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We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are sharp.

e τ ϕ P w L 2 (R n ) e τ ϕ w L 2 (R n ) ,
where the weight function ϕ is real-valued with a non-vanishing gradient, τ is a large positive parameter and w is any smooth compactly supported function. This type of estimate was used for the first time in 1939 in T. Carleman's article [START_REF] Carleman | Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF] to handle uniqueness properties for the Cauchy problem for non-hyperbolic operators. To this day, it remains essentially the only method to prove unique continuation properties for ill-posed problems 1 , in particular to handle uniqueness of the Cauchy problem for elliptic operators with non-analytic coefficients 2 . This tool has been refined, polished and generalized by manifold authors. The 1958 article by A.P. Calderón [START_REF] Calderón | Uniqueness in the Cauchy problem for partial differential equations[END_REF] gave a very important development of the Carleman method with a proof of an estimate of the form of (1.1) using a pseudo-differential factorization of the operator, giving a new start to singular-integral methods in local analysis. In the article [START_REF] Hörmander | On the uniqueness of the Cauchy problem[END_REF] and in his first PDE book (Chapter VIII, [START_REF]Linear partial differential operators[END_REF]), L. Hörmander showed that local methods could provide the same estimates, with weaker assumptions on the regularity of the coefficients of the operator.

For instance, for second-order elliptic operators with real coefficients 3 in the principal part, Lipschitz continuity of the coefficients suffices for a Carleman estimate to hold and thus for unique continuation across a C 1 hypersurface. Naturally, pseudodifferential methods require more derivatives, at least tangentially, i.e., essentially on each level surface of the weight function ϕ. Chapters 17 and 28 in the 1983-85 four-volume book [START_REF]The analysis of linear partial differential operators[END_REF] by L. Hörmander contain more references and results.

Furthermore, it was shown by A. Pliś [START_REF] Pliś | On non-uniqueness in Cauchy problem for an elliptic second order differential equation[END_REF] that Hölder continuity is not enough to get unique continuation: this author constructed a real homogeneous linear differential equation of second order and of elliptic type on R 3 without the unique continuation property although the coefficients are Hölder-continuous with any exponent less than one. The constructions by K. Miller in [START_REF]Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients[END_REF], and later by N. Mandache [START_REF] Mandache | On a counterexample concerning unique continuation for elliptic equations in divergence form[END_REF] and N. Filonov in [START_REF] Filonov | Second-order elliptic equation of divergence form having a compactly supported solution[END_REF], showed that Hölder continuity is not sufficient to obtain unique continuation for second-order elliptic operators, even in divergence form (see also [START_REF] Buonocore | Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces[END_REF] and [START_REF] Schulz | On the unique continuation property of elliptic divergence form equations in the plane[END_REF] for the particular 2D case where boundedness is essentially enough to get unique continuation for elliptic equations in the case of W 1,2 solutions).

The results cited above are related to the regularity of the principal part of the second-order operator. For strong-unique-continuation properties for second-order operator with Lipschitz-continuous coefficients, many results are also available for differential inequalities with singular potentials, originating with the seminal work of D. Jerison and C. Kenig [START_REF] Jerison | Unique continuation and absence of positive eigenvalues for Schrödinger operators[END_REF]. The reader is also referred to the work of C. Sogge [START_REF] Sogge | Oscillatory integrals and unique continuation for second order elliptic differential equations[END_REF] and some of the most recent and general results of H. Koch and D. Tataru [START_REF] Koch | Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients[END_REF][START_REF]Sharp counterexamples in unique continuation for second order elliptic equations[END_REF].

In more recent years, the field of applications of Carleman estimates has gone beyond the original domain. They are also used in the study of inverse problems (see e.g. [START_REF] Bukhgeim | Global uniqueness of class of multidimensional inverse problems[END_REF][START_REF] Isakov | Inverse problems for partial differential equations[END_REF][START_REF] Yu | An inverse problem for the dynamical Lamé system with two sets of boundary data[END_REF][START_REF] Kenig | The Calderón problem with partial data[END_REF]) and control theory for PDEs. Through unique continuation properties, they are used for the exact controllability of hyperbolic equations [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]. They also yield the null controllability of linear parabolic equations [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and the null controllability of classes of semi-linear parabolic equations [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF].

1.2. Jump discontinuities. Although the situation seems to be almost completely clarified by the previous results, with a minimal and somewhat necessary condition on Lipschitz continuity, we are interested in the following second-order elliptic operator L, (1.2) Lw = -div(A(x)∇w), A(x) = (a jk (x)) 1≤j,k≤n = A T (x), inf

ξ R n =1
A(x)ξ, ξ > 0, in which the matrix A has a jump discontinuity across a smooth hypersurface. However we shall impose some stringent -yet natural-restrictions on the domain of functions w, which will be required to satisfy some homogeneous transmission conditions, detailed in the next sections. Roughly speaking, it means that w must belong to the domain of the operator, with continuity at the interface, so that ∇w remains bounded and continuity of the flux across the interface, so that div(A∇w) remains bounded, avoiding in particular the occurrence of a simple or multiple layer at the interface 4 .

The article [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] by A. Doubova, A. Osses, and J.-P. Puel tackled that problem, in the isotropic case (the matrix A is scalar c Id) with a monotonicity assumption: the observation takes place in the region where the diffusion coefficient c is the 'lowest'. (Note that the work of [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] concerns the case of a parabolic operator but an adaptation to an elliptic operator is straightforward.) In the one-dimensional case, the monotonicity assumption was relaxed for general piecewise C 1 coefficients by A. Benabdallah, Y. Dermenjian and J. Le Rousseau [6], and for coefficients with bounded variations [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF]. The case of an arbitrary dimension without any monotonicity condition in the elliptic case was solved by J. Le Rousseau and L. Robbiano in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]: there the isotropic case is treated as well as a particular case of anisotropic medium. An extension of their approach to the case of parabolic operators can be found in [START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. A. Benabdallah, Y. Dermenjian and J. Le Rousseau also tackled the situation in which the interface meets the boundary, a case that is typical of stratified media [START_REF]Carleman estimates for stratified media[END_REF]. They treat particular forms of anisotropic coefficients.

The purpose of the present article is to show that a Carleman estimate can be proven for any operator of type (1.2) without an isotropy assumption: A(x) is a symmetric positive-definite matrix with a jump discontinuity across a smooth hypersurface. We also provide conditions on the Carleman weight function that are rather simple to handle and we prove that they are sharp.

The approach we follow differs from that of [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] where the authors base their analysis on the usual Carleman method for certain microlocal regions and on Calderón projectors for others. The regions they introduce are determined by the ellipticity or non-ellipticity of the conjugated operator. The method in [START_REF]Carleman estimates for stratified media[END_REF] exploits a particular structure of the anisotropy that allows one to use Fourier series. The analysis is then close to that of [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] in the sense that second-order operators are inverted in some frequency ranges. Here, our approach is somewhat closer to A. Calderón's original work on unique continuation [START_REF] Calderón | Uniqueness in the Cauchy problem for partial differential equations[END_REF]: the conjugated operator is factored out in first-order (pseudo-differential) operators for which estimates are derived. Naturally, the quality of these estimates depends on their elliptic or non-elliptic nature; we thus recover microlocal regions that correspond to that of [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]. Note that such a factorization is also used in [START_REF] Yu | Global carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems[END_REF] to address non-homogeneous boundary conditions. 

Ω = Ω + ∪ Σ ∪ Ω -, Ω ± = Ω ± ∪ Σ, Ω ± open subsets of R n , (1.3)
and we introduce the following Heaviside-type functions (1.4)

H ± = 1 Ω ± .
We consider the elliptic second-order operator

(1.5) L = D • AD = -div(A(x)∇), (D = -i∇),
where A(x) is a symmetric positive-definite n × n matrix, such that

(1.6) A = H -A -+ H + A + , A ± ∈ C ∞ (Ω).
We shall consider functions w of the following type:

(1.7) w = H -w -+ H + w + , w ± ∈ C ∞ (Ω).
We have dw = H -dw -+ H + dw + + (w + -w -)δ Σ ν, where δ Σ is the Euclidean hypersurface measure on Σ and ν is the unit conormal vector field to Σ pointing into Ω + .

To remove the singular term, we assume

w + = w -at Σ, (1.8) so that Adw = H -A -dw -+ H + A + dw + and div (Adw) = H -div (A -dw -) + H + div (A + dw + ) + A + dw + -A -dw -, ν δ Σ .

Moreover, we shall assume that

A + dw + -A -dw -, ν = 0 at Σ, i.e. dw + , A + ν = dw -, A -ν , (1.9) so that (1.10) div(Adw) = H -div (A -dw -) + H + div (A + dw + ).
Conditions (1.8)-(1.9) will be called transmission conditions on the function w and we define the vector space

(1.11) W = {H -w -+ H + w + } w ± ∈C ∞ (Ω) satisfying (1.8)-(1.9) .
Note that (1.8) is a continuity condition of w across Σ and (1.9) is concerned with the continuity of Adw, ν across Σ, i.e. the continuity of the flux of the vector field Adw across Σ. A weight function "suitable for observation from Ω + " is defined as a Lipschitz continuous function ϕ on Ω such that

(1.12) ϕ = H -ϕ -+ H + ϕ + , ϕ ± ∈ C ∞ (Ω), ϕ + = ϕ -, dϕ ± , X > 0 at Σ,
for any positively transverse vector field X to Σ (i.e. ν, X > 0).

Theorem 1.1. Let Ω, Σ, L, W be as in (1.3), (1.5) and (1.11). Then for any compact subset K of Ω, there exist a weight function ϕ satisfying (1.12) and positive constants C, τ 1 such that for all τ ≥ τ 1 and all w ∈ W with supp w ⊂ K,

C e τ ϕ Lw L 2 (R n ) ≥ (1.13) τ 3/2 e τ ϕ w L 2 (R n ) + τ 1/2 H + e τ ϕ ∇w + L 2 (R n ) + τ 1/2 H -e τ ϕ ∇w -L 2 (R n ) + τ 3/2 |(e τ ϕ w) |Σ | L 2 (Σ) + τ 1/2 |(e τ ϕ ∇w + ) |Σ | L 2 (Σ) + τ 1/2 |(e τ ϕ ∇w -) |Σ | L 2 (Σ) .
Remark 1.2. The proof of Theorem 1.1 provides an explicit construction of the weight function ϕ. The precise properties of ϕ are given in Section 2.4, viz., (2.22), (2.24) and (2.26). The weight function is at first constructed only depending on x n . Dependency upon the other variables, i.e. convexification with respect to {x n = 0}, is introduced in Section 4.5 Remark 1.3. It is important to notice that whenever a true discontinuity occurs for the vector field Aν, then the space W does not contain C ∞ (Ω): the inclusion C ∞ (Ω) ⊂ W implies from (1.9) that for all w ∈ C ∞ (Ω), dw, A + ν -A -ν = 0 at Σ so that A + ν = A -ν at Σ, that is continuity for Aν. The Carleman estimate which is proven in the present paper takes naturally into account these transmission conditions on the function w and it is important to keep in mind that the occurrence of a jump is excluding many smooth functions from the space W. On the other hand, we have W ⊂ Lip(Ω).

Remark 1.4. We can also point out the geometric content of our assumptions, which do not depend on the choice of a coordinate system. For each x ∈ Ω, the matrix A(x) is a positive-definite symmetric mapping from T x (Ω) * onto T x (Ω) so that A(x)dw(x) belongs indeed to T x (Ω) and Adw is a vector field with a L 2 divergence (Inequality (1.13) yields the L 2 bound by density).

Examples of applications.

Here we mention some applications of the Carleman estimate of Theorem 1.1, namely controllability for parabolic equations and stabilization for hyperbolic equations.

Following the work of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] (see also [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]) we first deduce the following interpolation inequality. With α ∈ (0, X 0 /2), we set X = (0, X 0 ) × Ω, Y = (α, X 0 -α) × Ω.

Theorem 1.5. There exist C ≥ 0 and δ ∈ (0, 1) such that for u ∈ H 1 (X) that satisfies

u ± = u| (0,X 0 )×Ω ± ∈ H 2 ((0, X 0 ) × Ω ± ), u + = u -and du + , A + ν = du -, A -ν at (0, X 0 ) × Σ, and 
u(x 0 , x)| x∈∂Ω = 0, x 0 ∈ (0, X 0 ), and u(0, x) = 0, x ∈ Ω, we have u H 1 (Y ) ≤ C u δ H 1 (X) (D 2 x 0 + L)u L 2 (X) + ∂ x 0 u(0, x) L 2 (ω) 1-δ .
This interpolation inequality was first proven in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] for second-order elliptic operators with smooth coefficients and in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] in the case of an isotropic diffusion coefficient with a jump at an interface. Here, a jump for the whole diffusion matrix is permitted.

Remark 1.6. In fact, the interpolation inequality of Theorem 1.5 rather follows from the non-homogeneous version of theorem 1.1 stated in Theorem 2.2 below.

From Theorem 1.5 we can prove an estimation of the loss of orthogonality for the eigenfunctions φ j (x), j ∈ N, of the operator L, with Dirichlet boundary conditions, when these eigenfunctions are restricted to some subset ω of Ω (see [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Chicago Lectures in Mathematics, ch. Nodal sets of sums of eigenfunctions[END_REF] and also [START_REF] Rousseau | Applications to unique continuation and control of parabolic equations[END_REF]). We denote by µ j , j ∈ N, the associated eigenvalues, sorted in an increasing sequence.

Theorem 1.7. There exists C > 0 such that for any (a j ) j∈N ⊂ C we have:

µ j ≤µ |a j | 2 1 2 = µ j ≤µ a j φ j L 2 (Ω) ≤ Ce C √ µ µ j ≤µ a j φ j L 2 (ω) , µ > 0. (1.14)
In turn this yields the following null-controllability result for the associated anisotropic parabolic equation with jumps in the coefficients across Σ (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] and also [START_REF] Rousseau | Applications to unique continuation and control of parabolic equations[END_REF]).

Theorem 1.8. For an arbitrary time T > 0 and an arbitrary non-empty open subset ω ⊂ Ω and an initial condition y 0 ∈ L 2 (Ω), there exists v ∈ L 2 ((0, T ) × Ω) such that the solution y of

(1.15)      ∂ t y + Ly = 1 ω u in (0, T ) × Ω, y(t, x) = 0 on (0, T ) × ∂Ω, y(0, x) = y 0 (x) in Ω, satisfies y(T ) = 0 a.e. in Ω.
The interpolation inequality of Theorem 1.5 also yields the stabilization of the following hyperbolic equation (1.16)

∂ tt y + Ly + a(x)∂ t y = 0 in (0, T ) × Ω, y(t, x) = 0 on (0, T ) × ∂Ω,
where a is a nonvanishing nonnegative smooth function. From [START_REF] Lebeau | Équation des ondes amorties, Algebraic and geometric methods in mathematical physics[END_REF][START_REF]Stabilisation de l'équation des ondes par le bord[END_REF], we can obtain a resolvent estimates which in turn yields the following energy decay estimate (see [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF]Theorem 3]).

Theorem 1.9. For all k ∈ N there exists C > 0 such that we have

∂ t y(t) L 2 (Ω) + y(t) H 1 (Ω) ≤ C [log(2 + t)] k ∂ t y |t=0 D(L k 2 ) + y |t=0 D(L k+1 2 )
, t > 0, for y solution to (1.16).

The same decay can also be obtained in the case of a boundary damping (see [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF]).

Remark 1.10. Exponential decay cannot be achieved if the set O = {a > 0} does not satisfy the geometrical control condition of [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF][START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]. Because of the jump in the matrix coefficient A(x) here, some bicharacteristics of the hyperbolic operators ∂ tt + L can be trapped in Ω + or Ω -and may remain away from the stabilization region O.

1.5. Sketch of the proof. We provide in this subsection an outline of the main arguments used in our proof. To avoid technicalities, we somewhat simplify the geometric data and the weight function, keeping of course the anisotropy. We consider the operator (1.17

) L 0 = 1≤j≤n D j c j D j , c j (x) = H + c + j +H -c - j , c ± j > 0 constants, H ± = 1 {±xn>0} ,
with D j = ∂ i∂x j , and the vector space W 0 of functions

H + w + +H -w -, w ± ∈ C ∞ c (R n ), such that (1.18) at x n = 0, w + = w -, c + n ∂ n w + = c - n ∂ n w -(transmission conditions across x n = 0). As a result, for w ∈ W 0 , we have D n w = H + D n w + + H -D n w -and (1.19) L 0 w = j (H + c + j D 2 j w + + H -c - j D 2 j w -).
We also consider a weight function5 

(1.20)

ϕ = (α + x n + βx 2 n /2) ϕ + H + + (α -x n + βx 2 n /2) ϕ - H -, α ± > 0, β > 0,
a positive parameter τ and the vector space W τ of functions

H + v + + H -v -, v ± ∈ C ∞ c (R n ), such that at x n = 0, v + = v -, (1.21) c + n (D n v + + iτ α + v + ) = c - n (D n v -+ iτ α -v -). (1.22)
Observe that w ∈ W 0 is equivalent to v = e τ ϕ w ∈ W τ . We have e τ ϕ L 0 w = e τ ϕ L 0 e -τ ϕ Lτ (e τ ϕ w) so that proving a weighted a priori estimate e τ ϕ L 0 w

L 2 (R n ) e τ ϕ w L 2 (R n ) for w ∈ W 0 amounts to getting L τ v L 2 (R n ) v L 2 (R n ) for v ∈ W τ .
Step 1: pseudo-differential factorization. Using Einstein convention on repeated indices j ∈ {1, . . . , n -1}, we have

L τ = (D n + iτ ϕ )c n (D n + iτ ϕ ) + D j c j D j and for v ∈ W τ , from (1.19), with m ± = m ± (D ) = (c ± n ) -1/2 (c ± j D 2 j ) 1/2 , L τ v = H + c + n (D n + iτ ϕ + ) 2 + m 2 + v + + H -c - n (D n + iτ ϕ -) 2 + m 2 -v - so that (1.23) L τ v = H + c + n D n + i( e + τ ϕ + + m + ) D n + i( f + τ ϕ + -m + ) v + + H -c - n D n + i(τ ϕ --m - f - ) D n + i(τ ϕ -+ m - e - ) v -.
Note that e ± are elliptic positive in the sense that e ± = τ α ± + m ± τ + |D |. We want at this point to use some natural estimates for first-order factors on the half-lines R ± : let us for instance check on t > 0 for ω ∈ C ∞ c (R), λ, γ positive,

D t ω + i(λ + γt)ω 2 L 2 (R + ) (1.24) = D t ω 2 L 2 (R + ) + (λ + γt)ω 2 L 2 (R + ) + 2 Re D t ω, iH(t)(λ + γt)ω ≥ +∞ ∫ 0 (λ + γt) 2 + γ |ω(t)| 2 dt + λ|ω(0)| 2 ≥ (λ 2 + γ) ω 2 L 2 (R + ) + λ|ω(0)| 2 ,
which is somehow a perfect estimate of elliptic type, suggesting that the first-order factor containing e + should be easy to handle. Changing λ in -λ gives

D t ω + i(-λ + γt)ω 2 L 2 (R + ) ≥ 2 Re D t ω, iH(t)(-λ + γt)ω = +∞ ∫ 0 γ|ω(t)| 2 dt -λ|ω(0)| 2 , so that D t ω + i(-λ + γt)ω 2 L 2 (R + ) + λ|ω(0)| 2 ≥ γ ω 2 L 2 (R + )
, an estimate of lesser quality, because we need to secure a control of ω(0) to handle this type of factor.

Step 2: case f + ≥ 0. Looking at formula (1.23), since the factor containing e + is elliptic in the sense given above, we have to discuss on the sign of f + . Identifying the operator with its symbol, we have f + = τ (α + +βx n )-m + (ξ ), and thus τ α + ≥ m + (ξ ) yielding a non negative f + . Iterating the method outlined above on the half-line R + , we get a nice estimate of the form of (1.24) on R + ; in particular we obtain a control 6of v + (0) and D n v + (0). From the transmission condition, we have v + (0) = v -(0) and hence this amounts to also controlling v -(0). That control along with the natural estimates on R -are enough to prove an inequality of the form of the sought Carleman estimate.

Step 3: case f + < 0. Here, we assume that τ α + < m + (ξ ). We can still use on R + the factor containing e + , and by (1.23) and (1.24) control the following quantity

(1.25) c + n (D n + if + )v + (0) = =V + c + n (D n v + + iτ α + )v + (0) -c + n im + v + (0). Our key assumption is (1.26) f + (0) < 0 =⇒ f -(0) ≤ 0.
Under that hypothesis, we can use the negative factor

f -on R -(note that f -is increasing with x n , so that f -(0) ≤ 0 =⇒ f -(x n ) < 0 for x n < 0). We then control (1.27) c - n (D n + ie -)v -(0) = c - n (D n v -+ iτ α -)v -(0) =V - +c - n im -v -(0).
Nothing more can be achieved with inequalities on each side of the interface. At this point we however notice that the second transmission condition in (1.22) implies V -= V + , yielding the control of the difference of (1.27) and (1.25), i.e., of

c - n im -v -(0) + c + n im + v + (0) = i c - n m -+ c + n m + v(0). Now, as c - n m -+ c + n m + is
elliptic positive, this gives a control of v(0) in (tangential) H 1 -norm, which is enough then to get an estimate on both sides that leads to the sought Carleman estimates.

Step 4: patching estimates together. The analysis we have sketched here relies on a separation into two zones in the (τ, ξ ) space. Patching the estimates of the form of (1.13) in each zone together allows us to conclude the proof of the Carleman estimate.

1.6. Explaining the key assumption. In the first place, our key assumption, condition (1.26), can be reformulated as

(1.28) ∀ξ ∈ S n-2 , α + α - ≥ m + (ξ ) m -(ξ ) . In fact 7 , (1.26) means τ α + < m + (ξ ) =⇒ τ α -≤ m -(ξ ) and since α ± , m ± are all positive, this is equivalent to having m + (ξ )/α + ≤ m -(ξ )/α -, which is (1.28).
from below to obtain a control of v + (0) and D n v + (0) with the previous estimates used in cascade. Indeed the first term will give an estimate of D n v + (0) and the second term one of v + (0). 7 For the main theorem, we shall in fact require the stronger strict inequality

(1.29) α + α - > m + (ξ ) m -(ξ ) .
This condition is then stable under perturbations, whereas (1.28) is not. This gives freedom to introduce microlocal cutoff in the analysis below. However, we shall see in Section 5 that in the particular case presented here, where the matrix A is piecewise constant and the weight function ϕ solely depends on x n the inequality (1.28) is actually a necessary and sufficient condition to obtain a Carleman estimate with weight ϕ.

An analogy with an estimate for a first-order factor may shed some light on this condition. With

f (t) = H(t)(τ α + +βt-m + )+H(-t)(τ α -+βt-m -), τ, α ± , β, m ± positive constants,
we want to prove an injectivity estimate of the type

D t v + if (t)v L 2 (R) v L 2 (R) , say for v ∈ C ∞ c (R).
It is a classical fact (see e.g. Lemma 3.1.1 in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]) that such an estimate (for a smooth f ) is equivalent to the condition that t → f (t) does not change sign from + to -while t increases: it means that the adjoint operator D t -if (t) satisfies the so-called condition (Ψ). Looking at the function f , we see that it increases on each half-line R ± , so that the only place to get a "forbidden" change of sign from + to -is at t = 0: to get an injectivity estimate, we have to avoid the situation where f (0 + ) < 0 and f (0 -) > 0, that is, we have to make sure that f (0 + ) < 0 =⇒ f (0 -) ≤ 0, which is indeed the condition (1.28). The function f is increasing affine on R ± with the same slope β on both sides, with a possible discontinuity at 0. When f (0 + ) < 0 we should have f (0 -) ≤ 0 and the line on the left cannot go above the dotted line, in such a way that the discontinuous zigzag curve with the arrows has only a change of sign from -to +. 

2. f (0 -) ≷ 0; f (0 + ) ≥ 0.
When f (0 + ) ≥ 0, there is no other constraint on f (0 -): even with a discontinuity, the change of sign can only occur from -to +.

We prove below (Section 5) that condition (1.28) is relevant to our problem in the sense that it is indeed necessary to have a Carleman estimate with this weight: if (1.28) is violated, we are able for this model to construct a quasi-mode for L τ , i.e. a τ -family of functions v with L 2 -norm 1 such that L τ v L 2 v L 2 , as τ goes to ∞, ruining any hope to prove a Carleman estimate. As usual for this type of construction, it uses some type of complex geometrical optics method, which is easy in this case to implement directly, due to the simplicity of the expression of the operator.

Remark 1.11. A very particular case of anisotropic medium was tackled in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] for the purpose of proving a controllability result for linear parabolic equations. The condition imposed on the weight function in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] (Assumption 2.1 therein) is much more demanding than what we impose here. In the isotropic case, c ± j = c ± for all j ∈ {1, . . . , n}, we have m + = m -= |ξ | and our condition (1.29) reads α + > α -. Note also that the isotropic case c -≥ c + was already considered in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF].

In [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF], the controllability result concerns an isotropic parabolic equation. The Carleman estimate we derive here extends this result to an anisotropic parabolic equation.

Framework

Presentation.

Let Ω, Σ be as in (1.3). With Ξ = {positive-definite n × n matrices}, we consider A ± ∈ C ∞ (Ω; Ξ) and let L, ϕ be as in (1.5) and (1.12). We set

L ± = D • A ± D = -div(A ± ∇).
Here, we generalize our analysis to non-homogeneous transmission conditions: for θ and Θ smooth functions of the interface Σ we set w + -w -= θ, and A + dw + -A -dw -, ν = Θ at Σ, (2.1) (compare with (1.8)-(1.9)) and introduce

W θ,Θ 0 = H -w -+ H + w + w ± ∈C ∞ c (Ω) satisfying (2.1). (2.2)
For τ ≥ 0 we define the affine space

(2.3) W θ,Θ τ = {e τ ϕ w} w∈W θ,Θ 0 . For v ∈ W θ,Θ τ , we have v = e τ ϕ w with w ∈ W θ,Θ 0 so that, using the notation introduced in (1.4), (1.7), with v ± = e τ ϕ ± w ± , we have (2.4) v = H -v -+ H + v + ,
and we see that the transmission conditions (2.1) on w read for v as

(2.5) v + -v -= θ ϕ , dv + -τ v + dϕ + , A + ν -dv --τ v -dϕ -, A -ν = Θ ϕ , at Σ, with (2.6) θ ϕ = e τ ϕ |Σ θ, Θ ϕ = e τ ϕ |Σ Θ.
Observing that e τ ϕ ± De -τ ϕ ± = D + iτ dϕ ± , for w ∈ W θ,Θ , we obtain

e τ ϕ ± L ± w ± = e τ ϕ ± D • A ± De -τ ϕ ± v ± = (D + iτ dϕ ± ) • A ± (D + iτ dϕ ± )v ±
We define (2.7)

P ± = (D + iτ dϕ ± ) • A ± (D + iτ dϕ ± ). Proposition 2.1. Let Ω, Σ, L, W θ,Θ τ be as in (1.
3), (1.5) and (2.3). Then for any compact subset K of Ω, there exist a weight function ϕ satisfying (1.12) and positive constants C, τ 1 such that for all τ ≥ τ 1 and all

v ∈ W τ with supp v ⊂ K C H -P -v -L 2 (R n ) + H + P + v + L 2 (R n ) + T θ,Θ ≥ τ 3/2 |v ± | L 2 (Σ) + τ 1/2 |(∇v ± )| L 2 (Σ) + τ 3/2 v L 2 (R n ) + τ 1/2 H + ∇v + L 2 (R n ) + τ 1/2 H -∇v -L 2 (R n ) , where T θ,Θ = τ 3/2 |θ ϕ | L 2 (Σ) + τ 1/2 |∇ Σ θ ϕ | L 2 (Σ) + τ 1/2 |Θ ϕ | L 2 (Σ) .
Here, ∇ Σ denotes the tangential gradient to Σ. The proof of this proposition will occupy a large part of the remainder of the article (Sections 3 and 4) as it implies the result of the following theorem, a non-homogenous version of Theorem 1.1.

Theorem 2.2. Let Ω, Σ, L, W θ,Θ 0 be as in (1.3), (1.5) and (2.2). Then for any compact subset K of Ω, there exist a weight function ϕ satisfying (1.12) and positive constants C, τ 1 such that for all τ ≥ τ 1 and all w ∈ W with supp w ⊂ K,

(2.8) C H -e τ ϕ -L -w -L 2 (R n ) + H + e τ ϕ + L + w + L 2 (R n ) + T θ,Θ ≥ τ 3/2 e τ ϕ w L 2 (R n ) + τ 1/2 H + e τ ϕ ∇w + L 2 (R n ) + H -e τ ϕ ∇w -L 2 (R n ) + τ 3/2 |e τ ϕ w ± | L 2 (Σ) + τ 1/2 |e τ ϕ ∇w ± | L 2 (Σ) .
where

T θ,Θ = τ 3/2 |e τ ϕ |Σ θ| L 2 (Σ) + τ 1/2 |e τ ϕ |Σ ∇ Σ θ| L 2 (Σ) + τ 1/2 |e τ ϕ |Σ Θ| L 2 (Σ) .
Theorem 1.1 corresponds to the case θ = Θ = 0 since by (1.10) we then have

e τ ϕ Lw L 2 (R n ) = H -e τ ϕ -L -w -L 2 (R n ) + H + e τ ϕ + L + w + L 2 (R n ) Remark 2.3.
It is often useful to have such a Carleman estimate at hand for the case non-homogeneous transmission conditions, for examples when on tries to patch such local estimates together in the neighborhood of the interface.

Here, we derive local Carleman estimates. We can in fact consider similar geometrical situation on a Riemannian manifold (with or without boundary) with a metric exhibiting jump discontinuities across interfaces. For the associated Laplace-Beltrami operator the local estimates we derive can be patched together to yield a global estimate. We refer to [START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]Section 5] for such questions.

Proof that Proposition 2.1 implies Theorem 2.2. Replacing v by e τ ϕ w, we get

(2.9) H -e τ ϕ -L -w -L 2 (R n ) + H + e τ ϕ + L + w + L 2 (R n ) + T θ,Θ τ 3/2 e τ ϕ w L 2 (R n ) + τ 1/2 H + ∇e τ ϕ w + L 2 (R n ) + H -∇e τ ϕ w -L 2 (R n ) + τ 3/2 |e τ ϕ w ± | L 2 (Σ) + τ 1/2 |∇e τ ϕ w ± | L 2 (Σ) . Commuting ∇ with e τ ϕ produces C H -e τ ϕ -L -w -L 2 (R n ) + H + e τ ϕ + L + w + L 2 (R n ) + T θ,Θ + C 1 τ 3/2 e τ ϕ w L 2 (R n ) + C 2 τ 3/2 |e τ ϕ w ± |Σ | L 2 (Σ) ≥ τ 1/2 H -e τ ϕ Dw -L 2 (R n ) + τ 1/2 H + e τ ϕ Dw + L 2 (R n ) + τ 3/2 e τ ϕ w L 2 (R n ) + τ 1/2 |e τ ϕ Dw ± | L 2 (Σ) + τ 3/2 |e τ ϕ w ± | L 2 (Σ) ,
but from (2.9) we have

C 1 τ 3/2 e τ ϕ w + C 2 τ 3/2 |e τ ϕ w| ≤ C max(C 1 , C 2 ) H -e τ ϕ -L -w -L 2 (R n ) + H + e τ ϕ + L + w + L 2 (R n ) + T θ,Θ ,
proving the implication.

Description in local coordinates. Carleman estimates of types (1.13) and

(2.8) can be handled locally as they can be patched together. Assuming as we may that the hypersurface Σ is given locally by the equation {x n = 0}, we have, using the Einstein convention on repeated indices j ∈ {1, . . . , n -1}, and noting from the ellipticity condition that a nn > 0 (the matrix A(x) = (a jk (x)) 1≤j,k≤n ),

L = D n a nn D n + D n a nj D j + D j a jn D n + D j a jk D k , = D n a nn D n + a -1 nn a nj D j + D j a jn D n + D j a jk D k , With T = a -1 nn a nj D j we have L = D n + T * )a nn D n + T -T * a nn D n -T * a nn T + D j a jn D n + D j a jk D k . and since T * = D j a -1 nn a nj , we have T * a nn D n = D j a nj D n = D j a jn D n and (2.10) L = D n + T * )a nn D n + T + D j b jk D k ,
where the (n-1)×(n-1) matrix (b jk ) is positive-definite since with ξ = (ξ 1 , . . . , ξ n-1 ) and ξ

= (ξ , ξ n ), Bξ , ξ = 1≤j,k≤n-1 b jk ξ j ξ k = Aξ, ξ ,
where a nn ξ n = -1≤j≤n-1 a nj ξ j . Note also that b jk = a jk -(a nj a nk /a nn ).

Remark 2.4. The positive-definite quadratic form B is the restriction of Aξ, ξ to the hyperplane H defined by { Aξ, ξ , x n } = ∂ ξn Aξ, ξ = 0, where {•, •} stands for the Poisson bracket. In fact the principal symbol of L is A(x)ξ, ξ and if Σ is defined by the equation ψ(x) = 0 with dψ = 0 at Σ, we have

1 2 A(x)ξ, ξ , ψ = A(x)ξ, dψ(x) so that H x = A(x)dψ(x) ⊥ = {ξ ∈ T * x (Ω), ξ, A(x)dψ(x) T * x (Ω),Tx(Ω) = 0}
. When x ∈ Σ, that set does not depend on the choice of the defining function ψ of Σ and we have simply

H x = A(x)ν(x) ⊥ = {ξ ∈ T * x (Ω), ξ, A(x)ν(x) T * x (Ω),Tx(Ω) = 0}
where ν(x) is the conormal vector to Σ at x (recall that from Remark 1.4, ν(x) is a cotangent vector at x, A(x)ν(x) is a tangent vector at x). Now, for x ∈ Σ, we can restrict the quadratic form A(x) to H x : this is the positive-definite quadratic form B(x), providing a coordinate-free definition.

For w ∈ W θ,Θ 0 , we have

L ± w ± = (D n + T * ± )a ± nn (D n + T ± )w ± + D j b ± jk D k w ± (2.11)
and the non-homogeneous transmission conditions (2.1) read (2.12)

w + -w -= θ, a + nn (D n + T + )w + -a - nn (D n + T -)w -= Θ, at Σ.

2.3.

Pseudo-differential factorization on each side. At first we consider the weight function ϕ = H + ϕ + + H -ϕ -with ϕ ± that solely depend on x n . Later on we shall allow for some dependency upon the tangential variables x (see Section 4.5).

We define for m ∈ R the class of tangential standard symbols S m as the smooth functions on

R n × R n-1 such that, for all (α, β) ∈ N n × N n-1 , (2.13) sup (x,ξ )∈R n ×R n-1 ξ -m+|β| |(∂ α x ∂ β ξ a)(x, ξ )| < ∞, with ξ = 1 + |ξ | 2 1 2
. Some basic properties of standard pseudo-differential operators are recalled in Appendix 6.1. Section 2.2 and formulae (2.7), (2.11) give

P ± = D n + iτ ϕ ± + T * ± a ± nn D n + iτ ϕ ± + T ± + D j b ± jk D k . (2.14) We define m ± ∈ S 1 such that for |ξ | ≥ 1, m ± = b ± jk a ± nn ξ j ξ k 1 2 , m ± ≥ C ξ , M ± = op w (m ± ). (2.15)
We have then

M 2 ± ≡ D j b ± jk D k mod op(S 1 ). We define (2.16) Ψ 1 = op(S 1 ) + τ op(S 0 ) + op(S 0 )D n .
Modulo the operator class Ψ 1 we may write (2.17)

P + ≡ P E+ a + nn P F + , P -≡ P F -a - nn P E-, where (2.18) P E± = D n + S ± + i(τ ϕ ± + M ± E ± ), P F ± = D n + S ± + i(τ ϕ ± -M ± F ± ), with (2.19 
)

S ± = s w (x, D ), s ± = 1≤j≤n-1 a ± nj a ± nn ξ j , so that S * ± = S ± , S ± = T ± + 1 2 div T ± , where (2.20) T ± is the vector field 1≤j≤n-1 a ± nj ia ± nn ∂ j .
We denote by f ± and e ± the homogeneous principal symbols of F ± and E ± respectively, determined modulo the symbol class S 1 + τ S 0 . The transmission conditions (2.12) with our choice of coordinates read, at

x n = 0, (2.21) v + -v -= θ ϕ = e τ ϕ |xn=0 θ, a + nn (D n + T + + iτ ϕ + )v + -a - nn (D n + T -+ iτ ϕ -)v -= Θ ϕ = e τ ϕ |xn=0 Θ.
Remark 2.5. Note that the Carleman estimate we shall prove is insensitive to terms in Ψ 1 in the conjugated operator P. Formulae (2.17) and (2.18) for P + and P -will thus be the base of our analysis.

Remark 2.6. In the articles [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF], the zero crossing of the roots of the symbol of P ± , as seen as a polynomial in ξ n , is analyzed. Here the factorization into first-order operators isolates each root. In fact, f ± changes sign and we shall impose a condition on the weight function at the interface to obtain a certain scheme for this change of sign. See Section 4.

2.4.

Choice of weight-function. The weight function can be taken of the form

(2.22) ϕ ± (x n ) = α ± x n + βx 2 n /2, α ± > 0, β > 0.
The choice of the parameters α ± and β will be done below and that choice will take into account the geometric data of our problem: α ± will be chosen to fulfill a geometric condition at the interface and β > 0 will be chosen large. Here, we shall require ϕ ≥ 0, that is, an "observation" region on the rhs of Σ. As we shall need β large, this amounts to working in a small neighborhood of the interface, i.e., |x n | small. Also, we shall see below (Section 4.5) that this weight can be perturbed by any smooth function with a small gradient.

Other choices for the weight functions are possible. In fact, two sufficient conditions can be put forward. We shall describe them now.

The operators M ± have a principal symbol m ± (x, ξ ) in S 1 , which is positivelyhomogeneous8 of degree 1 and elliptic, i.e. there exists λ ± 0 , λ ± 1 positive such that for

|ξ | ≥ 1, x ∈ R n , (2.23) λ ± 0 |ξ | ≤ m ± (x, ξ ) ≤ λ ± 1 |ξ |. We choose ϕ |xn=0 ± = α ± such that (2.24) α + α - > sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - .
The consequence of this condition will be made clear in Section 4. We shall also prove that this condition is sharp in Section 5: a strong violation of this condition, viz., α + /α -< sup(m + /m -) |xn=0 , ruins any possibility of deriving a Carleman estimate of the form of Theorem 1.1. Condition (2.24) concerns the behavior of the weight function at the interface. Conditions away from the interface are also needed. These conditions are more classical. From (2.14), the symbols of P ± , modulo the symbol class S 1 + τ S 0 + S 0 ξ n , are given by p ± (x, ξ, τ ) = a ± nn q ± 2 + 2iq ± 1 , with

q ± 2 = (ξ n + s ± ) 2 + b ± jk a ± nn ξ j ξ k -τ 2 (ϕ ± ) 2 , q ± 1 = τ ϕ ± (ξ n + s ± ),
for ϕ solely depending on x n , and from the construction of m ± , for |ξ | ≥ 1, we have

q ± 2 = (ξ n + s ± ) 2 + m 2 ± -(τ ϕ ± ) 2 = (ξ n + s ± ) 2 -f ± e ± . (2.25)
We can then formulate the usual sub-ellipticity condition, with loss of a half-derivative:

q ± 2 = 0 and q ± 1 = 0 =⇒ {q ± 2 , q ± 1 } > 0, (2.26)
which can be achieved by choosing β sufficiently large. It is important to note that this property is coordinate free. For second-order elliptic operators with real smooth coefficients this property is necessary and sufficient for a Carleman estimate as that of Theorem 1.1 to hold (see [START_REF]Linear partial differential operators[END_REF] or e.g. [START_REF] Rousseau | Applications to unique continuation and control of parabolic equations[END_REF]).

With the weight functions provided in (2.22) we choose α ± according to condition (2.24) and we choose β > 0 large enough and we restrict ourselves to a small neighborhood of Σ, i.e., |x n | small to have ϕ > 0, and so that (2.26) is fulfilled.

Remark 2.7. Other "classical" forms for the weight function ϕ are also possible. For instance, one may use ϕ(x n ) = e βφ(xn) with the function φ depending solely on

x n of the form φ = H -φ -+ H + φ + , φ ± ∈ C ∞ c (R)
, such that φ is continuous and |φ ± | ≥ C > 0. In this case, property (2.24) can be fulfilled by properly choosing φ |xn=0 ± and (2.26) by choosing β sufficiently large. Property (2.26) concerns the conjugated second-order operator. We show now that this condition concerns in fact only one of the first-order terms in the pseudodifferential factorization that we put forward above, namely P F ± . Lemma 2.8. There exist C > 0, τ 1 > 1 and δ > 0 such that for τ ≥ τ 1

|f ± | ≤ δλ =⇒ C -1 τ ≤ |ξ | ≤ Cτ and {ξ n + s ± , f ± } ≥ C λ, with λ 2 = τ 2 + |ξ | 2 .
See Appendix 6.2.1 for a proof. This is the form of the sub-ellipticty condition, with loss of half derivative, that we shall use. This will be further highlighted by the estimates we derive in Section 3 and by the proof of the main theorem.

Estimates for first-order factors

Unless otherwise specified, the notation • will stand for the L 2 (R n )-norm and | • | for the L 2 (R n-1 )-norm. The L 2 (R n ) and L 2 (R n-1 ) dot-products will be both denoted by •, • .

In this section we shall use the following function space 

S c (R n ) = u ∈ S (R n ); ∃L > 0, supp(u) ⊂ R n-1 × (-L, L) .
λ 2 = τ 2 + |ξ | 2 ,
we define for m ∈ R the class of tangential symbols S m τ as the smooth functions on R n × R n-1 , depending on the parameter τ ≥ 1, such that, for all (α, β)

∈ N n × N n-1 , (3.2) sup (x,ξ )∈R n ×R n-1 λ -m+|β| |(∂ α x ∂ β ξ a)(x, ξ , τ )| < ∞.
Some basic properties of the calculus of the associated pseudo-differential operators are recalled in Appendix 6.1.2. We shall refer to this calculus as to the semi-classical calculus (with a large parameter). In particular we introduce the following Sobolev norms:

(3.3) u H s := Λ s u L 2 (R n-1
) , with Λ s := op(λ s ).

For s ≥ 0 note that we have u

H s ∼ τ s u L 2 (R n-1 ) + D s u L 2 (R n-1
) . Observe also that we have

u H s ≤ Cτ s-s u H s , s ≤ s .
In what follows we shall often refer implicitly to this inequality when invoking a large value for the paramter τ .

The operator M ± is of pseudo-differential nature in the standard calculus. Observe however that in any region where τ |ξ | the symbol m ± does not satisfy the estimates of S 1 τ . We shall circumvent this technical point by introducing a cut-off procedure.

Let C 0 , C 1 > 0 be such that ϕ ≥ C 0 and

(M ± u, H + u) ≤ C 1 H + u 2 L 2 (R;H 1 2 (R n-1 )) . (3.4) We choose ψ ∈ C ∞ (R + ) nonnegative such that ψ = 0 in [0, 1] and ψ = 1 in [2, +∞).
We introduce the following Fourier multiplier

ψ (τ, ξ ) = ψ τ ξ ∈ S 0 τ , with 0 < ≤ 0 . (3.5)
such that τ ξ / in its support. We choose 0 sufficiently small so that supp(ψ ) is disjoint from a conic neighborhood (for |ξ | ≥ 1) of the sets {f ± = 0} (see Figure 3).

The following lemma states that we can obtain very natural estimates on both sides of the interface in the region |ξ | τ , i.e. for small. We refer to Appendix 6.2.2 for a proof. 

Lemma 3.1. Let ∈ R. There exist τ 1 ≥ 1, 0 < 1 ≤ 0 and C > 0 such that C H + A + op(ψ )ω L 2 (R;H ) ≥ |op(ψ )ω |xn=0 + | H + 1 2 + H + op(ψ )ω L 2 (R;H +1 ) , C H -A -op(ψ )ω L 2 (R;H ) + |op(ψ )ω |xn=0 -| H + 1 2 ≥ H -op(ψ )ω L 2 (R;H +1 ) , for 0 < ≤ 1 , with A + = P E+ or P F + , A -= P E-or P F -, for τ ≥ τ 1 and ω ∈ S c (R n ).

3.2.

Positive imaginary part on a half-line. We have the following estimates for the operators P E+ and P E-. Lemma 3.2. Let ∈ R. There exist τ 1 ≥ 1 and C > 0 such that

C H + P E + ω L 2 (R;H ) ≥ |ω |xn=0 + | H + 1 2 + H + ω L 2 (R;H +1 ) + H + D n ω L 2 (R;H ) , (3.6) 
and

(3.7) C H -P E -ω L 2 (R;H ) + |ω |xn=0 -| H + 1 2 ≥ H -ω L 2 (R;H +1 ) + H + D n ω L 2 (R;H ) , for τ ≥ τ 1 and ω ∈ S c (R n ).
Note that the first estimate, in R + , is of very good quality as both the trace and the volume norms are dominated: we have a perfect elliptic estimate. In R -, we obtain an estimate of lesser quality. Observe also that no assumption on the weight function, apart from the positivity of ϕ , is used in the proof below.

Proof. Let ψ be defined as in Section 3.1. We let ψ ∈ C ∞ (R + ) be nonnegative and such that ψ = 1 in [4, +∞) and ψ = 0 in [0, 3]. We then define ψ according to (3.5) and we have τ ξ in supp(1 -ψ ) and supp(1 -ψ ) ∩ supp( ψ ) = ∅. We set m± = m ± (1 -ψ ) and observe that m± ∈ S 1 τ . We define

ẽ± = τ ϕ + m± ∈ S 1 τ , Ẽ± = op w (ẽ ± ),
Observe that from the definition of ψ we have

ẽ± ≥ Cλ. (3.8)
Next, we note that

M ± op(1 -ψ )ω = op w ( m± )op(1 -ψ )ω + op w (m ± ψ )op(1 -ψ )ω,
and, since m ± ψ ∈ S 1 and 1 -ψ ∈ S 0 τ , with the latter vanishing in a region ξ ≤ Cτ , Lemma 6.4 yields

M ± op(1 -ψ )ω = op w ( m± )op(1 -ψ )ω + R 1 ω, with R 1 ∈ op(S -∞ τ ). (3.9)
We set u = op(1 -ψ )ω. For s = 2 + 1, we compute,

2 Re P E + u, iH + Λ s u = i[D n , H + ]u, Λ s u + i[S + , Λ s ]u, H + u + 2 Re E + u, H + Λ s u (3.10) ≥ |u |xn=0 + | 2 H + 1 2 + 2 Re E + u, H + Λ s u -C H + u 2 L 2 (R;H + 1 2 )
.

By (3.9) we have

E + u = Ẽ+ u + R 1 ω. This yields Re E + u, H + Λ s u + H + ω 2 Re Ẽ+ u, H + Λ s u H + u 2 L 2 (R;H +1 )
, for τ sufficiently large by (3.8) and Lemma 6.2. We thus obtain

Re P E + u, iH + Λ s u + H + u 2 L 2 (R;H + 1 2 ) + H + ω 2 |u |xn=0 + | 2 H + 1 2 + H + u 2 L 2 (R;H +1 )
, With the Young inequality and taking τ sufficiently large we then find

H + P E + u L 2 (R;H ) + H + ω |u |xn=0 + | H + 1 2 + H + u L 2 (R;H +1 )
. We now invoke the corresponding estimate provided by Lemma 3.1,

H + P E+ op(ψ )ω L 2 (R;H ) |op(ψ )ω |xn=0 + | H + 1 2 + H + op(ψ )ω L 2 (R;H +1 ) .
Adding the two estimates, with the triangular inequality, we obtain

H + P E + op(1 -ψ )ω L 2 (R;H ) + H + P E+ ω L 2 (R;H ) + H + ω |ω |xn=0 + | H + 1 2 + H + ω L 2 (R;H +1 ) . Lemma 6.4 gives P E + , op(1 -ψ ) ∈ op(S 0
τ ). We thus have

H + P E + op(1 -ψ )ω L 2 (R;H ) H + op(1 -ψ )P E + ω L 2 (R;H ) + H + ω L 2 (R;H ) H + P E + ω L 2 (R;H ) + H + ω L 2 (R;H ) .
By taking τ sufficiently large, we thus obtain

H + P E + ω L 2 (R;H ) |ω |xn=0 + | H + 1 2 + H + ω L 2 (R;H +1 ) . (3.11)
The term H + D n ω L 2 (R;H ) can simply be introduced on the rhs of this estimates, to yield (3.6), thanks to the form of the first-order operator P E + . To obtain estimate (3.7) we compute 2 Re P E -ω, iH -ω . The argument is similar whereas the trace term comes out with the opposite sign.

For the operator P F + we can also obtain a microlocal estimate. We place ourselves in a microlocal region where f + = τ ϕ + -m + is positive. More precisely, let χ(x, τ, ξ ) ∈ S 0 τ be such that |ξ | ≤ Cτ and f + ≥ C 1 λ in supp(χ), C 1 > 0, and

|ξ | ≥ C τ in supp(1 -χ). Lemma 3.3. Let ∈ R. There exist τ 1 ≥ 1 and C > 0 such that C H + P F + op w (χ)ω L 2 (R;H ) + H + ω ≥ |op w (χ)ω |xn=0 + | H + 1
As for (3.6) of Lemma 3.2, up to a harmless remainder term, we obtain an elliptic estimate in this microlocal region.

Proof. Let ψ be as defined in Section 3.1 and let ψ be as in the proof of Lemma 3.2. We set f± = τ ϕ -m± ∈ S 1 τ , F± = op w ( f± ). (3.12)

Observe that we have

f± = τ ϕ -m± = τ ϕ -m ± (1 -ψ ) = f ± + ψ m ± ≥ f ± .
This gives f+ ≥ Cλ in supp(χ).

We set u = op(1 -ψ )op w (χ)ω. Following the proof of Lemma 3.2, for s = 2 + 1, we obtain

Re P F + u, iH + Λ s u + H + ω 2 + H + u 2 L 2 (R;H + 1 2 ) |u |xn=0 + | 2 H + 1 2 + Re F+ u, H + Λ s u Let now χ ∈ S 0
τ satisfy the same properties as χ, with moreover χ = 1 on a neighborhood of supp(χ). We then write f+ = f+ + r, with f+ = f+ χ + λ(1

-χ) ∈ S 1 τ , r = ( f+ -λ)(1 -χ) ∈ S 1 τ . As supp(1 -χ) ∩ supp(χ) = ∅, we find r (1 -ψ ) χ ∈ S -∞ τ
. Since f+ ≥ Cλ by construction, with Lemma 6.2 we obtain

Re P F + u, iH + Λ s u + H + ω 2 + H + u 2 L 2 (R;H + 1 2 ) |u |xn=0 + | 2 H + 1 2 + H + u 2 L 2 (R;H +1 ) .
With the Young inequality, taking τ sufficiently large, we obtain

H + P F + u L 2 (R;H ) + H + ω |u |xn=0 + | H + 1 2 + H + u L 2 (R;H +1 ) .
Invoking the corresponding estimate provided by Lemma 3.1 for op w (χ)ω,

H + P F + op(ψ )op w (χ)ω L 2 (R;H ) |op(ψ )op w (χ)ω |xn=0 + | H + 1 2 + H + op(ψ )op w (χ)ω L 2 (R;H +1 ) ,
and arguing as in the end of the proof of Lemma 3.2 we obtain the result.

For the operator P F -we can also obtain a microlocal estimate. We place ourselves in a microlocal region where f -= τ ϕ --m -is positive. More precisely, let χ(x, τ, ξ ) ∈ S 0 τ be such that |ξ | ≤ Cτ and f -≥ C 1 λ in supp(χ), C 1 > 0, and

|ξ | ≥ C τ in supp(1 -χ). Lemma 3.4. Let ∈ R. There exist τ 1 ≥ 1 and C > 0 such that (3.13) C H -P F -u L 2 (R;H ) + H -ω + H -D n ω + |u |xn=0 -| H + 1 2 ≥ H -u L 2 (R;H +1 ) ,
for τ ≥ τ 1 and u = a - nn P E-op w (χ)ω with ω ∈ S c (R n ). Proof. Let ψ be defined as in Section 3.1. We define fand Fas in (3.12). We have f-≥ f -≥ Cλ in supp(χ). We set z = op(1 -ψ )u and for s = 2 + 1 we compute

2 Re P F -z, iH -Λ s z = i[D n , H -]z, Λ s z + i [S -, Λ s ]z, H -z + 2 Re F -z, H -Λ s z ≥ -|z |xn=0 -| 2 H + 1 2 + 2 Re F -z, H -Λ s z -C H -z 2 L 2 (R;H + 1 2 )
.

Arguing as in the proof of Lemma 3.2 (see (3.9) and (3.10)) we obtain

2 Re P F -z, iH -Λ s z + C H -u 2 + |z |xn=0 -| 2 H + 1 2 + C H -z 2 L 2 (R;H + 1 2 ) ≥ 2 Re F-z, H -Λ s z .
Let now χ ∈ S 0 τ satisfy the same properties as χ, with moreover χ = 1 on a neighborhood of supp(χ). We then write f

-= f-+ r, with f-= f-χ + λ(1 -χ) ∈ S 1 τ , r = ( f--λ)(1 -χ) ∈ S 1 τ .
As f-≥ Cλ and supp(1 -χ) ∩ supp(χ) = ∅ with Lemma 6.2 we obtain, for τ large,

2 Re P F -z, iH -Λ s z + C H -u 2 + |z |xn=0 -| 2 H + 1 2 + C H -z 2 L 2 (R;H + 1 2 ) + H -ω 2 + H -D n ω 2 ≥ C H -z 2 L 2 (R;H +1 ) .
With the Young inequality and taking τ sufficiently large we then find

H -P F -z L 2 (R;H ) + H -u + |z |xn=0 -| H + 1 2 + H -ω + H -D n ω H -z L 2 (R;H +1 ) .
Invoking the corresponding estimate provided by Lemma 3.1 for u yields

H -P F -op(ψ )u L 2 (R;H ) + |op(ψ )u |xn=0 -| H + 1 2 H -op(ψ )u L 2 (R;H +1 ) .
and arguing as in the end of Lemma 3.2 we obtain the result.

3.3.

Negative imaginary part on the negative half-line. Here we place ourselves in a microlocal region where f -= τ ϕ --m -is negative. More precisely, let χ(x, τ, ξ ) ∈ S 0 τ be such that |ξ | ≥ Cτ and f -≤ -C 1 λ in supp(χ), C 1 > 0. We have the following lemma whose form is adapted to our needs in the next section. Up to harmless remainder terms, this can also be considered as a good elliptic estimate. Lemma 3.5. There exist τ 1 ≥ 1 and C > 0 such that

C H -P F -u + H -ω + H -D n ω ≥ |u |xn=0 -| H 1 2 + H -u L 2 (R;H 1 ) , (3.14) for τ ≥ τ 1 and u = a - nn P E-op w (χ)ω with ω ∈ S c (R n ).
Proof. We compute

2 Re P F -u, -iH -Λ 1 u = i[D n , -H -]u, Λ 1 u -i [S -, Λ 1 ]u, H -u + 2 Re -F -u, H -Λ 1 u ≥ |u |xn=0 -| 2 H 1 2 + 2 Re -F -u, H -Λ 1 u -C H -u 2 L 2 (R;H 1 2 ) 
.

Let now χ ∈ S 0 τ satisfy the same properties as χ, with moreover χ = 1 on a neighborhood of supp(χ). We then write

f -= f-+ r, with f-= f -χ -λ(1 -χ), r = (f -+ λ)(1 -χ).
Observe that f -χ ∈ S 1 τ because of the support of χ. Hence f-∈ S 1 τ . As -f-≥ Cλ with Lemma 6.2 we obtain, for τ large, Re -op

w ( f-)u, H -Λ 1 u H -u 2 L 2 (R;H 1 )
. Note that r does not satisfy the estimates of the semi-classical calculus because of the term m -(1 -χ). However, we have op w (r)u = op w (r)a - nn op w (χ)D n ω + op w (r)a - nn S -op w (χ)ω + iop w (r)a - nn E -op w (χ)ω. Applying Lemma 6.4, using that 1 -χ ∈ S 0 τ ⊂ S 0 , yields op w (r)u = Rω with R ∈ op(S 1 τ )D n + op(S 2 τ ). As supp(1 -χ) ∩ supp(χ) = ∅, the composition formula (6.7) (which is valid in this case -see Lemma 6.4) yields moreover R ∈ op(S -∞ τ )D n + op(S -∞ τ ). We thus find, for τ sufficiently large

Re P F -u, -iH -Λ 1 u + H -ω 2 + H -D n ω 2 |u |xn=0 -| 2 H 1 2 + H -u 2 L 2 (R;H 1 )
, and we conclude with the Young inequality.

3.4.

Increasing imaginary part on a half-line. Here we allow the symbols f ± to change sign. For the first-order factor P F ± this will lead to an estimate that exhibits a loss of a half derivative as can be expected.

Let ψ be as defined in Section 3.1 and let ψ be as in the proof of Lemma 3.2. We define f± and F± as in (3.12) and set PF ± = D n + S ± + i F± .

As supp( ψ ) remains away from the sets {f ± = 0} the sub-ellipticy property of Lemma 2.8 is preserved for f± in place of f ± . We shall use the following inequality. Lemma 3.6. There exist C > 0 such that for µ > 0 sufficiently large we have

ρ ± = µ f 2 ± + τ ξ n + s ± , f± ≥ Cλ 2 , with λ 2 = τ 2 + |ξ | 2 .
Proof. If | f± | ≤ δλ, for δ small, then f± = f ± and τ ξ n + s ± , f± ≥ Cλ 2 by Lemma 2.8. If | f± | ≥ δλ, observing that τ ξ n + s ± , f± ∈ τ S 1 τ ⊂ S 2 τ , we obtain ρ ± ≥ Cλ 2 by choosing µ sufficiently large.

We now prove the following estimate for P F ± . Lemma 3.7. Let ∈ R. There exist τ 1 ≥ 1 and C > 0 such that

C H ± P F ± ω L 2 (R;H ) + |ω |xn=0 ± | H + 1 2 ≥ τ -1 2 H ± ω L 2 (R;H +1 ) + H ± D n ω L 2 (R;H ) , for τ ≥ τ 1 and ω ∈ S c (R n ).
Proof. we set u = op(1 -ψ )ω. We start by invoking (3.9), and the fact that [ PF+ , Λ ] ∈ op(S τ ), and write

H + PF+ Λ u H + Λ PF+ u + H + [ PF+ , Λ ]u (3.15) H + PF+ u L 2 (R;H ) + H + u L 2 (R;H ) H + P F + u L 2 (R;H ) + H + ω + H + u L 2 (R;H )
We set u = Λ u. We then have 

H + PF+ u 2 = H + (D n + S + )u 2 + H + F+ u 2 + 2 Re (D n + S + )u , iH + F+ u ≥ τ -1 Re µ F 2 + + iτ D n + S + , F+ u , H + u + i[D n , H + ]u , F+ u , if µτ -1 ≤ 1. As the principal symbol (in the semi-classical calculus) of µ F 2 + +iτ D n + S + , F+ is ρ + = µ f 2 + + τ ξ n + s + ,
H + PF+ u 2 + |u | 2 H 1 2 τ -1 H + u 2 L 2 (R;H 1 ) ,
for µ large, i.e., τ large. With (3.15) we obtain, for τ sufficiently large,

H + P F + u L 2 (R;H ) + H + ω + |u| H + 1 2 τ -1 2 H + u L 2 (R;H +1 ) .
We now invoke the corresponding estimate provided by Lemma 3.1,

H + P F + op(ψ )ω L 2 (R;H ) |op(ψ )ω |xn=0 + | H + 1 2 + H + op(ψ )ω L 2 (R;H +1
) and we proceed as in the end of the proof of Lemma 3.2 to obtain the result for P F + . The same computation and arguments, mutatis mutandis, give the result for P F -.

Proof of the Carleman estimate

From the estimates for the first-order factors obtained in Section 3 we shall now prove Proposition 2.1 which gives the result of Theorem 1.1 and Theorem 2.2 (see the end of Section 2.1).

The Carleman estimates we prove are well known away from the interface {x n = 0}. Since local Carleman estimates can be patched together, we may thus assume that the compact set K in the statements of Theorem 1.1 and Theorem 2.2 is such that |x n | is sufficiently small for the arguments below to be carried out. Hence we shall assume the functions w ± in Theorem 2.2 (resp. v ± in Proposition 2.1) have small supports near 0 in the x n -direction. 

α + α - > sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - , α ± = ∂ xn ϕ ± |xn=0 ± .
Let us explain the immediate consequences of that assumption: first of all, we can reformulate it by saying that

(4.2) ∃σ > 1, α + α - = σ 2 sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - . Let 1 < σ 0 < σ. First, consider (x , ξ , τ ) ∈ R n-1 × R n-1 × R +, * , |ξ | ≥ 1, such that (4.3) τ α + ≥ σ 0 m + (x , ξ ) |xn=0 + .
Observe that we then have

τ α + -m + (x , ξ ) |xn=0 + ≥ τ α + (1 -σ -1 0 ) ≥ σ 0 -1 2σ 0 τ α + + σ 0 -1 2 m + (x , ξ ) |xn=0 + (4.4) ≥ Cλ.
We choose τ sufficiently large, say τ ≥ τ 2 > 0, so that this inequality remains true for 0 ≤ |ξ | ≤ 2. It also remains true for x n > 0 small. As 

f + = τ (ϕ -α + ) + τ α + -m + (x,
τ α + ≤ σm + (x , ξ ) |xn=0 + , we get that τ α -≤ σ -1 m -(x , ξ ) |xn=0 -: otherwise we would have τ α -> σ -1 m -(x , ξ ) |xn=0 - and thus m -(x , ξ ) |xn=0 - σα - < τ ≤ σm + (x , ξ ) |xn=0 + α + , implying α + α - < σ 2 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - ≤ σ 2 sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - = α + α - which is impossible.
As a consequence we have

(4.6) τ α --m -(x , ξ ) |xn=0 -≤ -m -(x , ξ ) |xn=0 - (σ -1) σ ≤ -m -(x , ξ ) |xn=0 - (σ -1) 2σ - (σ -1) 2 τ α -≤ -Cλ. With f -= τ (ϕ -α -) + τ α --m -(x, ξ
), for |x n | sufficiently small, we obtain f -≤ -Cλ, which means that f -is elliptic negative in that region.

We have thus proven the following result. Lemma 4.1. Let σ > σ 0 > 1, and α ± , be positive numbers such that (4.2) holds.

F - elliptic + F + Γσ 0 τ α + = σ 0 m + (x , ξ ) |xn=0 + τ α + = σm + (x , ξ ) |xn=0 + τ = ξ
For s > 0, we define the following "cones" in

R n-1 x × R n-1 ξ × R * + by Γ s = (x , τ, ξ ); |ξ | < 2 or τ α + > sm + (x , ξ ) |xn=0 + , Γ s = (x , τ, ξ ); |ξ | > 1 and τ α + < sm + (x , ξ ) |xn=0 + .
For |x n | sufficiently small and τ sufficiently large, we have

R n-1 × R n-1 × R * + = Γ σ 0 ∪ Γ σ and Γ σ 0 ⊂ (x , ξ , τ ) ∈ R n-1 × R n-1 × R * + ; f + (x, ξ ) ≥ Cλ, if 0 ≤ x n small , Γ σ ⊂ (x , ξ , τ ) ∈ R n-1 × R n-1 × R * + ; f -(x, ξ ) ≤ -Cλ, if |x n | small, x n ≤ 0 . N.B.
The key result for the sequel is that property (4.1) is securing the fact that the overlapping open regions Γ σ 0 and Γ σ are such that on Γ σ 0 , f + is elliptic positive and on Γ σ , f -is elliptic negative. Using a partition of unity and symbolic calculus, we shall be able to assume that either F + is elliptic positive, or F -is elliptic negative.

N.B. Note that we can keep the preliminary cut-off region of Section 3.1 away from the overlap of Γ σ 0 and Γ σ by choosing sufficiently small (see (3.5) and Lemma 3.1). This is illustrated in Figure 4.

With the two overlapping "cones", for τ ≥ τ 2 , we introduce an homogeneous partition of unity

(4.7) 1 = χ 0 (x , ξ , τ ) + χ 1 (x , ξ , τ ), supp(χ 0 ) ⊂ Γ σ 0 |ξ | τ, f + elliptic > 0 , supp(χ 1 ) ⊂ Γ σ |ξ | τ, f -elliptic < 0 .
Note that χ j , j = 0, 1, are supported at the overlap of the regions Γ σ 0 and Γ σ , where τ |ξ |. Hence, χ 0 and χ 1 satisfy the estimates of the semi-classical calculus and we have χ 0 , χ 1 ∈ S 0 τ . With these symbols we associate the following operators. (4.8) Ξ j = op w (χ j ), j = 0, 1 and we have Ξ 0 + Ξ 1 = Id.

Remark 4.2. Here we have chosen to let χ 0 and χ 1 (resp. Ξ 0 and Ξ 1 ) be independent of x n . As the functions v ± have supports in which |x n | is small (see the introductory paragraph of this section), we can further introduce a cut-off in the x n direction. The lemmata of Section 3 can then be applied directly.

From the transmission conditions (2.21) we find (4.9)

Ξ j v + |xn=0 + -Ξ j v -|xn=0 -= Ξ j θ ϕ , and 
a + nn (D n + T + + iτ ϕ + )Ξ j v + |xn=0 + -a - nn (D n + T -+ iτ ϕ -)Ξ j v -|xn=0 - = Ξ j Θ ϕ + op w (κ 0 )v |xn=0 + + op w (κ 0 )θ ϕ , j = 0, 1, with κ 0 , κ0 ∈ S 0
τ that originate from commutators and (4.9). Defining

V j,± = a ± nn (D n + S ± + iτ ϕ ± )Ξ j v ± |xn=0 ± (4.10)
and recalling (2.19) we find

V j,+ -V j,-= Ξ j Θ ϕ + op w (κ 1 )v |xn=0 + + op w (κ 1 )θ ϕ , κ 1 , κ1 ∈ S 0 τ . (4.11)
We shall now prove microlocal Carleman estimates in the two regions Γ σ 0 and Γ σ . 4.2. Region Γ σ 0 : both roots are positive on the positive half-line. On the one hand, from Lemma 3.2 we have (4.12)

H + P + Ξ 0 v + |V 0,+ -ia + nn M + Ξ 0 v + |xn=0 + | H 1 2 + H + P F + Ξ 0 v + L 2 (R;H 1 )
, where the operator P + is defined in (2.7) (see also (2.17)). The positive ellipticity of F + on the supp χ 0 ∩ supp(v + ) allows us to reiterate the estimate by Lemma 3.3 to obtain

H + P + Ξ 0 v + + H + v + |V 0,+ -ia + nn M + Ξ 0 v + |xn=0 + | H 1 2 + |Ξ 0 v + |xn=0 + | H 3/2 + H + Ξ 0 v + L 2 (R;H 2 ) + H + D n Ξ 0 v + L 2 (R;H 1 ) .
Since we have also

(4.13) |V 0,+ | H 1 2 |V 0,+ -ia + nn M + Ξ 0 v + |xn=0 + | H 1 2 + |Ξ 0 v + |xn=0 + | H 3/2 , writing the H 1 2 norm as |.| H 1 2 ∼ τ 1 2 |.| L 2 + |.| H 1 2
and using the regularity of M + ∈ op(S 1 ) in the standard calculus, we obtain (4.14)

H + P + Ξ 0 v + + H + v + |V 0,+ | H 1 2 + |Ξ 0 v + |xn=0 + | H 3/2 + H + Ξ 0 v + L 2 (R;H 2 ) + H + Ξ 0 D n v + L 2 (R;H 1 ) .
On the other hand, with Lemma 3.7 we have, for k = 0 or k = 1 2 ,

H -P -Ξ 0 v -L 2 (R;H -k ) + |V 0,-+ ia - nn M -Ξ 0 v -|xn=0 -| H 1 2 -k τ -1 2 H -P E-Ξ 0 v -L 2 (R;H 1-k ) .
This gives

H -P -Ξ 0 v -+τ k |V 0,-+ia - nn M -Ξ 0 v -|xn=0 -| H 1 2 -k τ k-1 2 H -P E-Ξ 0 v -L 2 (R;H 1-k ) ,
which with Lemma 3.2 yields

H -P -Ξ 0 v -+ τ k |V 0,-+ ia - nn M -Ξ 0 v -|xn=0 -| H 1 2 -k + τ k-1 2 |Ξ 0 v -|xn=0 -| H 3 2 -k τ k-1 2 H -Ξ 0 v -L 2 (R;H 2-k ) + H -Ξ 0 D n v -L 2 (R;H 1-k ) .
Arguing as for (4.13) we find (4.15)

H -P -Ξ 0 v -+ τ k |V 0,-| H 1 2 -k + τ k |Ξ 0 v -|xn=0 -| H 3 2 -k τ k-1 2 H -Ξ 0 v -L 2 (R;H 2-k ) + H -Ξ 0 D n v -L 2 (R;H 1-k ) .
Now, from the transmission conditions (4.9)-(4.11), by adding ε(4.15) + (4.14) we obtain

H -P -Ξ 0 v -+ H + P + Ξ 0 v + +τ k |θ ϕ | H 3 2 -k +|Θ ϕ | H 1 2 -k +|v |xn=0 + | H 1 2 -k + H + v + τ k |V 0,-| H 1 2 -k + |V 0,+ | H 1 2 -k + |Ξ 0 v -|xn=0 -| H 3 2 -k + |Ξ 0 v + |xn=0 + | H 3 2 -k + τ k-1 2 Ξ 0 v L 2 (R;H 2-k ) + H -Ξ 0 D n v -L 2 (R;H 1-k ) + H + Ξ 0 D n v + L 2 (R;H 1-k ) .
by choosing ε > 0 sufficiently small and τ sufficiently large. Finally, recalling the form of V 0,± , arguing as for (4.13) we obtain (4.16)

H -P -Ξ 0 v -+ H + P + Ξ 0 v + +τ k |θ ϕ | H 3 2 -k +|Θ ϕ | H 1 2 -k +|v |xn=0 + | H 1 2 -k + H + v + τ k |Ξ 0 D n v -|xn=0 -| H 1 2 -k +|Ξ 0 D n v + |xn=0 + | H 1 2 -k +|Ξ 0 v -|xn=0 -| H 3 2 -k +|Ξ 0 v + |xn=0 + | H 3 2 -k + τ k-1 2 Ξ 0 v L 2 (R;H 2-k ) + H -Ξ 0 D n v -L 2 (R;H 1-k ) + H + Ξ 0 D n v + L 2 (R;H 1-k ) , for k = 0 or k = 1
2 . Remark 4.3. Note that in the case k = 0, recalling the form of the second-order operators P ± , we can estimate the additional terms τ

-1 2 H ± Ξ 0 D 2 n v ± . 4.3.
Region Γσ : only one root is positive on the positive half-line. This case is more difficult a priori since we cannot expect to control v |xn=0 + directly from the estimates of the first-order factors. Nevertheless when the positive ellipticity of F + is violated, then F -is elliptic negative: this is the result of our main geometric assumption in Lemma 4.1.

As in (4.12) we have

H + P + Ξ 1 v + |V 1,+ -ia + nn M + Ξ 1 v + |xn=0 + | H 1 2 + H + P F + Ξ 1 v + L 2 (R;H 1 )
. and using Lemma 3.5 for the negative half-line, we have

H -P -Ξ 1 v -+ H -v -+ H -D n v - |V 1,-+ ia - nn M -Ξ 1 v -|xn=0 -| H 1 2 + H -P E-Ξ 1 v -L 2 (R;H 1 ) .
A quick glance at the above estimates show that none could be iterated in a favorable manner, since F + could be negative on the positive half-line and E -is indeed positive on the negative half-line. We have to use the additional information given by the transmission conditions. From the above inequalities, we control 1 2 , which, by the transmission conditions (4.9)-(4.11) implies the control of

τ k |V 1,-+ ia - nn M -Ξ 1 v -|xn=0 -| H 1 2 -k + | -V 1,+ + ia + nn M + Ξ 1 v + |xn=0 + | H 1 2 -k , for k = 0 or
τ k |V 1,--V 1,+ + ia - nn M -Ξ 1 v -|xn=0 -+ ia + nn M + Ξ 1 v + |xn=0 + | H 1 2 -k ≥ τ k |(a - nn M -+ a + nn M + )Ξ 1 v + |xn=0 + | H 1 2 -k -Cτ k |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k + |v + |xn=0 + | H 1 2 -k . Let now χ1 ∈ S 0
τ satisfying the same properties as χ 1 , with moreover χ1 = 1 on a neighborhood of supp(χ 1 ). We then write

m ± = m± + r, with m± = m ± χ1 + λ(1 -χ1 ), r = (m ± + λ)(1 -χ1 ).
We have m± ≥ Cλ and m± ∈ S 1 τ because of the support of χ1 . Because of the supports of 1 -χ1 and χ 1 , in particular τ |ξ | in supp(χ 1 ), Lemma 6.4 yields r χ 1 ∈ S -∞ τ . With Lemma 6.2 and (4.9) we thus obtain

|V 1,-+ ia - nn M -Ξ 1 v -|xn=0 -| H 1 2 -k + | -V 1,+ + ia + nn M + Ξ 1 v + |xn=0 + | H 1 2 -k + |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k + |v + |xn=0 + | H 1 2 -k |Ξ 1 v -|xn=0 -| H 3 2 -k + |Ξ 1 v + |xn=0 + | H 3 2 -k . From the form of V 1,+ we moreover obtain |V 1,-+ ia - nn M -Ξ 1 v -|xn=0 -| H 1 2 -k + | -V 1,+ + ia + nn M + Ξ 1 v + |xn=0 + | H 1 2 -k + |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k + |v + |xn=0 + | H 1 2 -k |Ξ 1 v -|xn=0 -| H 3 2 -k + |Ξ 1 v + |xn=0 + | H 3 2 -k + |Ξ 1 D n v -|xn=0 -| H 1 2 -k + |Ξ 1 D n v + |xn=0 + | H 1 2 -k . We thus have H -P -Ξ 1 v -+ H + P + Ξ 1 v + +τ k |Θ ϕ | H 1 2 -k +|θ ϕ | H 3 2 -k +|v + |xn=0 + | H 1 2 -k + H -v - + H -D n v - τ k |Ξ 1 v -|xn=0 -| H 3 2 -k + |Ξ 1 v + |xn=0 + | H 3 2 -k + |Ξ 1 D n v -|xn=0 -| H 1 2 -k + |Ξ 1 D n v + |xn=0 + | H 1 2 -k + H -P E-Ξ 1 v -L 2 (R;H 1-k ) + H + P F + Ξ 1 v + L 2 (R;H 1-k ) , for k = 0 or 1 2 .
The remaining part of the discussion is very similar to the last part of the argument in the previous subsection. By Lemmas 3.2 and 3.7 we have

H -P E-Ξ 1 v -L 2 (R;H 1-k ) + |Ξ 1 v -|xn=0 -| H 3 2 -k H -Ξ 1 v -L 2 (R;H 2-k ) + H -Ξ 1 D n v -L 2 (R;H 1-k )
and

H + P F + Ξ 1 v + L 2 (R;H 1-k ) + |Ξ 1 v + |xn=0 + | H 3 2 -k τ -1 2 H + Ξ 1 v + L 2 (R;H 2-k ) + H + Ξ 1 D n v + L 2 (R;H 1-k ) . Since |Ξ 1 v ± |xn=0 ± | H 3 2 -k
are already controlled, we control as well the rhs of the above inequalities and have (4.17)

H -P -Ξ 1 v -+ H + P + Ξ 1 v + +τ k |Θ ϕ | H 1 2 -k +|θ ϕ | H 3 2 -k +|v + |xn=0 + | H 1 2 -k + H -v - + H -D n v - τ k |Ξ 1 v -|xn=0 -| H 3 2 -k + |Ξ 1 v + |xn=0 + | H 3 2 -k + |Ξ 1 D n v -|xn=0 -| H 1 2 -k + |Ξ 1 D n v + |xn=0 + | H 1 2 -k + τ k-1 2 Ξ 1 v L 2 (R;H 2-k ) + H -Ξ 1 D n v -L 2 (R;H 1-k ) + H + Ξ 1 D n v + L 2 (R;H 1-k ) .
Remark 4.4. Note that in the case k = 0, recalling the form of the second-order operators P ± , we can estimate the additional terms τ - 

H -P -Ξ j v -+ H + P + Ξ j v + + τ k |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k + |v + |xn=0 + | H 1 2 -k + H + v + + H -v -+ H -D n v - τ k |v -|xn=0 -| H 3 2 -k + |v + |xn=0 + | H 3 2 -k + |D n v -|xn=0 -| H 1 2 -k + |D n v + |xn=0 + | H 1 2 -k + τ k-1 2 v L 2 (R;H 2-k ) + H -D n v -L 2 (R;H 1-k ) + H + D n v + L 2 (R;H 1-k ) .
For τ sufficiently large we now obtain j=0,1

H -P -Ξ j v -+ H + P + Ξ j v + + τ k |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k τ k |v -|xn=0 -| H 3 2 -k + |v + |xn=0 + | H 3 2 -k + |D n v -|xn=0 -| H 1 2 -k + |D n v + |xn=0 + | H 1 2 -k + τ k-1 2 v L 2 (R;H 2-k ) + H -D n v -L 2 (R;H 1-k ) + H + D n v + L 2 (R;H 1-k ) .
Arguing with commutators, as in the end of Lemma 3.2, noting here that the second order operators P ± belong to the semi-classical calculus, i.e. P ± ∈ S 2 τ , we otbain, for τ sufficiently large,

H -P -v -+ H + P + v + + τ k |Θ ϕ | H 1 2 -k + |θ ϕ | H 3 2 -k τ k |v -|xn=0 -| H 3 2 -k + |v + |xn=0 + | H 3 2 -k + |D n v -|xn=0 -| H 1 2 -k + |D n v + |xn=0 + | H 1 2 -k + τ k-1 2 v L 2 (R;H 2-k ) + H -D n v -L 2 (R;H 1-k ) + H + D n v + L 2 (R;H 1-k ) .
In particular this estimate allows us to absorb the perturbation in Ψ 1 as defined by (2.16) by taking τ large enough. For k = 1 2 we obtain the result of Proposition 2.1, which concludes the proof of the Carleman estimate.

N.B. The case k = 0 provides higher Sobolev norm estimates of the trace terms v ± |xn=0 ± and D n v ± |xn=0 ± . It also allows one to estimate τ -1 2 H ± D 2 n v ± as noted in Remarks 4.3 and 4.4. These estimation are obtained at the price of higher requirements (one additional tangential half derivative) on the non-homogeneous transmission condition functions θ and Θ.

4.5. Convexification. We want now to modify slightly the weight function ϕ, for instance to allow some convexification. We started with ϕ = H + ϕ + + H -ϕ -where ϕ ± were given by (2.22) and our proof relied heavily on a smooth factorization in first-order factors. We modify ϕ ± into

Φ ± (x , x n ) = α ± x n + 1 2 βx 2 n ϕ ± (xn) +κ(x , x n ), κ ∈ C ∞ (Ω; R), |dκ| bounded on Ω.
We shall prove below that the Carleman estimates of Theorem 1.1 and Theorem 2.2 also holds in this case if we choose κ L ∞ sufficiently small. We start by inspecting what survives in our factorization argument. We have from (2.7),

P ± = (D + iτ dΦ ± ) • A ± (D + iτ dΦ ± ), so that, modulo Ψ 1 , (4.18) P ± ≡ a ± nn D n + S ± (x, D ) + iτ ∂ n Φ ± + S ± (x, ∂ x Φ ± ) 2 + b ± jk a ± nn (D j + iτ ∂ j Φ ± )(D k + iτ ∂ k Φ ± ) .
(See also (2.10).) The new difficulty comes from the fact that the roots in the variable D n are not necessarily smooth: when Φ does not depend on x , the symbol of the term b ± jk (D j +iτ ∂ j Φ ± )(D k +iτ ∂ k Φ ± ) equals b ± jk ξ j ξ k and thus is positive elliptic with a smooth positive square root. It is no longer the case when we have an actual dependence of Φ upon the variable x ; nevertheless, we have, as

∂ x Φ ± = ∂ x κ, Re b ± jk a ± nn (ξ j + iτ ∂ j κ)(ξ k + iτ ∂ k κ) = b ± jk a ± nn ξ j ξ k -τ 2 b ± jk a ± nn ∂ j κ∂ k κ ≥ (λ ± 0 ) 2 |ξ | 2 -τ 2 (λ ± 1 ) 2 |∂ x κ| 2 ≥ 3 4 (λ ± 0 ) 2 |ξ | 2 , if τ ∂ x κ L ∞ ≤ λ ± 0 2λ ± 1 |ξ |,
where

λ ± 0 = inf x ,ξ |ξ |=1 b ± jk a ± nn ξ j ξ k 1 2 |xn=0 ± , λ ± 1 = sup x ,ξ |ξ |=1 b ± jk a ± nn ξ j ξ k 1 2 |xn=0 ± , As a result, the roots are smooth when τ ∂ x κ L ∞ ≤ λ ± 0 2λ ± 1 |ξ |.
In this case, we define m ± ∈ S 1 such that

for |ξ | ≥ 1, m ± (x, ξ ) = b ± jk a ± nn (ξ j + iτ ∂ j κ)(ξ k + iτ ∂ k κ) 1 2 , m ± (x, ξ ) ≥ C ξ .
Here we use the principal value of the square root function for complex numbers. Introducing

e ± = τ ∂ n Φ ± + S ± (x, ∂ x κ) + Re m ± (x, ξ ), f ± = τ ∂ n Φ ± + S ± (x, ∂ x κ) -Re m ± (x, ξ ) τ |ξ | τ = ξ F - elliptic - τ α + = σm + (x , ξ ) |xn=0 + τ α + = σ 0 m + (x , ξ ) |xn=0 + non smooth roots 2τ λ + 1 ∂ x κ L ∞ = λ + 0 |ξ | 4τ λ + 1 ∂ x κ L ∞ = λ + 0 |ξ | F + elliptic + Figure 5.
The overlapping microlocal regions in the case of a convex weight function.

we set E ± = op(e ± ) and F ± = op(f ± ) and

P E± = D n + S ± (x, D ) -op w (Im m ± ) + iE ± , P F± = D n + S ± (x, D ) + op w (Im m ± ) + iF ± .
Modulo the operator class Ψ 1 , as in Section 2.3, we may write P + ≡ P E+ a + nn P F+ , P -≡ P F-a - nn P E-, We keep the notation m ± for the symbols that correspond to the previous sections, i.e., if κ vanishes:

m ± (x, ξ ) = b ± jk a ± nn ξ j ξ k 1 2 , |ξ | ≥ 1,
As above, see (4.1), we choose the weight function such that the following property is fulfilled

α + α - > sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - , α ± = ∂ xn ϕ ± |xn=0 ± ,
and we let σ > 1 be such that

α + α - = σ 2 sup x ,ξ |ξ |≥1 m + (x , ξ ) |xn=0 + m -(x , ξ ) |xn=0 - .
We also introduce 1 < σ 0 < σ. As in Section 2.3 we set f ± = τ ϕ ± -m ± (compare with f ± above). We can choose α + / ∂ x κ L ∞ large enough so that

σm + |xn=0 + α + < λ + 0 |ξ | 4λ + 1 ∂ x κ L ∞ and f ± ≥ Cλ, if τ ≥ |ξ | λ + 0 4λ + 1 ∂ x κ L ∞ for |x n | sufficiently small. (4.19)
We may then consider the following cases.

(1) When τ α + ≤ σm + (x , ξ ) |xn=0 + , then arguing as for (4.5)-(4.6) we find

τ (α -+ βx n ) -m -(x , ξ ) |xn=0 -≤ -Cλ, if |x n | is sufficiently small. It follows that F -is elliptic negative, if α + / κ L ∞
is sufficiently large. In this region we may thus argue as we did in Section 4.3.

(2) When

λ + 0 |ξ | 2λ + 1 ∂ x κ L ∞ ≥ τ ≥ σ 0 m + (x , ξ ) α +
, the factorization is valid. Arguing as in (4.3)-(4.4) we find that

τ (α + + βx n ) -m + (x , ξ ) ≥ Cλ, if |x n | is sufficiently small. It follows that F + is elliptic positive, if α + / κ L ∞
is sufficiently large. In this region we may thus argue as we did in Section 4.2.

It is important to note that for β large and κ L ∞ and κ L ∞ sufficiently small the weight functions Φ ± satisfy the (necessary and sufficient) sub-ellipticity condition (2.26) with a loss of a half derivative. Then the counterpart of Lemma 2.8 becomes, for κ L ∞ sufficiently small,

|f ± | ≤ δλ =⇒ C -1 τ ≤ |ξ | ≤ Cτ and {ξ n + s ± + Im(m ± ), f ± } ≥ C λ,
for some δ > 0 chosen sufficiently small. This allows us to then obtain the same results as that of Lemma 3.7 for the first-order factors P F± .

(3) Finally we consider the region τ

≥ |ξ | λ + 0 4λ + 1 ∂ x κ L ∞
. There the roots are no longer smooth, but we are well-inside an elliptic region; with a perturbation argument, we may in fact disregard the contribution of κ. From (4.18) we may write

P ± ≡ a ± nn D n + S ± (x, D ) + iτ ∂ n ϕ ± 2 + b ± jk a ± nn D j D k P 0 ± +R ± , (4.20) with R ± = R 1,± (x, D , τ )D n + R 2,± (x, D , τ ), where R j,± ∈ op w (S j τ ), j = 1, 2, that satisfy R j,± (x, D , τ )u ≤ C κ L ∞ u L 2 (R;H j ) (4.21)
The first term P 0 ± in (4.20) corresponds to the conjugated operator in the sections above, where the weight function only depended on the x n variable. This term can be factored in two pseudo-differential first-order terms:

P 0 + ≡ P E+ a + nn P F + , P 0 -≡ P F -a - nn P E-, (4.22) 
with the notation we introduced in Section 2.3. In this third region we have f ± ≥ Cλ by (4.19). Let χ 2 ∈ S 0 τ be a symbol that localizes in this region and set Ξ 2 = op w (χ 2 ).

For κ L ∞ bounded with (4.23) we have

H ± R 1,± D n Ξ 2 v ± τ k κ L ∞ H ± D n Ξ 2 v ± L 2 (R;H 1-k + C(κ) H ± D n v ± , (4.23) 
H ± R 2,± D n Ξ 2 v ± τ k κ L ∞ H ± Ξ 2 v ± L 2 (R;H 2-k + C(κ) H ± v ± , (4.24) 
for k = 0 or 1 2 . On the one hand, arguing as in Section 4.2 we have (see (4.14)) (4.25)

H + P 0 + Ξ 2 v + + H + v + |V 2,+ | H 1 2 + |Ξ 2 v + |xn=0 + | H 3/2 + H + Ξ 2 v + L 2 (R;H 2 ) + H + Ξ 2 D n v + L 2 (R;H 1 ) ,
where V 2,± is given as in (4.10).

On the other hand, with Lemma 3.4 we have

H -P 0 -Ξ 2 v -L 2 (R;H -k ) + H -v -+ H -D n v - + |V 2,-+ ia - nn M -Ξ 2 v -|xn=0 -| H 1 2 -k H -P E-Ξ 2 v -L 2 (R;H 1-k ) ,
for k = 0 or 1 2 , which gives

H -P 0 -Ξ 2 v -+ τ k H -v -+ τ k H -D n v - + τ k |V 2,-+ ia - nn M -Ξ 2 v -|xn=0 -| H 1 2 -k τ k H -P E-Ξ 2 v -L 2 (R;H 1-k ) .
Combined with Lemma 3.2 we obtain (4.26)

H -P 0 -Ξ 2 v -+ τ k H -v -+ H -D n v -+ |V 2,-| H 1 2 -k + |Ξ 2 v -|xn=0 -| H 3 2 -k τ k H -Ξ 2 v -L 2 (R;H 2-k ) + τ k H + Ξ 2 D n v -L 2 (R;H 1-k )
Now, from the transmission conditions (4.9)-(4.11), by adding ε(4.26)+(4.25) we obtain, for ε small, (4.27)

H + P 0 + Ξ 2 v + + H -P 0 -Ξ 2 v -+ τ k |θ ϕ | H 3 2 -k + |Θ ϕ | H 1 2 -k + |v |xn=0 + | H 1 2 -k + τ k H -v -+ H -D n v -+ H + v + + H + D n v + τ k |Ξ 2 D n v -|xn=0 -| H 1 2 -k + |Ξ 2 D n v + |xn=0 + | H 1 2 -k + |Ξ 2 v -|xn=0 -| H 3 2 -k + |Ξ 2 v + |xn=0 + | H 3 2 -k + Ξ 2 v L 2 (R;H 2-k ) + H -Ξ 2 D n v -L 2 (R;H 1-k ) + H + Ξ 2 D n v + L 2 (R;H 1-k ) .
With (4.23)-(4.24) we see that the same estimate holds for P ± in place of P 0 ± for κ L ∞ chosen sufficiently small. This estimate is of the same quality as those obtained in the two other regions.

Summing up, we have obtained three microlocal overlapping regions and estimates in each of them. The three regions are illustrated in Figure 5. As we did above we make sure that the preliminary cut-off region of Section 3.1 does not interact with the overlapping zones by choosing sufficiently small (see (3.5) and Lemma 3.1).

The overlap of the regions allows us to use a partition of unity argument and we can conclude as in Section 4.4.

Necessity of the geometric assumption on the weight function

Considering the operator L τ given by (1.23), we may wonder about the relevance of conditions (1.28) to derive a Carleman estimate. In the simple model and weight used here, it turns out that we can show that condition (1.28) is necessary for an estimate to hold. For simplicity, we consider a piecewise constant case c = H + c + + H -c -as in Section 1.5. 

∃ξ 0 ∈ R n-1 \ 0, α + α - < m + (ξ 0 ) m -(ξ 0 ) .
Then, for any neighborhood V of the origin, C > 0, and τ 0 > 0, there exists

v = H + v + + H -v -, v ± ∈ C ∞ c (R n
), satisfying the transmission conditions (1.21)-(1.22) at x n = 0, and τ ≥ τ 0 , such that

supp(v) ⊂ V and C L τ v L 2 (R n-1 ×R) ≤ v L 2 (R n-1 ×R) ,
To prove Theorem 5.1 we wish to construct a function v, depending on the parameter τ , such that L τ v L 2 v L 2 as τ becomes large. The existence of such a quasi-mode v obviously ruins any hope to obtain a Carleman estimate for the operator L with a weight function satisfying (5.1). The remainder of this section is devoted to this construction.

We set

(M τ u)(ξ , x n ) = H + (x n )c + n D n + ie + D n + if + u + (5.2) + H -(x n )c - n D n + ie -D n + if -u -, that 
is, the action of the operator L τ given in (1.23) in the Fourier domain with respect to x . Observe that the terms in each product commute here. We start by constructing a quasi-mode for M τ , i.e., functions u ± (ξ , x n ) compactly supported in the x n variable and in a conic neighborhood of ξ 0 in the variable ξ with M τ u L 2 u L 2 , so that u is nearly an eigenvector of M τ for the eigenvalue 0. Condition 5.1 implies that there exists τ 0 > 0 such that

m -(ξ 0 ) α - < τ 0 < m + (ξ 0 ) α + =⇒ τ 0 α + -m + (ξ 0 ) < 0 < τ 0 α --m -(ξ 0 ).
By homogeneity we may in fact choose (τ 0 , ξ 0 ) such that τ 2 0 + |ξ 0 | 2 = 1. We have thus, using the notation in (1.23),

f + (x n = 0) = τ α + -m + (ξ ) < 0 < f -(x n = 0) = τ α --m -(ξ ), for (τ, ξ ) in a conic neighborhood Γ of (τ 0 , ξ 0 ) in R × R n-1 . Let χ 1 ∈ C ∞ c (R), 0 ≤ χ 1 ≤ 1, with χ 1 ≡ 1 in a neighborhood of 0, such that supp(ψ) ⊂ Γ with ψ(τ, ξ ) = χ 1 τ (τ 2 + |ξ | 2 ) 1 2 -τ 0 χ 1 ξ (τ 2 + |ξ | 2 ) 1 2
-ξ 0 .

We thus have

f + (x n = 0) ≤ -Cτ, C τ ≤ f -(x n = 0) in supp(ψ).
Let (τ, ξ ) ∈ supp(ψ). We can solve the equations

D n + if + (x n , ξ )) q + = 0 on R + , f + (x n , ξ ) = τ ϕ (x n ) -m + (ξ ) = f + (0) + τ βx n , D n + if -(x n , ξ )) q -= 0 on R -, f -(x n , ξ ) = τ ϕ (x n ) -m -(ξ ) = f -(0) + τ βx n , D n + ie -(x n , ξ )) q-= 0 on R -, e -(x n , ξ ) = τ ϕ (x n ) + m -(ξ ) = e -(0) + τ βx n , that is q + (ξ , x n ) = Q + (ξ , x n )q + (ξ , 0), Q + (ξ , x n ) = e xn f + (0)+ τ βxn 2 , q -(ξ , x n ) = Q -(ξ , x n )q -(ξ , 0), Q -(ξ , x n ) = e xn f -(0)+ τ βxn 2 , q-(ξ , x n ) = Q-(ξ , x n )q -(ξ , 0), Q-(ξ , x n ) = e xn e -(0)+ τ βxn 2 .
Since f + (0) < 0 a solution of the form of q + is a good idea on x n ≥ 0 as long as τ βx n + 2f + (0) ≤ 0, i.e., x n ≤ 2|f + (0)|/τ β. Similarly as f -(0) > 0 (resp. e -(0) > 0) a solution of the form of q -(resp. q-) is a good idea on x n ≤ 0 as long as τ βx n + 2f -(0) ≥ 0 (resp. τ βx n + 2e -(0) ≥ 0). To secure this we introduce a cut-off function χ 0 ∈ C ∞ c ((-1, 1); [0, 1]), equal to 1 on [-1 2 , 1 2 ] and for γ ≥ 1 we define

u + (ξ , x n ) = Q + (ξ , x n )ψ(τ, ξ )χ 0 τ βγx n |f + (0)| , (5.3) and u -(ξ , x n ) = aQ -(ξ , x n )ψ(τ, ξ )χ 0 τ βγx n f -(0) + b Q-(ξ , x n )ψ(τ, ξ )χ 0 τ βγx n e -(0) , (5.4) 
with a, b ∈ R, and

u(ξ , x n ) = H + (x n )u + (ξ , x n ) + H -(x n )u -(ξ , x n )
The factor γ is introduced to control the size of the support in the 

c + m + = c -(a -b)m -. (5.6)
In particular note that a -b ≥ 0 which gives a ≥ 1 2 . We have the following lemma. Lemma 5.2. For τ sufficiently large we have

M τ u 2 L 2 (R n-1 ×R) ≤ C(γ 2 + τ 2 )γτ n-1 e -C τ /γ and u 2 L 2 (R n-1 ×R) ≥ Cτ n-2 1 -e -C τ /γ .
See Section 6.2.3 for a proof. We now introduce

v ± (x , x n ) = (2π) -(n-1) χ 0 (|τ 1 2 x |) ǔ± (x , x n ) = (2π) -(n-1) χ 0 (|τ 1 2 x |)û ± (-x , x n ),
that is, a localized version of the inverse Fourier transform (in x ) of u ± . The functions v ± are smooth and compactly supported in R n-1 ± × R and they satisfy transmission conditions (1.21)- (1.22). We set v(x ,

x n ) = H + (x n )v + (x , x n ) + H -(x n )v -(x , x n ).
In fact we have the following estimates.

Lemma 5.3. Let N ∈ N. For τ sufficiently large we have

L τ v 2 L 2 (R n-1 ×R) ≤ C(γ 2 + τ 2 )γτ n-1 e -C τ /γ + C γ,N τ -N and v 2 L 2 (R n-1 ×R) ≥ Cτ n-2 1 -e -C τ /γ -C γ,N τ -N .
See Section 6.2.4 for a proof.

We may now conclude the proof of Theorem 5.1. In fact, if V is an arbitrary neighborhood of the origin, we choose τ and γ sufficiently large so that supp(v) ⊂ V . We then keep γ fixed. The estimates of Lemma 5.3 show that

L τ v L 2 (R n-1 ×R) v -1 L 2 (R n-1 ×R) -→ τ →∞ 0.
Remark 5.4. As opposed to the analogy we give at the beginning of Section 1.6, the construction of this quasi-mode does not simply rely on one of the first-order factor. The transmission conditions are responsible for this fact. The construction relies on the factor D n + if + in x n ≥ 0, i.e., a one-dimensional space of solutions (see (5.3)), and on both factors D n + if -and D n + ie -in x n ≥ 0, i.e., a two-dimensional space of solutions (see (5.4)). See also (5.5) and (5.6).

6. Appendix

6.1.

A few facts on pseudo-differential operators.

6.1.1. Standard classes and Weyl quantization. We define for m ∈ R the class of tangential symbols S m as the smooth functions on R n × R n-1 such that, for all (α, β)

∈ N n × N n-1 , (6.1) N αβ (a) = sup (x,ξ )∈R n ×R n-1 ξ -m+|β| |(∂ α x ∂ β ξ a)(x, ξ )| < ∞, with ξ 2 = 1 + |ξ | 2 .
The quantities on the l.h.s. above are called the semi-norms of the symbol a. For a ∈ S m , we define op(a) as the operator defined on S (R n ) by (

6.2) (op(a)u)(x , x n ) = a(x, D )u(x , x n ) = ∫ R n-1 e ix •ξ a(x , x n , ξ )û(ξ , x n )dξ (2π) 1-n , with (x , x n ) ∈ R n-1 × R,
where û is the partial Fourier transform of u with respect to the variable x . For all (k, s) ∈ Z × R we have

(6.3) op(a) : H k (R xn ; H s+m (R n-1 x )) → H k (R xn ; H s (R n-1 x )) continuously,
and the norm of this mapping depends only on {N αβ (a)} |α|+|β|≤µ(k,s,m,n) , where µ :

Z × R × R × N → N.
We shall also use the Weyl quantization of a denoted by op w (a) and given by the formula

(op w (a)u)(x , x n ) = a w (x, D )u(x , x n ) (6.4) = ∫∫ R 2n-2 e i(x -y )•ξ a x + y 2 , x n , ξ u(y , x n )dy dξ (2π) 1-n .
Property (6.3) holds as well for op w (a). A nice feature of the Weyl quantization that we use in this article is the simple relationship with adjoint operators with the formula (6.5) op w (a) * = op w (ā), so that for a real-valued symbol a ∈ S m (op w (a)) * = op w (a). We have also for

a j ∈ S m j , j = 1, 2, op w (a 1 )op w (a 2 ) = op w (a 1 a 2 ), a 1 a 2 ∈ S m 1 +m 2 , (6.6) 
with, for any N ∈ N,

a 1 a 2 (x, ξ) - j<N iσ(D x , D ξ ; D y , D η )/2) j a 1 (x, ξ)a 2 (y, η)/j! (y,η)=(x,ξ) ∈ S m-N , (6.7) 
where σ is the symplectic two-form, i.e., σ(x, ξ; y, η) = y • ξ -x • η. In particular, op w (a 1 )op w (a 2 ) = op w (a 1 a 2 ) + op w (r 1 ), r 1 ∈ S m 1 +m 2 -1 , (6.8)

with r 1 = 1 2i {a 1 , a 2 } + r 2 , r 2 ∈ S m 1 +m 2 -2 , (6.9) [op w (a 1 ), op w (a 2 )] = op w ( 1 i {a 1 , a 2 }) + op w (r 3 ), r 3 ∈ S m 1 +m 2 -3 , (6.10)
where {a 1 , a 2 } is the Poisson bracket. Moreover, for b j ∈ S m j , j = 1, 2, both realvalued, we have

[op w (b 1 ), iop w (b 2 )] = op w ({b 1 , b 2 }) + op w (s 3 ), s 3 real-valued ∈ S m 1 +m 2 -3 . (6.11) Lemma 6.1. Let a ∈ S 1 such that a(x, ξ ) ≥ µ ξ , with µ ≥ 0. Then there exists C > 0 such that op w (a) + C ≥ µ D , (op w (a)) 2 + C ≥ µ 2 D 2 .
Proof. The first statement follows from the sharp Gårding inequality [19, Chap. 18.1 and 18.5] applied to the nonnegative first-order symbol a(x, ξ ) -µ ξ ; moreover (op w (a)) 2 = op w (a 2 ) + op w (r) with r ∈ S 0 , so that the Fefferman-Phong inequality [START_REF]The analysis of linear partial differential operators[END_REF]Chap. 18.5] applied to the second-order a 2 -µ 2 ξ 2 implies the result.

6.1.2. Semi-classsical pseudo-differential calculus with a large parameter. We let τ ∈ R be such that τ ≥ τ 0 ≥ 1. We set λ 2 = 1 + τ 2 + |ξ | 2 . We define for m ∈ R the class of symbols S m τ as the smooth functions on R n × R n-1 , depending on the parameter τ , such that, for all (α, β) ∈ N n × N n-1 , (6.12)

N αβ (a) = sup

(x,ξ )∈R n ×R n-1 τ ≥τ 0 λ -m+|β| |(∂ α x ∂ β ξ a)(x, ξ , τ )| < ∞.
Note that S 0 τ ⊂ S 0 . The associated operators are defined by (6.2). We can introduce Sobolev spaces and Sobolev norms which are adapted to the scaling large parameter τ . Let s ∈ R; we set

u H s := Λ s u L 2 (R n-1 ) , with Λ s := op(λ s ) and H s = H s (R n-1 ) := {u ∈ S (R n-1 ); u H s < ∞}.
The space H s is algebraically equal to the classical Sobolev space H s (R n-1 ), which norm is denoted by . H s . For s ≥ 0 note that we have

u H s ∼ τ s u L 2 (R n-1 ) + D s u L 2 (R n-1 ) .
If a ∈ S m τ then, for all (k, s) ∈ Z × R, we have (6.13) op(a) :

H k (R xn ; H s+m ) → H k (R xn ; H s (R n-1 x
)) continuously, and the norm of this mapping depends only on {N αβ (a)} |α|+|β|≤µ(k,s,m,n) , where µ :

Z × R × R × N → N.
For the calculus with a large parameter we shall also use the Weyl quantization of (6.4). All the formulae listed in (6.5)-(6.11) hold as well, with S m everywhere replaced by S m τ . We shall often use the Gårding inequality as stated in the following lemma. . Moreover the asympotic series of (6.7) is also valid for these cases (with S m replaced by S m τ ).

Proof. As the essential support is invariant when we change quantization, we may simply use the standard quantization in the proof. With a 1 and a 2 satisfying the assumption listed above we thus consider op(a 1 )op(a 2 ). For fixed τ the standard composition formula applies and we have (see [START_REF]The analysis of linear partial differential operators[END_REF]Section 18.1] or [START_REF] Alinhac | Pseudo-differential operators and the Nash-Moser theorem[END_REF]) 

a 1 • a 2 (x, ξ , τ ) = (2π) 1-n ∫∫ e -iy •η a 1 (x, ξ -η )a 2 (x -
k ∈ N, | a 1 • a 2 (x, ξ , τ )| ≤ C sup |α|+|β|≤k (y ,η )∈R 2n-2 (y , η ) -|m| |∂ α y ∂ β η a 1 (x, ξ -η )a 2 (x -y , x n , ξ , τ )|,
In a region ξ τ that contains the essential support of a 2 we have ξ ∼ λ. With the so-called Peetre inequality, we thus obtain

| a 1 • a 2 (x, ξ , τ )| η -|m| ξ -η m λ m ξ m λ m λ m+m .
In a region ξ τ outside of the essential support of a 2 we find, for any ∈ N,

| a 1 • a 2 (x, ξ , τ )| η -|m| ξ -η m λ - ξ m λ - λ m-.
In the whole phase space we thus have | a

1 • a 2 (x, ξ )| λ m+m . The estimation of |∂ α x ∂ β ξ a 1 • a 2 (x, ξ , τ )| can be done similarly to give |∂ α x ∂ β ξ a 1 • a 2 (x, ξ , τ )| λ m+m -|β| . Hence a 1 • a 2 ∈ S m+m τ
. Moreover, we also obtain the asymptotic series (following the references cited above)

a 1 • a 2 (x, ξ , τ ) - j<N iD ξ • D y ) j a 1 (x, ξ)a 2 (y, η, τ )/j! (y,η)=(x,ξ) ∈ S m+m -N τ ,
where each term is respectively in S m+m -j τ be the arguments given above. From this series the corresponding Weyl-quantization series follows.

For the second result, considering the adjoint operator op(a 2 )op(a 1 ) * yields a composition of operators as in the first case. The second result thus follows from the first one.

Remark 6.5. The symbol class and calculus we have introduced in this section can be written as S m τ = S(λ m , g) in the sense of the Weyl-Hörmander calculus [19, Sec 18.4-18.6] with the phase-space metric g = |dx| 2 + |dξ| 2 /λ 2 . 6.2. Proofs of some intermediate results.

6.2.1. Proof of Lemma 2.8. For simplicity we remove the ± notation here. We first prove that there exist C > 0 and η > 0 such that

|q 2 | ≤ ητ 2 and |q 1 | ≤ ητ 2 =⇒ {q 2 , q 1 } ≥ Cτ 3 . (6.14) We set q2 = (ξ n + s) 2 + b jk a nn ξ j ξ k -(ϕ ) 2 , q1 = ϕ (ξ n + s).
We have q j (x, ξ) = τ 2 qj (x, ξ/τ ). Observe next that we have {q 2 , q 1 }(x, ξ) = τ 3 {q 2 , q1 }(x, ξ/τ ). We thus have q2 = 0 and q1 = 0 ⇒ {q 2 , q1 } > 0. As q2 (x, ξ) = 0 and q1 (x, ξ) = 0 yields a compact set for (x, ξ) (recall the x lays in a compact set K here), for some C > 0, we have q2 = 0 and q1 = 0 =⇒ {q 2 , q1 } > C.

This remain true locally, i.e., for some C > 0 and η > 0,

|q 2 | ≤ η and |q 1 | ≤ η =⇒ {q 2 , q1 } > C .
Then (6.14) follows.

We note that q ± 2 = 0 and q ± 1 = 0 implies τ ∼ |ξ |. Hence, for τ sufficiently large we have (2.25). We thus obtain q ± 2 = 0 and q ± 1 = 0 ⇔ ξ n + s ± = 0 and τ ϕ ± = m ± . Let us assume that |f | ≤ δλ with δ small and λ 2 = 1 + τ 2 + |ξ | 2 . Then τ |ξ | τ. (6.15) We set ξ n = -s, i.e., we choose q 1 = 0. A direct computation yields {q 2 , q 1 } = τ eϕ {ξ n + s, f } + τ f ϕ {ξ n + s, e} if ξ n + s = 0. With (2.25) we have |q 2 | ≤ Cδτ 2 . For δ small, by (6.14) we have {q 2 , q 1 } ≥ Cτ 3 . Since f τ ϕ {ξ n + s, e} ≤ Cδτ 3 we obtain eτ ϕ {ξ n + s, f } ≥ Cτ 3 , with C > 0, for δ sufficiently small. With (6.15) we have τ e τ and the result follows. 6.2.2. Proof of Lemma 3.1. We set s = 2 + 1 and ω 1 = op(ψ )ω. We write 2 Re(P F + ω 1 , iH + τ s ω 1 ) = (i[D n , H + ]ω 1 , τ s ω 1 ) + 2(F + ω 1 , H + τ s ω 1 )

= τ s |ω 1|x n=0 + | 2 L 2 (R n-1 ) + 2(τ s+1 ϕ ω 1 , H + ω 1 ) -2(τ s M + ω 1 , H + ω 1 ) ≥ τ s |ω 1|x n=0 + | 2 L 2 (R n-1 ) + 2(τ s+1 C 0 ω 1 , H + ω 1 ) -2C 1 τ s H + ω 1 2 L 2 (R;H 1 2 (R n-1 ))
, by (3.4). We have

2(τ s+1 C 0 ω 1 , H + ω 1 ) -2C 1 τ s H + ω 1 2 L 2 (R;H 1 2 (R n-1 )) = 2τ s (2π) 1-n ∞ ∫ 0 ∫ R n-1 C 0 τ -C 1 ξ |ψ (τ, ξ )ω(ξ , x n )| 2 dξ dx n
As τ ≥ C ξ / in supp(ψ ), for sufficiently small we have

2(τ s+1 C 0 ω 1 , H + ω 1 ) -2C 1 τ s H + ω 1 2 L 2 (R;H 1 2 (R n-1 )) ∞ ∫ 0 ∫ R n-1 λ s+1 |ψ (τ, ξ )ω(ξ , x n )| 2 dξ dx n H + ω 1 2 L 2 (R;H +1 ) .
Similarly we find τ s |ω 1|x n=0 + | 2 L 2 (R n-1 )

|ω 1|x n=0 + | 2 H + 1 2
. The result for P E+ follows from the Young inequality. The proof is identical for P F + .

On the other side of the interface we write 2 Re(H -P F -ω 1 , iH -τ s ω 1 ) = (i[D n , H -]ω 1 , τ s ω 1 ) + 2(F -ω 1 , H -τ s ω 1 ) = -τ s |ω 1|x n=0 -| 2 L 2 (R n-1 ) + 2(τ s+1 ϕ ω 1 , H -ω 1 ) -2(τ s M -ω 1 , H -ω 1 ), which yields a boundary contribution with the opposite sign. 6.2.3. Proof of Lemma 5.2. Let (τ, ξ ) ∈ supp(ψ). We choose τ sufficiently large so that, through supp(ψ), |ξ | is itself sufficiently large, so as to have the symbol m ± homogeneous -see (2.15).

We set -τ 0 χ 1 η

y + (ξ , x n ) = Q + (ξ , x n )χ 0 τ βγx n |f + (0)| , y -(ξ , x n ) = aQ -(ξ , x n )χ 0 τ βγx n f -(0) + b Q-(ξ , x n )χ 0 τ βγx n e - ( 
(1 + |η| 2 ) 1 2 -ξ 0 .
Here τ is chosen sufficiently large so that m + is homogeneous. Observe that ψ has a compact support independent of τ and that f+ (η) + βxn 2 ≤ -C < 0 in the support of the integrand.

We place ourselves in the neighborhood of a point x such that |τ For the first result we write

L τ v ± = (2π) -(n-1) χ 0 (|τ 1 2
x |)L τ ǔ± + (2π) -(n-1) L τ , χ 0 (|τ

1 2 x |) ǔ±
The first term is estimated using Lemma 5.2 as

(2π) -(n-1) 2 L τ ǔ± L 2 (R n-1 ×R ± ) = M τ u ± L 2 (R n-1 ×R ± ) .
Observing that L τ is a differential operator the commutator is thus a first-order differential operator in x with support in a region |τ x | ≥ C, because of the behavior of χ 1 near 0. The coefficients of this operator depend on τ polynomially. The zero-order terms can be estimated as we did for z + above with an additional τ 3 2 factor. For the first-order term observe that we have

∂ x j ǔ+ (x , τ ) = τ n ∫ R n-1
η j e iτ x •η-ixn( f+ (η)+ βxn 2 ) ψ(η)χ 0 βγx n | f+ (η)| dη.

We thus obtain similar estimates as above with an additional τ 3 2 factor. This concludes the proof.
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 3 Notation and statement of the main result. Let Ω be an open subset of R n and Σ be a C ∞ oriented hypersurface of Ω: we have the partition

Figure 1 .

 1 Figure 1. f (0 -) ≤ 0; f (0 + ) < 0.

Figure

  Figure 2. f (0 -) ≷ 0; f (0 + ) ≥ 0.

3. 1 .

 1 Preliminary estimates. Most of our pseudo-differential arguments concern a calculus with the large parameter τ ≥ 1: with(3.1) 

Figure 3 .

 3 Figure 3. Relative positions of supp(ψ ) and the sets {f ± = 0}.
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 1 The geometric hypothesis. In section 2.4 we chose a weight function ϕ that satisfies the following condition(4.1) 

Figure 4 .

 4 Figure 4. The overlapping microlocal regions Γ σ 0 , and Γ σ in the τ, |ξ | plane above a point x . Dashed is the region used in Section 3.1 which is kept away from the overlap of Γ σ 0 , and Γ σ .
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 51 Let us assume that (1.29) is violated, i.e.,(5.1) 

  x n direction. Observe that we can satisfy the transmission condition (1.21)-(1.22) by choosing the coefficients a and b. Transmission condition (1.21) implies a + b = 1. (5.5) Transmission condition (1.22) and the equations satisfied by Q + , Q -and Qimply

Lemma 6 . 2 . 2 L 2 (R;H m 2 )Definition 6 . 3 .

 6222263 Let a ∈ S m τ such that Re a ≥ Cλ m . Then Re(op w (a)u, u) u , for τ sufficiently large. Proof. The proof follows from the Sharp Gårding inequality [19, Chap. 18.1 and 18.5] applied to the nonnegative symbol a -Cλ m . We recall the following definition. The essential support of a symbol a ∈ S m τ , denoted by esssupp(a), is the complement of the largest open set of R × R n-1 × {τ ≥ 1} where the estimates for S -∞ τ = ∩ m∈R S m τ hold. For technical reasons we shall often need the following result. Lemma 6.4. Let m, m ∈ R and a 1 (x, ξ ) ∈ S m and a 2 (x, ξ , τ ) ∈ S m τ such that the essential support of a 2 is contained in a region where ξ τ . Then op w (a 1 )op w (a 2 ) = op w (b 1 ), op w (a 2 )op w (a 1 ) = op w (b 2 ), with b 1 , b 2 ∈ S m+m τ

0 | 2 e 2 e 0 | 2 L 2 - 2 e 2 L 2 ( 0 Q≤ 1 2 eee 6 . 2 . 4 . 1 2 2 L 2 ( 1 2 x |≥ 1 2 ∫ 1 e 2 , 1 ( 1 +

 02202222202624122121211 0) .On the one hand we have i(D n + if + )y + = τ βγ |f + (0)| Q + (ξ , x n )χ 0 τ βγxn |f + (0)| ,and(M τ y + )(ξ , x n ) = 2τ βγc + m + Q + (ξ , x n ) |f + (0)| χ 0 τ βγx n |f + (0)| -(τ βγ) 2 c + Q + (ξ , x n ) |f + (0)| 2 χ 0 τ βγx n |f + (0)| , as D n + ie + = D n + i(f + + 2m + ), so that +∞ ∫ (M τ y + )(ξ , x n )| 2 dx n ≤ 8c 2 xn(2f + (0)+τ βxn) dx n xn(2f + (0)+τ βxn) dx n .On the support of χ (j) 0τ βγxn |f + (0)| , j = 1, 2, we have |f + (0)|/(2τ βγ) ≤ x n ≤ |f + (0)|/(τ βγ) and in particular 2f + (0) + τ βγx n ≤ -|f + (0)| and which gives +∞ ∫ (M τ y + )(ξ , x n )| 2 dx n ∞ e -f + (0) 2 2τ βγ .Similarly, we have(M τ y -)(ξ , x n ) = 2τ βγc -m - aQ -(ξ , x n ) f -(0) χ 0 τ βγx n f -(0) -b Q-(ξ , x n ) e -(0) χ 0 τ βγx n e -(0) -c -(τ βγ) 2 a Q -(ξ , x n ) f -(0) 2 χ 0 τ βγx n f -(0) + b Q-(ξ , x n ) e -(0) 2 χ 0 τ βγx n e -(0) ,and because of the support ofχ τ y -)(ξ , x n )| 2 dx n ≤ 2c -e -(0) 2 2τ βγ . Now we have (M τ u)(ξ , x n ) = ψ(τ, ξ )(M τ y)(ξ , x n ). As |ξ | ∼ τ in supp(ψ) we obtain M τ u 2 L 2 (R n-1 ×R) ≤ C(γ 2 + τ 2 )γe -C τ /γ ∫ R n-1 ψ(τ, ξ ) 2 dξ .With the change of variable ξ = τ η we find∫ R n-1 ψ(τ, ξ ) 2 dξ = Cτ n-1 , (6.16)which gives the first result.On the other hand observe now thaty + R + ) = +∞ ∫ + (ξ , x n ) 2 χ 0 τ βγx n |f + xn(2f + (0)+τ βxn) dx n = |f + -(ξ , x n )χ 0 τ βγx n f -(0) + b Q-(ξ , x n )χ 0 τ βγx n e -xn(2f -(0)+τ βxn) a + be xn(e -(0)-f -(0)) 2 dx n ,and as e -(0)-f -(0) = 2m -≥ 0, a+b = 1 and a ≥ 1 2 , we have a+be xn(e -(0)-f -(0)) xn(2f -(0)+τ βxn) dx n ≥ 1 8f -(0) 1 -e -|f -(0)| 2 τ βγ, arguing as above. As a result, using (6.16), we haveu 2 L 2 (R n-1 ×R) ≥ Cτ n-21 -e -C τ /γ . Proof of Lemma 5.3. We start with the second result. We setz + = 1 -χ 0 (|τ x |) ǔ+ (x , x n ), for x n ≥ 0.We shall prove that for all N ∈ N we have z+ L 2 (R n-1 ×R + ) ≤ C γ,N τ -N .From the definition of χ 0 we findz + R n-1 ×R + ) ≤ ∫ |τ R + |û + (x , x n )| 2 dx dx n .Recalling the definition of u + and performing the change of variable ξ = τ η we obtainû+ (x , x n ) = τ n-1 ∫ R n-iτ φ ψ(η)χ 0 βγx n | f+ (η)| dη,where the complex phase function is given by φ = -x • η -ix n f+ (η) + βx n with f+ (η) = α + -m + (η), andψ(η) = χ 1 |η| 2 ) 1 2

1 2 x | ≥ 1 2 .R n- 1 e 1 2 x |≥ 1 2 1 3 2 n-N -5 2 ∫ |x |≥ 1 2 1

 12112322 Up to a permutation of the variables we may assume that |τ 1 2 x 1 | ≥ C. We then introduce the following differential operatorL = τ -1 ∂ η 1 -ix 1 -x n ∂ η 1 m + (η), that satisfies Le iτ φ = e iτ φ . We thus haveû+ (x , x n ) = τ n-1 ∫ iτ φ (L t ) N ψ(η)χ 0 βγx n | f+ (η)| dη,and we find|û + (x , x n )| ≤ C N τ n-1 γ N |τ x 1 | N e -Cτ xn .More generally for |τ1 2 x | ≥ 1 2 we have |û + (x , x n )| ≤ C N τ n-1 γ N |τ x | N e -Cτ xn . + (x , x n )| 2 dx dx n ≤ C 2 N γ 2N τ 2n-2 ∫ |τ |τ x | 2N dx ∫ R + e -2Cτ xn dx n ≤ C N γ 2N τ |x | 2N dx .Similarly, setting z -= 1-χ 0 (|τ1 2 x |) ǔ-(x , x n ) for x n ≤ 0 we obtain z -L 2 (R n-1 ×R -≤ C γ,N τ -N .The second result thus follows from Lemma 5.2.

  1 2 H ± Ξ 1 D 2 n v ± . 4.4. Patching together microlocal estimates. We now sum estimates (4.16) and (4.17) together. By the triangular inequality, this gives, for k = 0 or 1 2 ,

	j=0,1

  y , x n , ξ , τ )dy dη .

	Properties of oscillatory integrals (see e.g. [2, Appendices I.8.1 and I.8.2]) give, for
	some

In the sections below we shall also consider non-homogeneous boundary conditions.

In the main text, we shall introduce some minimal requirements on the weight function and suggest other possible choices.

In the case f + (0) = 0, one needs to consider the estimation of(D n + ie + )(D n + if + )v + L 2 (R + ) + (D n + if + )(D n + ie + )v + L 2 (R + )

The homogeneity property means as usual m ± (x, ρξ ) = ρm ± (x, ξ ) for ρ ≥ 1, |ξ | ≥ 1.

+ H + op w (χ)ω L 2 (R;H +1 ) + H + D n op w (χ)ω L 2 (R;H ) , for τ ≥ τ 1 and ω ∈ S c (R n ).
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