ρ ≥ 0,∀ k ≥ 0 we have:

‖A(~)‖L2→L2 ≤ ‖A‖†ρ,k (3.19)

and, if A(ξ, x, ~) = A(Lω(ξ), x; ~)

‖A(~)‖L2→L2 ≤ ‖A‖ρ,k. (3.20)

(2)

〈em+s, A(q, ~)em〉 = δq,sA((m + q/2)〉~, q, ~) (3.21)

〈em+s, A(~)em〉 = A((m + s/2)~, s, ~) (3.22)

and, if A(ξ, x, ~) = F(Lω(ξ), x; ~)

〈em+s, F (q, ~)em〉 = δq,sF(〈ω, (m + q/2)〉~, q, ~) = δq,sF(Lω(m + s/2)~, q, ~) (3.23)

〈em+s, F (~)em〉 = F(〈ω, (m~ + s~/2)〉, s, ~) = F(Lω(m~ + s~/2), s, ~) (3.24)

Equivalently:

〈em, A(~)en〉 = A((m + n)~/2,m − n, ~) (3.25)

(3) A(~) is an operator of order −∞, namely there exists C(k, s) > 0 such that

‖A(~)u‖Hk(Tl) ≤ C(k, s)‖u‖Hs(Tl), (k, s) ∈ R, k ≥ s (3.26)

Proof. (1) Formulae (3.19) and (3.20) are straighforward consequences of Formula (2.23).

(2) (3.23) immediately yields (3.24). In turn, (3.23) follows at once by (3.10).

(3) The condition A ∈ J (ρ) entails:

sup
(ξ;~)∈Rl×[0,1]

|A(ξ; q, ~)|eρ|q| ≤ eρ|q| max
~∈[0,1]

‖Â(p; q, ~)‖1 → 0, |q| → ∞. (3.27)

Therefore:

‖A(~)u‖2
Hk ≤

∑

(q,m)∈Zl×Zl

(1 + |q|2)kA((m + q/2)~, q, ~)|2 · |ûm|2

≤
∑

q∈Zl

sup
q,m

(1 + |q|2)k|A((m + q/2)~, q, ~)|2
∑

m∈Zl

(1 + |m|2)s|ûm|2

= C(k, s)‖u‖2
Hs

C(k, s) :=
∑

q∈Zl

sup
q,m

(1 + |q|2)k|A((m + q/2)~, q, ~)|2

where 0 < C(k, s) < +∞ by (3.27) above. The Corollary is proved. �
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3.2. Compositions, Moyal brackets. We first list the main properties which are straightfor-

ward consequences of the definition, as in the case of the standard Weyl quantization in R2l. First

introduce the abbreviations

t := (p, s); t′ = (p′, s′); ωt := (pω, s) (3.28)

Ωω(t′ − t, t′) := 〈(p′ − p)ω, s′〉 − 〈(s′ − s), p′ω〉 = 〈p′ω, s〉 − 〈s′, pω〉. (3.29)

Given F(~),G(~) ∈ Jk(ρ), define their twisted convolutions:

(F̂(~)∗̃Ĝ(~))(p, q; ~) :=

∫

R×Rl

F̂(t′ − t; ~)Ĝ(t′; ~)ei[~Ωω(t′−t,t′)/2] dλ(t′) (3.30)

(F♯G)(x, ξ, ~) :=

∫

R×Rl

(F̂(~)∗̃Ĝ(~))(t, ~)ei〈s,x〉+pLω(ξ) dλ(t) (3.31)

Ĉ(p, q; ~) :=
1

~

∫

R×Rl

F̂(t′ − t, ~)Ĝ(t′, ~) sin[~Ωω(t′ − t, t′)/2] dλ(t′) (3.32)

C(x, ξ; ~) :=

∫

R×Rl

Ĉ(p, s; ~)eipLω(ξ)+i〈s,x〉 dλ(t) (3.33)

Once more by the same argument valid for the Weyl quantization in R2l:

Proposition 3.9. The following composition formulas hold:

F (~)G(~) =

∫

R×Rl

(F̂(~)∗̃Ĝ(~))(t; ~)U~(ωt) dλ(t). (3.34)

[F (~), G(~)]

i~
=

∫

R×Rl

Ĉ(t; ~)U~(ωt) dλ(t) (3.35)

Remark 3.10. The symbol of the product F (~)G(~) is then (F♯G)(Lω(ξ), x, ~) and the symbol of

the commutator [F (~), G(~)]/i~ is C(Lω(ξ), x; ~), which is by definition the Moyal bracket of the

symbols F ,G. From (3.32) we get the asymptotic expansion:

Ĉ(p, q; ω; ~) =

∞∑

j=0

(−1)j~2j

(2j + 1)!
Dj(p, q;ω) (3.36)

Dj(p, q; ω) :=

∫

R×Rl

F̂(t′ − t, ~)Ĝ(t′, ~)[Ωω(t′ − t, t′)j dλ(t′) (3.37)

whence the asymptotic expansion for the Moyal bracket
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{F ,G}M (Lω(ξ), x; ~) = {F ,G}(Lω(ξ), x, ~) + (3.38)
∞∑

|r+j|=0

(−1)|r|~|r+j|

r!sj
[∂r

xω∂j
LF(Lω(ξ), x)] · [ω∂j

L∂r
xG(Lω(ξ), x, ~)] −

−
∞∑

|r+j|=0

(−1)|r|~|r+j|

r!j!
[∂r

xω∂j
LG(Lω(ξ), x)] · [ω∂j

L∂r
xF (Lω(ξ), x, ~)]

Remark that:

{F ,G}M (Lω(ξ), x; ~) = {F ,G}(Lω(ξ), x) + O(~) (3.39)

In particular, since Lω(ξ) is linear, we have ∀F(ξ;x; ~) ∈ C∞(Rl × Tl × [0, 1]):

{F ,Lω(ξ)}M (Lω(ξ), x; ~) = {F ,Lω(ξ)}(Lω(ξ), x; ~) (3.40)

The observables F(ξ, x; ~) ∈ J (ρ) enjoy the crucial property of stability under compositions of

their dependence on Lω(ξ) (formulae (3.31) and (3.33) above). As in [BGP], we want to estimate

the relevant quantum observables uniformly with respect to ~, i.e. through the weighted norm

(2.16).

3.3. Uniform estimates. The following proposition is the heart of the estimates needed for the

convergence of the KAM iteration. The proof will be given in the next (sub)section. Even though

we could limit ourselves to symbols in J (ρ), we consider for the sake of generality and further

reference also the general case of symbols belonging to J †(ρ).

Proposition 3.11. Let F , G ∈ J†
k(ρ), k = 0, 1, . . ., d = d1 + d2. Let F ,G be the corresponding

symbols, and 0 < d + d1 < ρ. Then:

(1†) FG ∈ J†
k(ρ) and fulfills the estimate

‖FG‖B(L2) ≤ ‖F♯G‖†ρ,k ≤ (k + 1)4k‖F‖†ρ,k · ‖G‖†ρ,k (3.41)

(2†)
[F,G]

i~
∈ J†

k(ρ − d) and fulfills the estimate

∥∥∥∥
[F,G]

i~

∥∥∥∥
B(L2)

≤ ‖{F ,G}M‖†ρ−d−d1,k ≤ (k + 1)4k

e2d1(d + d1)
‖F‖†ρ,k‖G‖

†
ρ−d,k (3.42)

(3†) FG ∈ J †
k (ρ), and

‖FG‖†ρ,k ≤ (k + 1)4k‖F‖†ρ,k · ‖G‖†ρ,k (3.43)

Moreover if F , G ∈ Jk(ρ), k = 0, 1, . . ., and F ,G ∈ Jk(ρ), then:

(1) FG ∈ Jk(ρ) and fulfills the estimate

‖FG‖B(L2) ≤ ‖F♯G‖ρ,k ≤ (k + 1)4k‖F‖ρ,k · ‖G‖ρ,k (3.44)
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(2)
[F,G]

i~
∈ Jk(ρ − d) and fulfills the estimate

∥∥∥∥
[F,G]

i~

∥∥∥∥
B(L2)

≤ ‖{F ,G}M‖ρ−d−d1,k ≤ (k + 1)4k

e2d1(d + d1)
‖F‖ρ,k · ‖G‖ρ−d,k (3.45)

(3) FG ∈ Jk(ρ) and

‖FG‖ρ,k ≤ (k + 1)4k‖F‖ρ,k · ‖G‖ρ,k. (3.46)

Remark 3.12. The operators F (~) with the uniform norm ‖F‖ρ,k, k = 0, 1, . . . form a Banach

subalgebra (without unit) of the algebra of the continuous operators in L2(Tl).

Before turning to the proof we state and prove two further useful results.

Corollary 3.13. Let F ,G ∈ Jk(ρ), and let 0 < d < ρ, r ∈ N. Then:

1

r!
‖{F , {F , . . . , {F ,G}M}M . . .}M‖ρ−d,k ≤

√
2πr(k + 1)4k

(ed)dr
‖F‖r

ρ,k‖G‖ρ,k (3.47)

Proof. We follow the argument of [BGP], Lemma 3.5. If d = d1 + d2, (3.42) entails:

‖{F ,G}M‖ρ−d,k ≤ Ck

e2dd1
‖F‖ρ,k · ‖G‖ρ−d2,k, Ck := (k + 1)4k.

because ‖G‖ρ−d,k‖ ≤ ‖G‖ρ−d2,k and d1(d + d1) < d1d. Set now d2 =
r − 1

r
d which yields d1 =

d

r
.

Then:

‖{F ,G}M‖ρ−d,k ≤ Ck

e2dd
r

‖F‖ρ,k · ‖G‖ρ− r−1
r

d,k =
Ckr

(ed)2
‖F‖ρ,k · ‖G‖ρ− r−1

r
d,k

and

‖{F , {F ,G}M}M‖ρ−d,k ≤ Ck

edd
r , k

‖F‖ρ,k · ‖{F ,G}M‖ρ− r−2
r

d,k ≤

≤ (Ckr)
2

(ed)3
‖F‖2

ρ,k · ‖G‖ρ− r−1
r

d,k

Iterating r times we get:

1

r!
‖{F , {F , · · · , {F ,G}M}M , · · · }M‖ρ−d,k ≤ (Ckr)

r

r!

1

(ed)r+1
‖F‖r

ρ,k · ‖G‖ρ− r−1
r

d,k.

The Stirling formula and the majorization ‖G‖ρ− r−1
r

d,k ≤ ‖G‖ρ,k now yield (3.47). �

Proposition 3.14. Let F(ξ;x; ~) ∈ Jk(ρ), ρ > 0, k = 0, 1, . . .. Then {F ,Lω}M ∈ Jk(ρ − d)

∀ 0 < d < ρ and the following estimates hold:

‖[F,Lω]/i~‖ρ−d,k = ‖{F ,Lω}M‖ρ−d,k ≤ 1

d
‖F‖ρ,k (3.48)
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‖[F, [· · · , [F,Lω] · · · ]/(i~)r‖ρ−d,k = ‖{F , · · · , {F ,Lω}M · · · , }M‖ρ−d,k (3.49)

≤
√

2π(r − 1)(k + 1)4k

(ed)dr
‖F‖r

ρ,k

Proof. By (3.40):

{F ,Lω}M = {F ,Lω} = −〈ω,∇x〉F(ξ, x; ~) =
∑

q∈Zl

〈ω, q〉ei〈q,x〉

∫

R

F̂q(p; ~)eipLω(ξ) dp

and therefore:

‖{F ,Lω}M‖ρ−d,k ≤ ‖{F ,Lω}‖ρ−d,k ≤
∑

q∈Zl

|〈ω, q〉|e(ρ−d)|q|‖Fq‖ρ,k ≤

sup
q∈Zl

〈ω, q〉|e−d|q|
∑

q∈Zl

eρ|q|‖Fq‖ρ,k ≤ 1

d
‖F‖ρ,k

because |ω| ≤ 1 by Remark 2.6. This proves (3.48). (3.49) is a direct consequence of Corollary

3.13. �

3.4. Proof of Proposition 3.11.

3.4.1. Three lemmata. The proof will use the three following Lemmata.

Lemma 3.15. Let p, p′ ∈ Rl, s, s′ ∈ Rl. Define t := (p, s), t′ := (p′, s′). Let Ωω(·) and µj(·) be

defined by (3.29) and (2.12), respectively. Then:

|Ωω(t, t′)|j ≤ 2jµj(t)µj(t
′). (3.50)

The proof is straightforward, because |Ωω(t, t′)| ≤ 2|t||t′| and |ω| ≤ 1.

Lemma 3.16. ∣∣∣∣
dm

d~m

sin ~x/2

~

∣∣∣∣ ≤
|x|m+1

2m+1
. (3.51)

.

Proof. Write:

dm

d~m

1

~
sin ~x/2 =

dm

d~m

1

2

∫ x

0
cos ~t/2 dt =

(−~)m

2m+1

∫ x

0
tm cos(m) (~t/2) dt ≤ ~m

2m+1

∫ x

0
tm dt.

whence ∣∣∣∣
dm

d~m

sin ~x/2

~

∣∣∣∣ ≤
~m

2m+1

∣∣∣∣
∫ x

0
tm dt

∣∣∣∣ =
~m|x|m+1

2m+1(m + 1)
≤ |x|m+1

2m+1
.

�
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Lemma 3.17. Let (F , G) ∈ J †
ρ , 0 < d + d1 < ρ, t = (p, s), t′ = (p′, s′), |t| := |p| + |s|,

|t′| := |p′| + |s′|. Then:

‖{F ,G}M‖†ρ−d−d1
≤ 1

e2d1(d + d1)
‖F‖†ρ‖G‖†ρ−d (3.52)

Proof. We have by definition

|{F ,G}M‖†ρ−d−d1
≤ 1

~

∫

R2l

e(ρ−d−d1)|t|dλ(t)

∫

R2l

|F(t′)G(t′ − t)| · | sin ~(t′ − t) ∧ t′/~| dλ(t′)

≤
∫

R2l

e(ρ−d−d1)|t|dλ(t)

∫

R2l

|F(t′)| · |G(t′ − t)| · |(t′ − t)| · |t′| dλ(t′)

=

∫

R2l

e(ρ−d−d1)|t|dλ(t)

∫

R2l

|F(u + t/2)G(u − t/2)| · |u − t/2| · |u + t/2| dλ(u)

=

∫

R2l×R2l

e(ρ−d−d1)(|x|+|y|)|F(x)G(y)| · |x| · |y| dλ(x)dλ(y) ≤

1

d1(d + d1)

∫

R2l

|F(x)|eρ|x| dλ(x)

∫

R2l

|G(y)|e(ρ−d)|y| dλ(x) ≤ 1

e2d1(d + d1)
‖F‖†ρ‖G‖†ρ−d

because sup
α∈R

|α|e−δα =
1

eδ
, δ > 0. �

3.4.2. Assertion (1†). By definition

‖F(~)♯G(~)‖†ρ,k =

k∑

γ=0

∫

R2l×R2l

|∂γ
~
[F̂(t′ − t, ~)Ĝ(t′, ~)ei~Ωω(t′,t′−t)]|µk−γ(t)eρ|t| dλ(t′)dλ(t)

whence

‖F(~)♯G(~)‖†ρ,k =

k∑

γ=0

γ∑

j=0

(
γ

j

)∫

R2l×R2l

|∂γ−j
~

[F̂(t′ − t, ~)Ĝ(t′, ~)]|Ωω(t′ − t, t′)|jµk−γ(t)eρ|t| dλ(t′)dλ(t) =

k∑

γ=0

γ∑

j=0

γ−j∑

i=0

(
γ

j

)(
j

i

)∫

R2l×R2l

|∂γ−j−i
~

F̂(t′ − t, ~)∂i
~
Ĝ(t′, ~)||Ωω(t′ − t, t′)|jµk−γ(t)eρ|t| dλ(t′)dλ(t)

By Lemma 3.15 and the inequality µk(t
′− t) ≤ 2k/2µk(t

′)µk(t) we get, with t = (p, s) : t′ = (p′, s′)

|Ωω(t′ − t, t′)|jµk−γ(t) ≤ 2jµj(t
′ − t)µj(t

′)µk−γ(t)

≤ 2jµjt
′ − t)µj(t

′)µk−γ(t)2(k−γ)/2µk−γ(t′ − t)µk−γ(t)

≤ 2j+(k−γ)/2µk−γ+j(t
′ − t)µk−γ+j(t)

Denote now γ − j − i = k − γ′, i = k − γ′′ and remark that j ≤ γ′, i ≤ γ − j. Then:

2j+(k−γ)/2µk−γ+j(t
′ − t)µk−γ+j(t) ≤ 2kµγ′(t′)µγ′′(t)
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Since

(
γ

j

)(
j

i

)
≤ 4k and the sum over k has (k + 1) terms we get:

‖F(~)♯G(~)‖†ρ,k ≤

(k + 1)4k
k∑

γ′,γ′′=0

∫

R2l×R2l

|∂k−γ′

~
F̂(t′ − t, ~)|∂k−γ′′

~
Ĝ(t′, ~)|µγ′(t′ − t)µγ′′(t)eρ|t| dλ(t′)dλ(t)

Now we can repeat the argument of Lemma 3.17 to conclude:

‖F(~)♯G(~)‖†ρ,k ≤ (k + 1)4k‖F‖†ρ,k · ‖G‖†ρ,k

which is (3.41). Assertion (3†), formula (3.43) is the particular case of (3.41) obtained for Ωω = 0,

and Assertion (3), formula (3.46), is in turn particular case of (3.43) .

3.4.3. Assertion(2†). By definition:

‖{F(~),G(~)}M‖†ρ,k =
k∑

γ=0

∫

R2l×R2l

|∂γ
~
[F̂(t′ − t, ~)Ĝ(t′, ~) sin ~Ω(t′ − t, t′)/~]|µk−γ(t)eρ|t| dλ(t′)dλ(t).

Lemma 3.16 entails:

|∂j
~
sin ~Ω(t′ − t, t′)/~| ≤ |Ω(t′ − t, t′)|j+1

and therefore:

‖{F(~),G(~)}M‖ρ,k ≤
k∑

γ=0

γ∑

j=0

(
γ

j

)∫

R2l×R2l

|∂γ−j
~

[F̂(t′ − t, ~)Ĝ(t′, ~)]|Ωω(t′ − t, t′)|j+1µk−γ(t)eρ(|t| dλ(t′)dλ(t) =

k∑

γ=0

γ∑

j=0

γ−j∑

i=0

(
γ

j

)(
j

i

)∫

R2l×R2l

|∂γ−j−i
~

F̂(t′ − t, ~)∂i
~
Ĝ(t′, ~)||Ωω(t′ − t, t′)|j+1µk−γ(t)eρ|t| dλ(t′)dλ(t)

Let us now absorb a factor |Ωω(t′ − t, t′)|j in exactly the same way as above, and recall that

|Ωω(t′ − t, t′)| ≤ |(t′ − t)t′|. We end up with the inequality:

‖{F(~),G(~)}M‖†ρ,k ≤

(k + 1)4k
k∑

γ′,γ′′=0

∫

R2l×R2l

|∂k−γ′

~
F̂(t′ − t, ~)|∂k−γ”

~
Ĝ(t′, ~)||t′ − t||t′|µγ′(t′ − t)µγ′′(t′)eρ(|t| dλ(t′)dλ(t)

Repeating once again the argument of Lemma 3.17 we finally get:

‖{F(~),G(~)}M‖†ρ−d−d1,k ≤ (k + 1)4k

e2d1(d + d1)
‖F‖†ρ,k · ‖G‖†ρ−d,k

which is (3.42). Once more, Assertion (2) is a particular case of (3.42) and Assertion (1) a

particular case of (3.41). This completes the proof of Proposition 3.10.
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4. A sharper version of the semiclassical Egorov theorem

Let us state and prove in this section a particular variant of the semiclassical Egorov theorem

(see e.g.[Ro]) which establishes the relation between the unitary transformation eiεW/i~ and the

canonical transformation φε
W0

generated by the flow of the symbol W(ξ, x; ~)|~=0 := W0(ξ, x)

(principal symbol) of W at time 1. The present version is sharper in the sense that the usual one

allows for a O(~∞) error term.

Theorem 4.1. Let ρ > 0, k = 0, 1, . . . and let A,W ∈ J†
k(ρ) with symbols A, W. Then:

Sε := ei εW
~ (Lω + A)e−i εW

~ = Lω + B

where:

(1) ∀ 0 < d < ρ, B ∈ J†
k(ρ − d);

(2)

‖B‖†ρ−d,k ≤ (k + 1)4k

(ed)2

[
1 − |ε|‖W‖†ρ,k/d

]−1 [
‖A‖†ρ,k + |ε|‖W‖†ρ,k/de

]

(3) Moreover the symbol B of B is such that:

Lω + B = (Lω + A) ◦ Φε
W0

+ O(~)

where Φε
W0

is the Hamiltonian flow of W0 := W|~=0 at time ε.

(4) Assertions (1), (2), (3) hold true when (A,B, W ) ∈ Jk(ρ) with ‖A‖†ρ,k, ‖B‖†ρ,k, ‖W‖†ρ,k

replaced by ‖A‖ρ,k, ‖B‖ρ,k, ‖W‖ρ,k.

Proof. The proof is the same in both cases, since it it is based only on Proposition 3.11. Therefore

we limit ourselves to the Jk(ρ) case.

By Corollary 3.8, Assertion (3), under the present assumptions H1(Tl), the domain of the self-

adjoint operator F(Lω) + A, is left invariant by the unitary operator ei εW
~ . Therefore on H1(Tl)

we can write the commutator expansion

Sε = Lω +
∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,Lω] . . .] +

∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,A] . . .]

whence the corresponding expansions for the symbols

S(x, ξ; ~, ε) = Lω(ξ) +

∞∑

m=1

εm

m!
{W, {W, . . . , {W,Lω} . . .}M

+
∞∑

m=1

εm

m!
{W, {W, . . . , {W,A}M . . .}M
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because {W,Lω}M = {W,Lω} by the linearity of Lω. Now apply Corollaries 3.13 and 3.14. We

get, denoting once again Ck = (k + 1)4k:

‖
∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,Lω] . . .]‖L2→L2 ≤ ‖

∞∑

m=1

εm

m!
{W, {W, . . . , {W,Lω} . . .}M‖ρ−d,k

≤
∞∑

m=1

|ε|m
m!

‖{W, {W, . . . , {−i〈ω,∇x〉W}M . . .}M‖ρ−d,k ≤ Ck

ed

∞∑

m=1

√
2πm

( |ε|‖W‖ρ,k

d

)m

‖
∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,A] . . .]‖L2→L2 ≤ ‖

∞∑

m=1

εm

m!
{W, {W, . . . , {W,A}M . . .}M‖ρ−d,k

≤ Ck

ed
‖A‖ρ,k

∞∑

m=1

√
2πm

( |ε|‖W‖ρ,k

d

)m

Now define:

B :=

∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,Lω] . . .] +

∞∑

m=1

(iε)m

~mm!
[W, [W, . . . , [W,A] . . .] (4.53)

and remark that ∀ η > 0 we can always find 0 < d′ < d − η such that
√

2πmd−m ≤ (d′)−m.

Denoting (abuse of notation) d′ = d we can write:

‖B‖ρ−d,k ≤ (k + 1)4k

(ed)2
[1 − |ε|‖W‖ρ,k/d]−1 [‖A‖ρ,k + |ε|‖W‖ρ,k/de]

This proves assertions (1) and (2).

By Remark 2.9, we have:

S0
ε (x, ξ; ~)|~=0 = Lω + Bε(ξ, x; ~)|~=0 =
∞∑

k=0

(ε)k

k!
{W0, {W, . . . , {W0,L + A} . . .} = eεLW0 (Lω + A)

where LW0F = {W,F} denote the Lie derivative with respect to the Hamiltonian flow generated

by W0. Now, by Taylor’s theorem

eεLW0 (Lω + A) = (Lω + A) ◦ φε
W0

(x, ξ)

and this concludes the proof of the Theorem. �

Remark 4.2. Let W be a solution of the homological equation (5.1). Then the explicit expression

of W0 clearly is:

W0 =
1

F ′(Lω(ξ))

∑

q∈Zℓ

Vq(ξ)

〈ω, q〉e
i〈q,x〉

and

eεLW0 (F(Lω) + εA) = F(Lω) + εN0,ε(Lω) + O(ε2).
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Thus W0 coincides with the expression obtained by first order canonical perturbation theory.

5. Homological equation: solution and estimate

Let us briefly recall the well known KAM iteration in the quantum context.

The first step consists in looking for an L2(Tl)-unitary map U0,ε = eiεW0/~, W0 = W ∗
0 , such

that

S0,ε := U0,ε(Lω + εV0)U
∗
0,ε = F1,ε(Lω) + ε2V1,ε, V0 := V, F1,ε(Lω) = Lω + εN0(Lω).

Expanding to first order near ε = 0 we get that the two unknowns W0 and N0 must solve the

equation
[Lω,W0]

i~
+ V = N0

V1,ε is the second order remainder of the expansion. Iterating the procedure:

Uℓ,ε := eiε2ℓ
Wℓ/~;

Sℓ,ε := Uℓ.ε(Fℓ,ε(Lω) + ε2ℓ

Vℓ,ε)U
∗
ℓ,ε == Fℓ+1,ε(Lω) + ε2ℓ+1

Vℓ+1(ε),

[Fℓ,ε(Lω),Wℓ,ε]

i~
+ Vℓ,ε = Nℓ,ε

With abuse of notation, we denote by Fℓ,ε(Lω, ~), Nℓ,ε(Lω, ~), Vℓ,ε(Lω, ~) the corresponding sym-

bols.

The KAM iteration procedure requires therefore the solution in Jk(ρ) of the operator homological

equation in the two unknowns W and M (here we have dropped the dependence on ℓ and ε, and

changed the notation from N to M to avoid confusion with what follows):

[F(Lω),W ]

i~
+ V = M(Lω) (5.1)

with the requirement M(Lω) ∈ Jk(ρ); the solution has to be expressed in terms of the correspond-

ing Weyl symbols (Lω,W,V,M) ∈ Jk(ρ) in order to obtain estimates uniform with respect to ~.

Moreover, the remainder has to be estimated in terms of the estimates for W,M .

Equation (5.1), written for the symbols, becomes

{F(Lω(ξ), ~),W(x, ξ; ~)}M + V(x, Lω(ξ); ~) = M(Lω(ξ), ~) (5.2)

5.1. The homological equation. We will construct and estimate the solution of (5.1), actually

solving (5.2) and estimating its solution, under the following assumptions on F :

Condition (1) (u, ~) 7→ F(u; ~) ∈ C∞(R × [0, 1]; R);
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Condition (2)

inf
(u,~)∈R×[0,1]

∂uF(u; ~) > 0; lim
|u|→∞

|F(u, ~)|
|u| = C > 0

uniformly with respect to ~ ∈ [0, 1].

Condition (3) Set:

KF (u, η, ~) =
η

F(u + η, ~) −F(u, ~)
(5.3)

Then there is 0 < Λ(F) < +∞ such that

sup
u∈R,η∈R,~∈[0,1]

|KF (u, η, ~)| < Λ. (5.4)

The first result deals with the identification of the operators W and M through the determination

of their matrix elements and corresponding symbols W and M.

Proposition 5.1. Let V ∈ J(ρ), ρ > 0, and let W and M be the minimal closed operators in

L2(Tn) generated by the infinite matrices

〈em,Wem+q〉 =
i~〈em, V em+q〉

F(〈ω, m〉~, ~) −F(〈ω, (m + q)〉~, ~)
, q 6= 0, 〈em,Wem〉 = 0 (5.5)

〈em,Mem〉 = 〈em, V em〉, 〈em,Mem+q〉 = 0, q 6= 0 (5.6)

on the eigenvector basis em : m ∈ Zl of Lω. Then:

(1) W and M are continuous and solve the homological equation (5.1);

(2) The symbols W(x, ξ; ~) and M(ξ, ~) have the expression:

M(ξ; ~) = V(Lω(ξ); ~); W(Lω(ξ), x; ~) =
∑

q∈Zl,q 6=0

W(Lω(ξ), q; ~)ei〈q,x〉 (5.7)

W(Lω(ξ), q; ~) :=
i~V(Lω(ξ); q; ~)

F(Lω(ξ); ~) −F(Lω(ξ + q), ~)
, q 6= 0; W(Lω(ξ); ~) = 0. (5.8)

Here the series in (5.7) is ‖ · ‖ρ convergent; V(Lω(ξ); ~) is the 0-th coefficients in the

Fourier expansion of V(Lω(ξ), x, ~).

Proof. Writing the homological equation in the eigenvector basis em : m ∈ Zl we get

〈em,
[F(Lω),W ]

i~
en〉 + 〈em, V en〉 = 〈em,M(Lω)en〉δm,n (5.9)

which immediately yields (5.5,5.6) setting n = m+q. As far the continuity is concerned, we have:

i~

F(〈ω, m〉~, ~) −F(〈ω, (m + q)〉~, ~)
= 〈ω, q〉−1 η

F(〈ω, m〉~, ~) −F(〈ω, m〉~ + η, ~)
, η := 〈q, ω〉~.

and therefore, by (5.4) and the diophantine condition:

|〈em,Wem+q〉| ≤ γ|q|τΛ|〈em, V em+q〉|.
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The assertion now follows by Corollary 3.8, which also entails the ‖ · ‖ρ convergence of the series

(5.7) because V ∈ Jρ. Finally, again by Corollary 3.8, formulae (3.23), (3.24), we can write

〈em,Wem+q〉 = W(〈ω, (m + q/2)〉~, q, ~); 〈em,Mem〉 = M(ω, m〉~, ~) = V(Lω(ω, m〉~, 0, ~)

and this concludes the proof of the Proposition. �

The basic example of F is the following one. Let:

• Fℓ(u, ε; ~) = u + Φℓ(u, ε, ~), ℓ = 0, 1, 2, . . . (5.10)

• Φℓ(ε, ~) := εN0(u; ε, ~) + ε2N1(u; ε, ~) + . . . + εℓNℓ(u, ε, ~), εj := ε2j

. (5.11)

where we assume holomorphy of ε 7→ Ns(u, ε, ~) in the unit disk and the existence of ρ0 > ρ1 >

. . . > ρℓ > 0 such that:

(Ns) max
|ε|≤1

|N |ρs < ∞, .

Denote, for ζ ∈ R:

gℓ(u, ζ; ε, ~) :=
Φℓ−1(u + ζ; ε, ~) − Φℓ−1(u; ε, ~)

ζ
(5.12)

Let furthermore:

0 < dℓ < . . . < d0 < ρ0, 0 < ρ0 := ρ; (5.13)

ρs+1 = ρs − ds > 0, s = 0, . . . , ℓ − 1

δℓ :=
ℓ−1∑

s=0

dℓ < ρ (5.14)

and set, for j = 1, 2, . . .:

θℓ,k(N , ε) :=
ℓ−1∑

s=0

|εs| |Ns|ρs,k

eds
, θℓ(N , ε) := θℓ,0(N , ε). (5.15)

By Remark 2.4 we have

θℓ,k(N , ε) =
ℓ−1∑

s=0

|εs| ‖Ns‖ρs,k

eds
(5.16)

Lemma 5.2. In the above assumptions:

(1) For any R > 0 the function ζ 7→ gℓ(u, ζ, ε, ~) is holomorphic in {ζ | |ζ| < R | |ℑζ| < ρ},
uniformly on compacts with respect to (u, ε, ~) ∈ R × R × [0, 1];

(2) For any n ∈ N ∪ {0}:

sup
ζ∈R

|[g(u, ζ, ε, ~)]n|ρℓ
≤ [θℓ(N , ε)]n (5.17)
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(3) Let:

max
|ε|≤L

θℓ(N , ε) < 1, L > 0. (5.18)

Then:

sup
ζ∈R;u∈R

|KF (u, ζ, ε, ~)|ρℓ
≤ 1

|ζ| ·
1

1 − θℓ(N , ε)
(5.19)

(4)

sup
ζ∈R

|∂j
ug(u, ζ, ε, ~)|ρℓ

≤ θℓ,j(N , ε) (5.20)

sup
ζ∈R

|∂j
ζg(u, ζ, ε, ~)|ρℓ

≤ θℓ,j(N , ε) (5.21)

sup
ζ∈R

|∂j
~
g(u, ζ, ε, ~)|ρℓ

≤ θℓ,j(N , ε). (5.22)

Proof. The holomorphy is obvious given the holomorphy of Ns(u; ε, ~). To prove the estimate

(5.17), denoting N̂s(p, ε, ~) the Fourier transform of Ns(ξ, ε, ~) we write

gℓ(u, ζ, ε, ~) =
1

ζ

ℓ−1∑

s=0

εs

∫

R

N̂ℓ(p, ε, ~)(eiζp − 1)eiup dp = (5.23)

2

ζ

ℓ−1∑

s=0

εs

∫

R

N̂ℓ(p, ε, ~)eip(u+ζ)/2 sin ζp/2 dp

which entails:

sup
ζ∈R

|gℓ(u, ζ, ε, ~)|ρℓ
= sup

ζ∈R

∫

R

|ĝℓ(p, ζ, ε, ~)|eρℓ|p| dp

≤ max
~∈[0,1]

ℓ−1∑

s=0

|εs|
∫

R

|N̂s(p, ε, ~)p|e(ρs−ds)|p| dp ≤ 1

e

ℓ−1∑

s=0

|εs|
|Ns|ρs

ds
= θℓ(N , ε, 1) 0 < ds < ρs.

Hence Assertion (3) of Proposition 3.11, considered for k = 0, immediately yields (5.17). Finally,

if gℓ is defined by (5.12), then:

KF (u, ζ, ε, ~) =
1

ζ

1

1 + gℓ(u, ζ, ε, ~)

and the estimate (5.19) follows from (5.17) which makes possible the expansion into the geome-

trical series

1

1 + gℓ(u, ζ, ε, ~)
=

∞∑

n=0

(−1)n gℓ(u, ζ, ε, ~)n (5.24)

convergent in the θℓ(N , ε) norm. To see (5.20), remark that (5.23) yields:

∂j
ugℓ(u, ζ, ε, ~) =

2

ζ

ℓ−1∑

s=0

εs

∫

R

N̂ℓ(p, ε, ~)(ip)jeip(u+ζ)/2 sin ζp/2 dp.
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Therefore:

sup
ζ∈R

|∂j
ugℓ(u, ζ, ε, ~)|ρℓ

≤ sup
ζ∈R

max
~∈[0,1]

2

ℓ−1∑

s=0

|εs|
∫

R

|N̂s(p, ε, ~)||p|j | sin ζp/2|/ζ|eρℓ|p| dp

≤ sup
ζ∈R

max
~∈[0,1]

2
ℓ−1∑

s=

|εs|
∫

R

|N̂s(p, ε, ~)||p|j | sin ζp/2|/ζ|e(ρs−ds)|p| dp

≤ sup
p∈R

[|p|
ℓ−1∑

s=0

|εs| e−ds|p|] max
~∈[0,1]

∫

R

|p|jN̂ (p, ε, ~)eρs|p| dp

≤ 1

e

ℓ−1∑

s=0

|εs|
|Ns|ρs,j

ds
≤ θℓ,j(N , ε)

(5.21) is proved by exactly the same argument. Finally, to show (5.22) we write:

sup
ζ∈R

|∂j
~
gℓ(u, ζ, ε, ~)|ρℓ

≤ sup
ζ∈R

max
~∈[0,1]

2

ℓ−1∑

s=0

|εs|
∫

R

|∂j
~
N̂s(p, ε, ~)| · | sin ζp/2|/ζ|eρℓ|p| dp

≤ max
~∈[0,1]

ℓ−1∑

s=0

|εs|
∫

R

|∂j
~
N̂ (p, ε, ~)|e(ρs−ds)|p| dp ≤ θℓ(N , ε)

This proves the Lemma. �

By Condition (1) the operator family ~ 7→ F(Lω; ε, ~), defined by the spectral theorem, is

self-adjoint in L2(Tl); by Condition (2) D(F(Lω)) = H1(Tl). Since Lω is a first order operator

with symbol Lω, the symbol of F(Lω; ε, ~) is F(Lω(ξ), ε, ~). We can now state the main result of

this section. Let Fℓ(x, ε, ~) be as in Lemma 5.2, which entails the validity of Conditions (1),

(2), (3).

Theorem 5.3. Let Vℓ ∈ Jk(ρℓ), ℓ = 0, 1 . . ., V1 ≡ V for some ρℓ > ρℓ+1 > 0, k = 0, 1, . . .. Let

Vℓ(Lω(ξ), x; ε, ~) ∈ Jk(ρ) be its symbol. Then for any θℓ(N , ε) < 1 the homological equation (5.1),

rewritten as

[Fℓ(Lω),Wℓ]

i~
+ Vℓ = Nℓ(Lω, ε) (5.25)

{Fℓ(Lω(ξ), ε, ~),Wℓ(x, ξ; ε, ~)}M + Vℓ(x, Lω(ξ); ε, ~) = Nℓ(Lω(ξ), ε, ~) (5.26)

admits a unique solution (Wℓ, Nℓ) of Weyl symbols Wℓ(Lω(ξ), x; ε, ~), Nℓ(Lω(ξ), ε, ~) such that

(1) Wℓ = W ∗
ℓ ∈ Jk(ρℓ), with:

‖Wℓ‖ρℓ+1,k = ‖W‖ρℓ+1,k ≤ A(ℓ, k, ε)‖Vℓ‖ρℓ,k (5.27)

A(ℓ, k, ε) = γ
τ τ

(edℓ)τ

[
1 +

2k+1(k + 1)2(k+1)kk

(eδℓ)k[1 − θℓ(N , ε)]k+1
θk+1
ℓ,k

]
. (5.28)
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(2) Nℓ = Vℓ; therefore Nℓ ∈ Jk(ρℓ) and ‖N‖ρℓ,k ≤ ‖Vℓ‖ρℓ,k.

Proof. The proof of (2) is obvious and follows from the definition of the norms ‖·‖ρ and ‖·‖ρ,k. The

self-adjointess property W = W ∗ is implied by the construction itself, which makes W symmetric

and bounded.

Consider Wℓ as defined by (5.7). Under the present assumptions, by Lemma 5.2 we have:

Wℓ(Lω(ξ), q; ε, ~) :=
1

〈ω, q〉
i~Vℓ(Lω(ξ); q; ε, ~)

1 + gℓ(Lω(ξ); 〈ω, q〉~, ε, ~)
, q 6= 0; Wℓ(·, 0; ~) = 0.

By the ‖ · ‖ρℓ
-convergence of the series (5.24) we can write

∂γ
~
Wℓ(Lω(ξ), q; ε, ~) =

∞∑

n=0

(−ε)n ∂γ
~
Wℓ,n(Lω(ξ), q; ε, ~), (5.29)

Wℓ,n(Lω(ξ), q; ε, ~) =
1

〈ω, q〉Vℓ(Lω(ξ); q; ε, ~)[gℓ(Lω(ξ); 〈ω, q〉~, ε, ~)]n (5.30)

∂γ
~
Wℓ,n(Lω(ξ), q; ε, ~) = (5.31)

γ∑

j=0

(
γ

j

)
∂γ−j

~
Vℓ(Lω(ξ); q; ε, ~)Dj

~
[gℓ(Lω(ξ); 〈ω, q〉~, ε, ~)]n

where D~ denotes the total derivative with respect to ~. We need the following preliminary result.

Lemma 5.4. Let ζ(~) := 〈ω, q〉~. Then:

(1)

|Dj
~
gℓ(Lω(ξ), ζ(~), ε, ~)|ρℓ

≤ (j + 1)(2|q|)jθℓ,j(N , ε)2 (5.32)

(2)

|Dj
~
[gℓ(Lω(ξ); ζ(~), ε, ~)]n|ρℓ

≤ 2nj(θℓ(N , ε))n−j [2(j + 1)|q|]jθℓ,j(N , ε)2j . (5.33)

Proof. The expression of total derivative D~g is:

D~g(·; 〈ω, q〉~, ε, ~) = (〈ω, q〉 ∂

∂ζ
+

∂

∂~
) gℓ(·; ζ, ε, ~)|ζ=〈ω,q〉~ (5.34)

By Leibnitz’s formula we then have:

Dj
~
gℓ(·; 〈ω, q〉~, ε, ~) =

j∑

i=0

(
j

i

)
〈ω, q〉j−i ∂

j−igℓ

∂ζj−i

∂igℓ

∂~i
(5.35)

Apply now (3.46) with k = 0, (5.20) and (5.22). We get:

∣∣∣∣
∂j−igℓ

∂ζj−i

∂igℓ

∂~i

∣∣∣∣
ρℓ

≤ (j + 1)2jθℓ,j(N , ε)2
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whence, since |ω| ≤ 1:

∣∣∣∣
Djgℓ

D~j

∣∣∣∣
ρℓ

≤ (j + 1)(2)j |q|jθℓ,j(N , ε)2 (5.36)

This proves Assertion (1). To prove Assertion (2), let us first note that

Dj
~
[gℓ(Lω(ξ); 〈ω, q〉~, ε, ~)]n = Pn,j

(
gℓ,

Dgℓ

D~
, . . . ,

Djgℓ

D~j

)
. (5.37)

where Pn,j(x1, . . . , xj) is a homogeneous polynomial of degree n with nj terms. Explicitly:

Pn,j

(
gℓ,

Dgℓ

D~
, . . . ,

Djgℓ

D~j

)
=

n∑

j=1

gℓ
n−j

j∏

k=1
j1+...+jk=j

Djkgℓ

D~jk
.

Now (5.32), (5.36) and Proposition 3.11 (3) entail:

|Dj
~
[gℓ(Lω(ξ); 〈ω, q〉~, ε, ~)]n|ρℓ

≤ nj |g|n−j
ρℓ

j∏

k=1
j1+...+jk=j

2(jk + 1) (2|q|)jk θℓ,jk
(N , ε)2

≤ 2nj(θℓ(N , ε))n−j [2(j + 1)|q|]jθℓ,j(N , ε)2j .

This concludes the proof of the Lemma. �

To conclude the proof of the theorem, we must estimate the ‖ · ‖ρℓ+1,k norm of the derivatives

∂γ
~
Wℓ,n(Lω(ξ), x; ε, ~). Obviously:

‖Wℓ(ξ, x; ε, ~)‖ρℓ+1,k ≤
∞∑

n=0

‖Wℓ,n(ξ, x; ε, ~)‖ρℓ+1,k
. (5.38)

For n = 0:

‖Wℓ,0(ξ, x; ε, ~)‖ρℓ+1,k
≤ γ

k∑

γ=0

∫

R×Rl

|∂γ
~
Ŵℓ,0(p, s; ·)||s|τµk−γ(pω, s) eρℓ+1(|p|+|s|) dλ(p, s)

≤ γ
k∑

γ=0

∫

R×Rl

|∂γ
~
V̂ℓ,0(p, s; ·)||s|τµk−γ(pω, s) eρℓ+1(|p|+|s|) dλ(p, s) ≤ γ

τ τ

(edℓ)τ
‖Vℓ‖ρℓ,k

where the inequality follows again by the standard majorization

eρℓ+1(|p|+|s|) = eρℓ(|p|+|s|)e−dℓ(|p|+|s|), sup
s∈Rl

[|s|τe−dℓ|s|] ≤ γ
τ τ

(edℓ)τ
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on account of the small denominator estimate (1.25). For n > 0 we can write, on account of

(2.5,2.6):

‖Wℓ,n(ξ, x; ·)‖ρℓ+1,k =

k∑

γ=0

∫

R×Rl

|∂γ
~
Ŵℓ,n(p, s; ·)||s|τµk−γ(pω, s) eρℓ+1(|p|+|s|) dλ(p, s) ≤

≤ γ
τ τ

(edℓ)τ

k∑

γ=0

γ∑

j=0

(
γ

j

) ∫

Rl

Q(s, ·)eρℓ|s| dν(s)

where

Q(s, ·) :=

∫

R

|[∂γ−j
~

V̂ℓ(p; s; ·)] ∗ [Dj
~
ĝ ∗n

ℓ (p; 〈ω, s〉~, ·)]µk−γ(pω, s) eρℓ|p| dp

Here ∗ denotes convolution with respect only to the p variable, and ĝ ∗in
ℓ (p, ζ, ·) denotes the

n−th convolution of ĝℓ with itself, i.e. the p-Fourier transform of gn
ℓ . Now, by Assertion (3) of

Proposition (3.11) and the above Lemma:

∫

Rl

Q(s, ·)eρℓ|s| dν(s) =

=

∫

R×Rl

|[∂γ−j
~

V̂ℓ(p; s; ·)] ∗ξ [Dj
~
g
∗ξn
ℓ (p; 〈ω, s〉~, ·)]µk−γ(pω, s) eρℓ(|p|+|s|) dλ(p, s)

≤
∫

Rl

[∫

R

|[∂γ−j
~

V̂ℓ(p; s; ~)] ∗ [Dj
~
ĝ ∗n(p; 〈ω, s〉~, ·)]|µk−γ(pω, s) eρℓ|p| dp

]
eρℓ|s| dν(s)

≤ 2A(j)jθℓ(N , ε)n−j

∫

Rl

∫

R

|∂γ−j
~

V̂ℓ(p; s; ·)|µk−γ(pω, s) eρℓ|p||s|jeρℓ|s| dpdν(s),

with

A(j) := 2n(j + 1)θℓ,j(N , ε)2.

This yields, with δℓ defined by (5.13):

‖Wℓ,n(ξ, x; ·)‖ρℓ+1,k ≤ γ
τ τ

(edℓ)τ

k∑

γ=0

∫

R×Rl

|∂γ
~
Ŵℓ,n(p, s; ·)µk−γ(pω, s) eρℓ(|p|+|s|) dλ(p, s) ≤

≤ γτ τ (k + 1)(2A(k))k

(edℓ)τ
θℓ(N , ε)n−j

k∑

γ=0

∫

R×Rl

|∂γ
~
V̂ℓ(p; s; ·)| · µk−γ(pω, s) eρℓ|p||s|jeρℓ|s| dλ(p, s)

≤ γτ τ (k + 1)(2A(k))k

(edℓ)τ

kk

(eδℓ)k
θℓ(N , ε)n−j

k∑

γ=0

∫

Rl

∫

R

|∂γ
~
V̂ℓ(p; s; ·)|µk−γ(pω, s)eρ|p|eρ|s| dλ(p, s)

≤ γ
τ τ

(edℓ)τ

(k + 1)kk

(eδℓ)k
2(2n)k(θℓ(N , ε))n−j(k + 1)kθ2k

ℓ,k‖Vℓ‖ρ,k.
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Therefore, by (5.38):

‖Wℓ(ξ;x; ε, ~)‖ρℓ+1,k ≤
∞∑

n=0

Wℓ,n(ξ;x; ε, ~)‖ρℓ+1,k ≤

≤ γ
τ τ

(edℓ)τ
‖Vℓ‖ρℓ,k

[
1 +

2k+1(k + 1)k+1kk

(eδℓ)k
θ2k
ℓ,k

∞∑

n=1

nk(θℓ(N , ε))n−j

]

≤ γ
τ τ

(edℓ)τ
‖Vℓ‖ρℓ,k

[
1 +

2k+1(k + 1)k+1kk

(eδℓ)k
θ2k−j
ℓ,k

∞∑

n=1

nk(θℓ(N , ε))n

]

≤ γ
τ τ

(edℓ)τ
‖Vℓ‖ρℓ,k

[
1 +

2k+1(k + 1)2(k+1)kk

(eδℓ)k[(1 − θℓ(N , ε)k+1]
θk+1
ℓ,k

]
.

because j ≤ k, and
∞∑

n=1

nkxn ≤
∞∑

n=1

(n + 1) · · · (n + k)xn =
dk

dxk

∞∑

n=1

xn+k

=
dk

dxk

xk+1

1 − x
= (k + 1)!

k+1∑

j=0

(
k + 1 − j

j

)
xk+1−j

(1 − x)j
≤ 2k+1(k + 1)!

(1 − x)k+1
.

By the Stirling formula this concludes the proof of the Theorem. �

5.2. Towards KAM iteration. Let us now prove the estimate which represents the starting

point of the KAM iteration:

Theorem 5.5. Let Fℓ and Vℓ be as in Theorem 5.3, and let Wℓ be the solution of the homological

equation (5.1) as constructed and estimated in Theorem 5.3. Let (5.18) hold and let furthermore

|ε| < εℓ, εℓ :=

(
dℓ

‖Wℓ‖ρℓ+1,k

)2−ℓ

. (5.39)

Then we have:

eiεℓWℓ/~(Fℓ(Lω) + εℓVℓ)e
−iεℓWℓ/~ = (Fℓ + εℓNℓ)(Lω) + ε2

ℓVℓ+1,ε (5.40)

where, ∀ 0 < 2dℓ < ρℓ and k = 0, 1, . . .:

‖Vℓ+1,ε‖ρℓ−2dℓ,k ≤ C(ℓ, k, ε)
‖Vℓ‖2

ρℓ,k

1 − |εℓ|A(ℓ, k, ε)‖V‖ρℓ,k/dℓ
(5.41)

C(ℓ, k, ε) :=
(k + 1)242k

(edℓ)3
A(ℓ, k.ε)

[
2 + |εℓ|

(k + 1)4k

(edℓ)2
A(ℓ, k.ε)‖Vℓ‖ρℓ,k

]
(5.42)

Here A(ℓ, k, ε) is defined by (5.28).

Remark 5.6. We will verify in the next section (Remark 6.26 below) that (5.39) is actually fulfilled

for |ε| < 1/|V|ρ.
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Proof. To prove the theorem we need an auxiliary result, namely:

Lemma 5.7. For ℓ = 0, 1, . . . let ρℓ > 0, ρ0 := ρ, A ∈ Jk(ρ), Wℓ ∈ Jk(ρℓ), k = 0, 1, . . .. Let

W ∗
ℓ = Wℓ, and define:

Aε(~) := eiεℓWℓ/~Ae−iεℓW/~. (5.43)

Then, for |ε| < (d′ℓ/‖W‖ρℓ+1,k)
2−ℓ

, and ∀ 0 < d′ℓ < ρℓ, k = 0, 1, . . .:

‖Aε(~)‖ρ−d′
ℓ
,k ≤ (k + 1)4k

ed′ℓ

‖A‖ρℓ,k

1 − |εℓ|‖W‖ρℓ+1,k/d′ℓ
(5.44)

Proof. Since the operators Wℓ and A are bounded, there is ε0 > 0 such that the commutator

expansion for Aε(~):

Aε(~) =
∞∑

m=0

(iεℓ)
m

~mm!
[Wℓ, [Wℓ, . . . , [Wℓ, A] . . .]

is norm convergent for |ε| < ε0 if ~ ∈]0, 1[ is fixed. The corresponding expansion for the symbols

is

Aε(~) =

∞∑

m=0

(εℓ)
m

m!
{Wℓ, {W, . . . , {Wℓ,A}M . . .}M

Now we can apply once again Corollary 3.13. We get, with the same abuse of notation of Theorem

4.1:

1

m!
‖{Wℓ, {Wℓ, . . . , {Wℓ,A}M . . .}M‖ρ−d′

ℓ
,k ≤ (k + 1)4k

ed1

(‖Wℓ‖ρℓ,k

d′ℓ

)m

‖A‖ρℓ,k (5.45)

Therefore

‖Aε(~)‖ρℓ−d′
ℓ
,k ≤ (k + 1)4k

ed′ℓ
‖A‖ρℓ,k

∞∑

m=0

|ε|m[‖W‖ρℓ+1,k/d′ℓ]
m =

(k + 1)4k

ed′ℓ

‖A‖ρℓ,k

1 − |εℓ|‖W‖ρℓ+1,k/d′ℓ

and this concludes the proof. �

Wℓ solves the homological equation (5.1). Then by Theorem 5.3 Wℓ = W ∗
ℓ ∈ Jk(ρℓ − dℓ),

k = 0, 1, . . .; in turn, by Assertion (3) of Corollary 3.8 the unitary operator eiεℓWℓ/~ leaves H1(Tl)

invariant. Therefore the unitary image of Hε under eiεℓW/~ is the real-holomorphic operator family

in L2(Tl)

ε 7→ Sε := eiεℓWℓ/~(Fℓ(Lω) + εℓVℓ)e
−iε ellW/~, D(S(ε)) = H1(Tl) (5.46)

Computing its Taylor expansion at εℓ = 0 with second order remainder we obtain:

Sεu = Fℓ(Lω)u + εℓNℓ(Lω)u + ε2
ℓVℓ+1,εu, u ∈ H1(Tl) (5.47)

Vℓ+1,ε =
1

2

∫ εℓ

0
(εℓ − t)eitWℓ/~

(
[Nℓ,Wℓ]

i~
+

[Wℓ, Vℓ]

i~
+ t

[Wℓ, [Wℓ, Vℓ]]

(i~)2

)
e−itWℓ/~ dt (5.48)
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To see this, first remark that S0 = F(Lω). Next, we compute, as equalities between continuous

operators in L2(Tl):

S′
ε = eiεℓW/~([Fℓ(Lω),Wℓ]/i~ + Vℓ + εℓ[V,W ]/i~)e−iεℓW/~ =

eiεℓW/~(Nℓ + εℓ[Vℓ,Wℓ]/i~)eiεℓWℓ/~; S′
0 = Nℓ

S′′
ε = eiεℓWℓ/~([Nℓ,Wℓ]/i~ + [Vℓ,Wℓ]/i~ + εℓ[Wℓ, [Wℓ, Vℓ]]/(i~)2)e−iεℓWℓ/~,

and this proves (5.47) by the second order Taylor’s formula with remainder:

Sε = S(0) + εS′
0 +

1

2

∫ εℓ

0
(ε − t)S′′(t), dt

The above formulae obviously yield

‖Vl+1,ε‖ ≤ |εℓ|2 max
0≤|t|≤|εℓ|

‖S′′(t)‖ (5.49)

Set now:

Rℓ+1,ε := [Nℓ,Wℓ]/i~ + [Vℓ,Wℓ]/i~ + εℓ[Wℓ, [Wℓ, Vℓ]]/(i~)2 (5.50)

Rℓ+1,ε is a continuous operator in L2, corresponding to the symbol

Rℓ+1,ε(Lω(ξ), x; ~) = {Nℓ,Wℓ}M + {Vℓ,Wℓ}M + εℓ{Wℓ, {Wℓ,Vℓ}M}M (5.51)

Let us estimate the three terms individually. By Theorems 5.3 and 3.11 we can write, with

A(ℓ, k, ε) given by (5.28):

‖[Nℓ,Wℓ]/i~‖ρℓ−dℓ,k ≤ ‖{Nℓ,Wℓ}M‖ρℓ−dℓ,k ≤ (k + 1)4k

(edℓ)2
‖Wℓ‖ρℓ+1,k‖Nℓ‖ρℓ,k

≤ (k + 1)4k

(ed)2
A(ℓ, k, ε)‖Vℓ‖2

ρℓ,k

‖[Vℓ,Wℓ]/i~‖ρℓ−dℓ,k ≤ ‖{Vℓ,Wℓ}M‖ρℓ−dℓ,k ≤ (k + 1)4k

(edℓ)2
‖Vℓ‖ρℓ,k‖Wℓ‖ρℓ+1,k ≤

≤ (k + 1)4k

(edℓ)2
A(ℓ, k.ε)‖Vℓ‖2

ρℓ,k

‖[Wℓ, [Wℓ, Vℓ]]/(i~)2‖ρℓ−dℓ,k ≤ ‖{Wℓ, {Wℓ,Vℓ}M}M‖ρℓ−dℓ,k ≤ (k + 1)242k

(edℓ)4
‖Wℓ‖2

ρℓ+1,k‖Vℓ‖ρℓ,k

≤ (k + 1)242k

(edℓ)4
A(ℓ, k, ε)2‖Vℓ‖3

ρℓ,k

We can now apply Lemma 5.7, which yields:
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‖eiεℓWℓ/~[Nℓ,Wℓ]e
−iεℓWℓ/~/i~‖ρℓ−dℓ−d′

ℓ
,k ≤ (k + 1)242k

(edℓ)2ed
′
ℓ

Ξ(ℓ, k)

‖eiεℓWℓ/~[Vℓ,Wℓ]e
−iεℓWℓ/~/i~‖ρℓ−dℓ−d′

ℓ
,k ≤ (k + 1)242k

(edℓ)2ed
′
ℓ

Ξ(ℓ, k)

‖eiεℓWℓ/~[Wℓ, [Wℓ, Vℓ]]e
−iεℓWℓ/~/(i~)2‖ρℓ−dℓ−d′

ℓ
,k ≤ (k + 1)343k

(edℓ)4ed
′
ℓ

Ξ1(ℓ, k)

where

Ξ(ℓ, k) := A(ℓ, k) ·
‖Vℓ‖2

ρℓ,k

1 − |εℓ|‖W‖ρℓ+1,k/d′ℓ
(5.52)

Ξ1(ℓ, k) = A(ℓ, k, ε)2 ·
‖V‖3

ρℓ,k

1 − |εℓ|‖W‖ρℓ+1,k/d′ℓ
(5.53)

Therefore, summing the three inequalities we get

‖Vℓ+1,ε‖ρℓ−dℓ−d′
ℓ
,k ≤ (k + 1)242k

(edℓ)2ed
′
ℓ

A(ℓ, k, ε) ×

×
‖Vℓ‖2

ρℓ,k

1 − |εℓ|‖Wℓ‖ρℓ+1,k/d′ℓ

[
2 + |εℓ|

(k + 1)4k

(edℓ)2
A(ℓ, k, ε)‖Vℓ‖ρℓ,k

]

If we choose d′ℓ = dℓ this is (5.41) on account of Theorem 5.3. This concludes the proof of Theorem

5.5. �

6. Recursive estimates

Consider the ℓ-th step of the KAM iteration. Summing up the results of the preceding Section

we can write:

• Sℓ,ε := eiεℓWℓ/~ · · · eiε2W1/~eiεW0/~(F(Lω) + εV )e−iεW0/~e−iε2W1/~ · · · e−iεℓWℓ/~

= eiεℓWℓ/~(Fℓ,ε(Lω) + ε2ℓ

Vℓ,ε)e
−iεℓWℓ/~ = Fℓ+1,ε(Lω) + εℓ+1Vℓ+1,ε,

• Fℓ,ε(Lω) = F(Lω) +

ℓ−1∑

k=1

εkNk(Lω), [Fℓ(Lω),Wℓ]/i~ + Vℓ,ε = Nℓ(Lω, ε)

•Vℓ+1,ε =
1

2

∫ εℓ

0
(εℓ − t)eitWℓ/~Rℓ+1,te

−itWℓ/~ dt

• Rℓ+1,ε := [Nℓ,Wℓ]/~ + [Wℓ, Vℓ,ε]/~ + εℓ[Wℓ, [Wℓ, Vℓ,ε]]/~
2

We now proceed to obtain recursive estimates for the above quantities in the ‖ · ‖ρℓ,k norm.

Consider (5.41) and denote:
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Ψ(ℓ, k) =
(k + 1)24k

(edℓ)3
Π(ℓ, k); Π(ℓ, k) :=

[2(k + 1)2]k+1kk

ekδk
ℓ

(6.1)

P (ℓ, k, ε) :=
θℓ,k(N , ε)k+1

[1 − θℓ(N , ε)]k+1
(6.2)

where θℓ,k(N , ε) is defined by (5.16). (6.1) and (6.2) yield

A(ℓ, k, ε) = γ
τ τ

(edℓ)τ
[1 + Π(ℓ, k)P (ℓ, k, ε)]. (6.3)

Set furthermore:

E(ℓ, k, ε) :=
Ψ(ℓ, k)B(ℓ, k, ε)[2 + |εℓ|eΨ(ℓ, k)A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k]

1 − |εℓ|A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k/dℓ
(6.4)

Then we have:

Lemma 6.1. Let:

|εℓ|A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k/dℓ < 1. (6.5)

Then:

‖Vℓ+1,ε‖ρℓ+1,k ≤ E(ℓ, k, ε)‖Vℓ,ε‖2
ρℓ,k

(6.6)

Remark 6.2. The validity of the assumption (6.5) is to be verified in Proposition 6.3 below.

Proof. Since dℓ < 1, by (5.42), (6.1) and (6.3) we can write:

C(ℓ, k, ε) ≤ Ψ(ℓ, k)A(ℓ, k, ε)) [2 + |εℓ|eΨ(ℓ, k)A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k] (6.7)

and therefore, by (5.41):

‖Vℓ+1,ε‖ρℓ−2dℓ,k ≤ C(ℓ, k, ε)
‖Vℓ‖2

ρℓ,k

1 − |εℓ|A(ℓ, k, ε)‖V‖ρℓ,k/dℓ

≤ Ψ(ℓ, k)A(ℓ, k, ε) [2 + |εℓ|eΨ(ℓ, k)A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k]

1 − |εℓ|A(ℓ, k, ε)‖Vℓ,ε‖ρℓ,k/dℓ
‖Vℓ‖2

ρℓ,k
= E(ℓ, k, ε)‖Vℓ‖2

ρℓ,k
.

This yields (6.6) and proves the Lemma. �

Now recall that the sequence {ρj} is decreasing. Therefore:

‖Nj,ε‖ρℓ,k ≤ ‖Nj,ε‖ρj ,k = ‖Vj,ε‖ρj ,k ≤ ‖Vj,ε‖ρj ,k, j = 0, . . . , ℓ − 1. (6.8)

At this point we can specify the sequence dℓ, ℓ = 1, 2, . . ., setting:

dℓ :=
ρ

(ℓ + 1)2
, ℓ = 0, 1, 2, . . . (6.9)

Remark that (6.9) yields

d −
∞∑

ℓ=0

dℓ = ρ − π2

6
>

ρ

2
.
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as well as the following estimate

Π(ℓ, k) ≤ [2(k + 1)2]k+1

ekρk
(6.10)

We are now in position to discuss the convergence of the recurrence (6.6).

Proposition 6.3. Let:

|ε| < ε∗(γ, τ, k) :=
1

e24(3+2τ)(k + 2)2τ‖V‖ρ,k
(6.11)

ρ > λ(k) := 1 + 8γτ τ [2(k + 1)2]. (6.12)

Then the following estimate holds:

‖Vℓ,ε‖ρℓ,k ≤
(
e8(3+2τ)‖V0‖ρ,k

)2ℓ

=
(
e8(3+2τ)‖V0‖ρ,k

)2ℓ

, ℓ = 0, 1, 2, . . . V0 := V. (6.13)

Proof. We proceed by induction. The assertion is true for ℓ = 0. Now assume inductively:

|εj |‖Vj,ε‖ρj ,k ≤ (k + 2)−2τ(j+1), 0 ≤ j ≤ ℓ. (6.14)

Out of (6.14) we prove the validity of (6.13) and of (6.5); to complete the induction it will be

enough to show that (6.13) implies the validity of (6.14) for j = ℓ + 1.

Let us first estimate θℓ(N , ε) as defined by (5.15) assuming the validity of (6.14) . We obtain:

θℓ(N , ε) ≤ θℓ,k(N , ε) ≤
ℓ−1∑

s=0

|εs|‖V‖ρs,k/ds =
1

ρ

ℓ−1∑

s=0

(s + 1)2(k + 2)−2τ(s+1) =

1

4ρ

d2

dτ2

ℓ−1∑

s=0

(k + 2)−2τ(s+1) =
1

4ρ

d2

dτ2
[(k + 2)−2τ 1 − (k + 2)−2τℓ

1 − (k + 2)−2τ
≤ 1

ρ
(k + 2)−2 ≤ 1

ρ

because τ > l − 1 ≥ 1. Now ρ > 1 entails that

1

1 − θℓ
<

ρ

ρ − 1
. (6.15)

Hence we get, by (6.2) and (5.16), the further (ℓ, ε)−independent estimate:

P (ℓ, k, ε) ≤ ρk+1

(ρ − 1)k+1

(
(k + 2)2ρ

)−k−1
=

(
1

(ρ − 1)(k + 2)2

)k+1

. (6.16)

whence, by (6.3):

A(ℓ, k, ε) ≤ γ
τ τ (ℓ + 1)2τ

(eρ)τ
[1 + [2(k + 1)2]k+1

[
(ρ − 1)(k + 2)2

]−(k+1)
(eρ3)−k]

≤ γ
τ τ (ℓ + 1)2τ

(eρ)τ
[1 +

2

(ρ − 1)k+1
(eρ3)−k]. (6.17)

Upon application of the inductive assumption we get:



CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA 39

|εℓ|Ψℓ,kA(ℓ, k, ε)‖V‖ρℓ,k/dℓ ≤
4k[2(k + 1)2]k+3

ek+3ρk+4
(ℓ + 1)2τ+8|εℓ|A(ℓ, k, ε)‖V‖ρℓ,k

≤ γ
τ τ (ℓ + 1)2(τ+4)

(eρ)τ
[1 +

2

(ρ − 1)k+1
(eρ3)−k]

4k[2(k + 1)2]k+3

ek+3ρk+4
(k + 2)−2(ℓ+1)τ

≤
(

2(τ + 4)

2τ ln (k + 2)

)2(τ+4)

(k + 2)
−

4(τ+4)
2τ ln (k+2)

4k[2(k + 1)2]k+3

ek+3ρk+4

γτ τ

(eρ)τ
[1 +

2

(ρ − 1)k+1
(eρ3)−k]

because

sup
ℓ≥0

(ℓ + 1)2(τ+4)(k + 2)−2(ℓ+1)τ =

(
2(τ + 4)

2τ ln (k + 2)

)2(τ+4)

(k + 2)
−

4(τ+4)
2τ ln (k+2) .

Hence:

|εℓ|Ψℓ,kA(ℓ, k, ε)‖V‖ρℓ,k/dℓ ≤
1

2e
(6.18)

provided

ρ ≥ λ(k); λ(k) = 1 + 8γτ τ [2(k + 1)2]. (6.19)

Since Ψℓ,k ≥ 1, if (6.19) holds, (6.18) a fortiori yields

|εℓ|A(ℓ, k, ε)‖V‖ρℓ,k/dℓ ≤
1

2
.

Therefore, by (6.4):

E(ℓ, k, ε) ≤ 3Ψℓ,kA(ℓ, k, ε) ≤ 6γ
τ τ (ℓ + 1)2τ

(eρ)τ
Ψℓ,k

and (6.6) in turn entails:

‖Vℓ+1‖ρℓ+1,k ≤ Φℓ,k‖Vℓ‖2
ρℓ,k

, Φℓ,k := 6γ
τ τ (ℓ + 1)2τ

(eρ)τ
Ψℓ,k.

This last inequality immediately yields

‖Vℓ+1‖ρℓ,k ≤ [‖V‖ρ,k]
2ℓ+1

ℓ∏

m=0

Φ2m
ℓ−m,k. (6.20)

Now:

Φℓ,k = 6γ
τ τ (ℓ + 1)2τ

(eρ)τ

(k + 1)242k

ed3
ℓ

[2(k + 1)2]k+1

ek+τdτ
ℓ δ

k
ℓ

≤ γν(k, τ, ρ)(ℓ + 1)6+4τ

ν(k, τ, ρ) := 6
τ τ42k[2(k + 1)2]k+2

ek+τ+1ρk+τ+3
≤ 6

τ τ42k[2(k + 1)2]k+2

ek+τ+1λ(k)k+τ+3
≤

≤ 6
τ τ42k[2(k + 1)2]k+2

ek+τ+1[8γτ τ2(k + 1)2]k+τ+3
≤ 6

(
2

e

)k 1

eτ+1γk+τ+3[2(k + 1)2]τ+1
≤

≤ 6

γτ+3τ τ2+2(2e)τ+1

Therefore
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γν(k, τ, ρ) ≤ 6

γτ+2τ τ2+2(2e)τ+1
< 1 (6.21)

because τ > 1 and γ > 1. As a consequence, since Φj,k ≤ Φℓ,k, j = 1, . . ., we get:

ℓ∏

m=1

Φ2m
ℓ+1−m,k ≤ [Φℓ,k]

ℓ(ℓ+1) ≤ [γν(k, τ, ρ)]ℓ(ℓ+1)(ℓ + 1)(6+4τ)ℓ(ℓ+1) ≤ (ℓ + 1)(6+4τ)ℓ(ℓ+1)

Now ℓ(ℓ + 1) < 2ℓ+1, ∀ ℓ ∈ N . Hence we can write:

(ℓ + 1)(6+4τ)ℓ(ℓ+1) < [e(24+16τ)]2
ℓ+1

.

The following estimate is thus established

ℓ∏

m=0

Ψ2m
ℓ−m,k ≤ [e8(3+2τ)]2

ℓ+1
. (6.22)

If we now define:

µ := e8(3+2τ), µℓ := µ2ℓ

(6.23)

then (6.20) and (6.22) yield:

‖Vℓ+1,ε‖ℓ+1,k ≤ [µℓ‖Vℓ‖ρℓ,k]
2 ≤ [‖V‖ρ,k µ]2

ℓ+1

(6.24)

εℓ+1‖Vℓ+1,ε‖ℓ+1,k ≤ [‖V‖ρℓ,k µℓεℓ]
2 ≤ [‖V‖ρ,k µε]2

ℓ+1

(6.25)

Let us now prove out of (6.24,6.25) that the condition (6.14) preserves its validity also for j = ℓ+1.

We have indeed, by the inductive assumption (6.14) and (6.24):

|εℓ+1|Vℓ+1,ε‖ℓ+1,k ≤ [‖V‖ρℓ,k µℓεℓ]
2 ≤ (k + 2)−2τ(ℓ+1)εℓ(µℓ)

2‖V‖ρℓ,k

≤ (k + 2)−2τ(ℓ+1)
[
εµ3‖V‖ρ,k

]2ℓ

≤ (k + 2)−2τ(ℓ+2)

provided

|ε| <
1

µ3‖V‖ρ,k(k + 2)2τ
=

1

e24(3+2τ)‖V‖ρ,k(k + 2)2τ
:= ε∗(γ, τ, k) (6.26)

where the last expression follows from (6.23). This proves (6.11), and concludes the proof of the

Proposition. �

Theorem 6.4. [Final estimates of Wℓ, Nℓ, Vℓ]

Let V fulfill Assumption (H2-H4). Then the following estimates hold, ∀ℓ ∈ N:

εℓ‖Wℓ,ε‖ρℓ+1,k ≤ γ
(τ

e

)τ
(ℓ + 1)2τ (1 + 8γτ τ [2(k + 1)2])−τ · (µε‖V‖ρ)

2ℓ

. (6.27)

εℓ‖Nℓ,ε‖ρℓ,k ≤ εℓ‖Vℓ,ε‖ρℓ,k ≤ [‖V‖ρ εµ]2
ℓ

. (6.28)
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εℓ+1‖Vℓ+1,ε‖ρℓ+1,k ≤ [‖V ‖ρ εµ]2
ℓ+1

. (6.29)

Proof. Since V does not depend on ~, obviously |V‖ρ,k ≡ ‖V‖ρ. Then formula (5.27) yields,

on account of (6.17), (6.15), (6.19), (6.24), (6.25) and of the obvious inequalities eρ−3 < 1,

ρ/(ρ − 1) > 1 when ρ > λ(k):

εℓ‖Wℓ,ε‖ρℓ,k ≤ γ
τ τ (ℓ + 1)2τ

(eρ)τ
[1 +

2

(ρ − 1)k+1
(eρ3)−k](µε‖V‖ρ)

2ℓ

≤ 2γ
τ τ (ℓ + 1)2τ

(eρ)τ
(µε‖V‖ρ)

2ℓ ≤ γ
(τ

e

)τ
(ℓ + 1)2τ (1 + 8γτ τ [2(k + 1)2])−τ · (µε‖V‖ρ)

2ℓ

.

because of the straightforward inequality

[1 +
2

(ρ − 1)k+1
(eρ3)−k] < 1

which in turn follows from γ > 1. This proves (6.27). Moreover, since Nℓ,ε = Vℓ,ε, again by (6.24),

(6.25):

εℓ‖Nℓ,ε‖ρℓ,k = εℓ‖Vℓ,ε‖ρℓ,k ≤ [‖V‖ρ εµ]2
ℓ

.

The remaining assertion follows once more from (6.25). This concludes the proof of the Theorem.

�

Remark 6.5. (6.27) yields, with K := γ
(τ

e

)τ
(1 + 8γτ τ [2(k + 1)2])−τ :

εℓ

‖Wℓ,ε‖ρℓ+1,k

dℓ
≤ Kε2ℓ

(ℓ + 1)2(τ+1)‖V‖2ℓ

ρ

This yields:

|ε|
(‖Wℓ,ε‖ρℓ+1,k

dℓ

)2−ℓ

≤ [K(ℓ + 1)2(τ+1)]2
−ℓ‖V‖ρ → ‖V‖ρ, ℓ → ∞

so that (5.39) is actually fulfilled for |ε| <
1

‖V‖ρ
.

Corollary 6.6. In the above assumptions set:

Un,ε(~) :=
n∏

s=0

eiεn−sWn−s,ε , n = 0, 1, . . . . (6.30)

Then:

(1) Un,ε(~) is a unitary operator in L2(Tl), with

Un,ε(~)∗ = Un,ε(~)−1 =

n∏

s=0

e−iεsWs,ε
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(2) Let:

Sn,ε(~) := Un,ε(~)(Lω + εV )Un,ε(~)−1 (6.31)

Then:

Sn = Dn,ε(~) + εn+1Vn+1,ε (6.32)

Dn,ε(~) = Lω +
n∑

s=1

εsNs,ε (6.33)

The corresponding symbols are:

Sn(ξ, x; ~) = Dn,ε(Lω(ξ), ~) + εn+1Vn+1,ε(Lω(ξ), x; ~) (6.34)

Dn,ε(Lω(ξ), ~) = Lω(ξ) +
n∑

s=1

εsNs,ε(Lω(ξ), ~). (6.35)

Here the operators Ws,ε, Ns,ε, Vℓ+1,ε and their symbols Ws,ε, Ns,ε, Vℓ+1,ε fulfill the above

estimates.

(3) Let ε∗ be defined as in (6.11). Remark that ε∗(·, k) > ε∗(·, k + 1), k = 0, 1, . . .. Then, if

|ε| < ε(k, ·):

lim
n→∞

Dn,ε(Lω(ξ), ~) = D∞,ε(Lω(ξ), ~) (6.36)

where in the convergence takes place in the Ck([0, 1];Cω(ρ/2)) topology, namely

lim
n→∞

‖Dn,ε(Lω(ξ), ~) −D∞,ε(Lω(ξ), ~)‖ρ/2,k = 0. (6.37)

Proof. Since Assertions (1) and (2) are straightforward, we limit ourselves to the simple verifica-

tion of Assertion (3). If |ε| < ε∗(·, k) then ‖V ‖ρ,kµε < Λ < 1. Recalling that ‖ · ‖ρ,,k ≤ ‖ · ‖ρ′,k

whenever ρ ≤ ρ′, and that ρℓ < ρ/2, ∀ ℓ ∈ N, (6.29) yields:

εn+1‖Vn+1,ε‖ρ/2,k ≤ εn+1‖Vn+1,ε‖ρn+1,k ≤

[‖V ‖ρ,kµε]2
n+1 → 0, n → ∞, k fixed.

In the same way, by (6.28):

‖Nn,ε‖ρ/2,k ≤ ‖Nn,ε‖ρn,k = ‖Vn,ε‖ρn,k ≤ ‖Vn,ε‖ρn,,k ≤

[‖V ‖ρ,kµε]2
n → 0, n → ∞, k fixed. → 0, n → ∞, k fixed.

This concludes the proof of the Corollary. �
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7. Convergence of the iteration and of the normal form.

Let us first prove the uniform convergence of the unitary transformation sequence as n → ∞.

Recall that ε∗(·, k) > ε∗(·, k + 1), k = 0, 1, . . ., and recall the abbreviation ‖ · ‖ρ,0 := ‖ · ‖ρ. Define

moreover:

ε∗ := ε∗0 = ε∗(γ, τ, 0). (7.1)

where ε∗(γ, τ, 0) is defined by (6.26). Then:

Lemma 7.1. Let ~ be fixed, and |ε| < ε∗0. Consider the sequence {Un,ε(~)} of unitary operators

in L2(Tl) defined by (6.30). Then there is a unitary operator U∞,ε(~) in L2(Tl) such that

lim
n→∞

‖Un,ε(~) − U∞,ε(~)‖L2→L2 = 0

Proof. Without loss we can take ~ = 1. We have, for p = 1, 2, . . .:

Un+p,ε − Un,ε = ∆n+p,εe
iεnWn · · · eiεW1 , ∆n+p,ε := (eiεn+pWn+p · · · eiεn+1Wn+1 − I)

‖Un+p,ε − Un,ε‖L2→L2 ≤ 2‖∆n+p,ε‖L2→L2

Now we apply the mean value theorem and obtain

eiεℓWℓ,ε = 1 + βℓ,ε βℓ,ε := iεℓWℓ,ε

∫ εℓ

0
eiε′

ℓ
Wℓ,ε dε′ℓ,

whence, by (6.27) in which we make k = 0:

‖βℓ,ε‖ ≤ εℓ‖Wℓ,ε‖ρℓ
≤ εℓ‖Wℓ,ε‖ρℓ,k ≤ γτ τ (ℓ + 1)2τ (1 + 8γτ τ [2(k + 1)2])2−τ

64γ2τ2τ [2(k + 1)2]4
· (µε‖V‖ρ)

2ℓ ≤ Aℓ

(7.2)

for some A < 1. Now:

∆n+p,ε = [(1 + βn+p,εεn+p)(1 + βn+p−1,εεn+p−1) · · · (1 + βn+1,εεn+1)] =

p∑

j=1

βn+j,εεn+j

+

p∑

j1<j2=1

βn+j1,εεn+j1βn+j2,εεn+j2 +

p∑

j1<j2<j3=1

βn+j1,εεn+j1βn+j2,εεn+j2βn+j3,εεn+j3

+ . . . + βn+1,ε · · ·βn+p,εεn+1 · · · εn+p
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Therefore, by (7.2):

‖∆n+p,ε‖L2→L2 ≤
p∑

j=1

Aj +

p∑

j1<j2=1

An+j1An+j2 +

p∑

j1<j2<j3=1

An+j1An+j2An+j3 + . . .

≤ An A

1 − An
+ A2n

(
A

1 − An

)2

+ . . . + Apn

(
A

1 − An

)p

=

An

1 − An

[
1 + An

(
A

1 − A

)
+ . . . + A(p−1)n

(
A

1 − An

)p−1
]

=

An

1 − An

1

1 − An A
1−A

→ 0, n → ∞, ∀ p > 0

Hence {Un,ε(~)}n∈N is a Cauchy sequence in the operator norm, uniformly with respect to |ε| < ε∗0,

and the Lemma is proved. �

We are now in position to prove existence and analyticity of the limit of the KAM iteration,

whence the uniform convergence of the QNF.

Proof of Theorems 1.6 and 1.7

The operator family Hε is self-adjoint in L2(T l) with pure point spectrum ∀ ε ∈ R because V is

a continuous operator. By Corollary 6.6, the operator sequence {Dn,ε(~)}n∈N admits for |ε| < ε∗0

the uniform norm limit

D∞,~(Lω, ~) = Lω +

∞∑

m=0

ε2m

Nm,ε(Lω, ~)

of symbol D∞,~(Lω(ξ)). The series is norm-convergent by (6.28). By Lemma (7.1), D∞,~(Lω, ~)

is unitarily equivalent to Hε. The operator family ε 7→ D∞,ε(~) is holomorphic for |ε| < ε∗0,

uniformly with respect to ~ ∈ [0, 1]. As a consequence, D∞,ε(~) admits the norm-convergent

expansion:

D∞,ε(Lω, ~) = Lω +

∞∑

s=1

Bs(Lω, ~)εs, |ε| < ε∗0

which is the convergent quantum normal form.

On the other hand, (6.37) entails that the symbol D∞,ε(Lω(ξ), ~) is a J (ρ/2)-valued holo-

morphic function of ε, |ε| < ε∗0, continuous with respect to ~ ∈ [0, 1]. Therefore it admits the

expansion

D∞,ε(Lω(ξ), ~) = Lω(ξ) +

∞∑

s=1

Bs(Lω(ξ), ~)εs, |ε| < ε∗ (7.3)

convergent in the ‖ · ‖ρ/2-norm, with radius of convergence ε∗0. Hence, in the notation of Theorem

1.6, D∞,ε(Lω(ξ), ~) ≡ B∞,ε(Lω(ξ), ~). By construction, Bs(Lω(ξ), ~) is the symbol of Bs(Lω, ~).

B∞,ε(Lω(ξ), ~) is the symbol yielding the quantum normal form via Weyl’s quantization. Likewise,
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the symbol W∞,ε(ξ, x, ~) is a J(ρ/2)-valued holomorphic function of ε, |ε| < ε∗, continuous with

respect to ~ ∈ [0, 1], and admits the expansion:

W∞,ε(ξ, x, ~) = 〈ξ, x〉 +

∞∑

s=1

Ws(ξ, x, ~)εs, |ε| < ε∗0 (7.4)

convergent in the ‖ · ‖ρ/2-norm, once more with radius of convergence ε∗0. Since Since ‖Bs‖1 ≤
‖Bs‖ρ/2, ‖Ws‖1 ≤ ‖Ws‖ρ/2 ∀ ρ > 0. By construction, B∞,ε(ξ, x, ~) = B∞,ε(t, x, ~)|t=Lω(ξ). The-

orem 1.6 is proved . Remark that the principal symbol of B∞,ε(Lω(ξ), ~) is just the convergent

Birkhoff normal form:

B∞,ε = Lω(ξ) +

∞∑

s=1

Bs(Lω(ξ))εs, |ε| < ε∗0

Theorem (1.7) is a direct consequence of (6.37) on account of the fact that

r∑

γ=0

max
~∈[0,1]

‖∂γ
~
B∞(t; ε, ~)‖ρ/2 ≤ ‖B∞‖ρ/2,k

Remark indeed that by (6.37) the series (7.3) converges in the ‖ · ‖ρ/2,r norm if |ε| < ε∗(·, r).
Therefore Bs(t, ~) ∈ Cr([0, 1];Cω({t ∈ C | |ℑt| < ρ/2}) and the formula (1.31) follows from (7.3)

upon Weyl quantization. This concludes the proof of the Theorem.

Appendix A. The quantum normal form

The quantum normal form in the framework of semiclassical analysis has been introduced by

Sjöstrand [Sj]. We follow here the presentation of [BGP].

1. The formal construction Given the operator family ε 7→ Hε = Lω + εV , look for a unitary

transformation U(ω, ε, ~) = eiW (ε)/~ : L2(Tl) ↔ L2(Tl), W (ε) = W ∗(ε), such that:

S(ε) := UHεU
−1 = L(ω) + εB1 + ε2B2 + . . . + εkRk(ε) (A.1)

where [Bp, L0] = 0, p = 1, . . . , k − 1. Recall the formal commutator expansion:

S(ε) = eitW (ε)/~He−itW (ε)/~ =

∞∑

l=0

tlHl, H0 := H, Hl :=
[W,Hl−1]

i~l
, l ≥ 1 (A.2)

and look for W (ε) under the form of a power series: W (ε) = εW1 + ε2W2 + . . .. Then (A.2)

becomes:

S(ε) =
k−1∑

s=0

εsPs + εkR(k) (A.3)

where

P0 = Lω; Ps :=
[Ws,H0]

i~
+ Vs, s ≥ 1, V1 ≡ V (A.4)
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Vs =
s∑

r=2

1

r!

∑

j1+...+jr=s

jl≥1

[Wj1 , [Wj2 , . . . , [Wjr ,H0] . . .]

(i~)r
+

s−1∑

r=2

1

r!

∑

j1+...+jr=s−1
jl≥1

[Wj1 , [Wj2 , . . . , [Wjr , V ] . . .]

(i~)r

R(k) =

∞∑

r=k

1

r!

∑

j1+...+jr=k

jl≥1

[Wj1 , [Wj2 , . . . , [Wjr , Lω] . . .]

(i~)r
+

∞∑

r=k−1

1

r!

∑

j1+...+jr=k−1
jl≥1

[Wj1 , [Wj2 , . . . , [Wjr , V ] . . .]

(i~)r

Since Vs depends on W1, . . . ,Ws−1, (A1) and (A3) yield the recursive homological equations:

[Ws, P0]

i~
+ Vs = Bs, [L0, Bs] = 0 (A.5)

To solve for S, Ws, Bs, we can equivalently look for their symbols. The equations (A.2), (A.3),

(A.4) become, once written for the symbols:

Σ(ε) =

∞∑

l=0

Hl, H0 := Lω + εV, Hl :=
{w,Hl−1}M

l
, l ≥ 1 (A.6)

Σ(ε) =

k∑

s=0

εsPs + εk+1
R

(k+1) (A.7)

where

P0 = Lω; Ps := {Ws,P0}M + Vs, s = 1, . . . , V1 ≡ V0 = V (A.8)

Vs :=

s∑

r=2

1

r!

∑

j1+...+jr=s

jl≥1

{Wj1 , {Wj2 , . . . , {Wjr ,Lω}M . . .}M +

+
s−1∑

r=1

1

r!

∑

j1+...+jr=s−1
jl≥1

{Wj1 , {Wj2 , . . . , {Wjr ,V}M . . .}M , s > 1

R
(k) =

∞∑

r=k

1

r!

∑

j1+...+jr=k

jl≥1

{Wj1 , {Wj2 , . . . , {Wjr ,Lω}M . . .}M +

∞∑

r=k−1

1

r!

∑

j1+...+jr=k−1
jl≥1

{Wj1 , {Wj2 , . . . , {Wjr ,V}M . . .}M

In turn, the recursive homological equations become:

{Ws,Lω}M + Vs = Bs, {Lω,Bs}M = 0 (A.9)

2. Solution of the homological equation and estimates of the solution

The key remark is that {A,Lω}M = {A,Lω} for any smooth symbol A(ξ;x; ~) because Lω is

linear in ξ. The homological equation (A.9) becomes therefore

{Ws,Lω} + Vs = Bs, {Lω,Bs} = 0 (A.10)
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We then have:

Proposition A.1. Let Vs(ξ, x; ~) ∈ J (ρs). Then the equation

{Ws,Lω} + Vs = Bs, {Lω,Bs} = 0 (A.11)

admits ∀ 0 < ds < ρs the solutions Bs(Lω(ξ; )~) ∈ J (ρs), W ∈ J (ρ − ds) given by:

Bs(ξ; ~) = Vs; Ws(ξ, x; ~) = L−1
ω Vs, L−1

ω Vs :=
∑

0 6=∈Zl

Vs.q(Lω(ξ))

i〈ω, q〉 ei〈q,x〉. (A.12)

Moreover:

‖Bs‖ρs ≤ ‖Vs‖ρs ; ‖Ws‖ρs−ds
≤ γ

(
τ

ds

)τ

‖Vs‖ρs . (A.13)

Proof. Bs and Ws defined by (A.12) clearly solve the homological equation (A.11). The estimate

for Bs is obvious, and the estimate for Ws follows once more by the small denominator inequality

(1.25). �

By definition of ‖ · ‖ρ norm:

‖Bs‖L2→L2 ≤ ‖Bs‖ρ ≤ ‖Vs‖ρs ; ‖Bs‖L2→L2 ≤ ‖Bs‖ρ ≤ ‖Vs‖ρs (A.14)

Hence all terms of the quantum normal form and the remainder can be recursively estimated in

terms of ‖V‖ρ by Corollary 3.11. Setting now, for s ≥ 1:

ρs := ρ − sds, ds <
ρ

s + 1
; ρ0 := ρ

µs := 8γτ τ E

dτ
sδ

2
s

, E := ‖V‖ρ.

we actually have, applying without modification the argument of [BGP], Proposition 3.2:

Proposition A.2. Let µs < 1/2, s = 1, . . . , k. Set:

K :=
8 · 2τ+5γτ τ

ρ2+τ
.

Then the following estimates hold for the quantum normal form:

k∑

s=1

‖Bs‖ρ/2ε
s ≤

k∑

s=1

‖Bs‖ρ/2ε
s ≤

k∑

s=1

EsKss(τ+2)sεs

‖Rk+1‖ρ/2 ≤ ‖Rk+1‖ρ/2 ≤ (EK)k+1(k + 1)(τ+2)(k+1)εk+1
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[Po2] A.Popov, Invariant Tori, Effective Stability, and Quasimodes with Exponentially Small Error Terms II -

Quantum Birkhoff Normal Forms, Ann.Henri Poincaré 1, 223-248 (2000);
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[Sj] J.Sjöstrand, Semi-excited levels in non-degenerate potential wells, Asymptotic Analysis 6, 29-43 (1992)
[SM] C.L.Siegel and J.Moser, Lectures in Celestial Mechanics, Classics in Mathematics Vol. Springer-Verlag

1971
[St] L.Stolovich, Progress in normal form theory, Nonlinearity 22, 7423-7450 (2009)
[Vo] A.Voros, Exercises in Exact Quantization, J.Phys.A 33, 7423-7450 (2000)
[Zu] N.T.Zung, Convergence Versus Integrability in Normal Form Theory, Ann. of Math.161, 141-156 (2005)

Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy
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Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, Fran-

ce

E-mail address: paul@math.polytechnique.fr


