Carleman estimates for anisotropic elliptic operators with jumps at an interface
Résumé
We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are sharp.
Origine | Fichiers produits par l'(les) auteur(s) |
---|