Perturbations of C1-diffeomorphisms and dynamics of generic conservative diffeomorphisms of surface
Résumé
In the first part of this text we give a survey of the properties satisfied by the C1-generic conservative diffeomorphisms of compact surfaces. The main result that we will discuss is that a C1-generic conservative diffeomorphism of a connected compact surface is transitive. It is obtain as a consequence of a connecting lemma for pseudo-orbits. In the last parts we expose some recent developments of the C1-perturbation technics and the proof of this connecting lemma. We are not aimed to deal with technicalities nor to give the finest available versions of these results. Besides this theory exists also in higher dimension and in the non-conservative setting, we restricted the scope of this presentation to the conservative case on surfaces, since it offers some simplifications which allow to explain in an easier way the main ideas of the subject.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...