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Perturbation of C1-diffeomorphisms and generic conservative

dynamics on surfaces

Sylvain Crovisier

April 5, 2006

0 Introduction

When one studies a mechanical system with no dissipation, the motion is governed by some
ordinary differential equations which preserve a volume form. As an example, the forced damped
pendulum with no friction gives rise to a conservative dynamics on the open annulus (see [Hu]):
let θ be the angle between the axis of a rigid pendulum with the vertical and θ̇ be the angle
velocity. The configurations (θ, θ̇) live on the infinite annulus A = R/Z × R and the motion is
governed by the equation

d2

dt2
θ = − sin(2πθ) + h(t),

where h is the forcing. The volume form dθ ∧ dθ̇ is preserved. By integrating the system,
one obtains a global flow (φt)t∈R, that is a familly of diffeomorphisms of A which associates
to any initial configuration (θ, θ̇) at time 0 the configuration φt(θ, θ̇) at time t. If the forcing
h is T -periodic, the flow satisfies the additional relation φt+T = φt ◦ φT and the dynamics of
the pendulum can be studied through the iterates of the conservative annulus diffeomorphism
f = φT . Several simple questions may be asked about this dynamics:

– What are the regions U ⊂ A that are invariant by f? Invariant means that f(U) = U .
– Does there exist a dense set of initial data (θ, θ̇) which are periodic? Periodic means that
f τ (θ, θ̇) = (θ, θ̇) for some integer τ ≥ 1.

– How do the orbit separate? More precizely, let us consider two initial data (θ, θ̇) and (θ′, θ̇′)
that are close. How does the distance d(fn(θ, θ̇), fn(θ, θ̇)) behaves when n increases?

An other example of conservative diffeomorphism is the standard map on the two-torus:

(x, y) 7→ (x+ y, y + a sin(2π(x + y))) mod Z
2.

It is sometimes considered by physicists as a model for chaotic dynamics: the equations defining
such a diffeomorphism are simple but we are far from beeing able to give a complete description
of its dynamics. However one can hope that some other systems, arbitrarily close to the original
one, could be much easier to be described. To reach this goal, one has to precise what “arbitrarily
close” and “be described” mean: the answer to our problem will depend a lot on these two
definitions. The viewpoint we adopt in this text allows to give a rather deep description of the
dynamics. However one should not forget that one can choose other definitions which could
seem also (more?) relevant and that very few results were obtained in this case.

1



The setting, Baire genericity. In the following we consider a compact and boundaryless
smooth connected surface M endowed with a smooth volume v (which is, after normalization,
a probability measure) and we fix a diffeomorphism f on M which preserves v. We are aimed
to describe the space of orbits of f and in particular the space of periodic orbits.

Lot of difficulties appear if one chooses an arbitrary diffeomorphism. Our philosophy here will
be to forget the dynamics which seem too pathological hoping that the set of diffeomorphisms
that we describe is large (at least dense in the space of dynamical systems we are working with).
For us, such a set will be large if it is generic in the sense of Baire category.

This notion requires to choose carefully the space of diffeomorphisms, that should be a Baire
space: for example for any k ∈ N, the space Diffk

v of Ck-diffeomorphisms of M which preserve
v. A set of diffeomorphisms is generic (or residual) if it contains a dense Gδ subset of Diffk

v , i.e.
by Baire theorem if it contains a countable intersection of dense open sets of Diffk

v (so that the
intersection of two generic sets remains generic).
In the sequel, we are interested in exhibiting generic properties of diffeomorphisms: these are
properties that are satisfied on a generic set of diffeomorphisms.

An example: generic behavior of periodic orbits. Robinson has proven in [R1, R2] the follow-
ing generic property which extends a previous result of Kupka and Smale to the conservative
diffeomorphisms. It is a consequence of Thom’s transversality theorem.

Theorem 0.1 (Robinson). When k ≥ 1, for any generic diffeomorphism f ∈ Diffk
v , and any

periodic orbit p, f(p), . . . , f τ (p) = p, one of the two following cases occurs (figure 1):
– either the orbit of p is elliptic: the eigenvalues of Dp f

τ are non-real (in particular, this
tangent map is conjugate to a rotation);

– or p is a hyperbolic saddle: the eigenvalues are real and have modulus different from 1.
In this case, there are some one-dimensional invariant manifolds (one stable W s(p) and
one unstable W u(p)) through p. Points on the stable manifold converge towards the orbit
of p in the future, and the same for points on the unstable manifold in the past.

p

f τ

Wu

W s
f τ

q

Figure 1: Dynamics near an elliptic point, p, and a saddle point, q.

One wants to say that the dynamics of the return map f τ near a τ -periodic p “looks like”
the dynamics of the tangent map Dp f

τ . This is the case if p is hyperbolic: D. Grobman and P.
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Hartman have shown that if p is hyperbolic, the map f τ is topologicall conjugate to D f τ near
p; more precizely, there exist a neighborhood U of p and V of 0 in the tangent space TpM and
a homeomorphism h : U → V such that h ◦ f τ = Dp f

τ ◦ h.
Theorem 0.1 implies in particular:

Corollary 0.2. When k ≥ 1, for any generic diffeomorphism f ∈ Diffk
v , and any τ ∈ N \ {0},

the set of periodic points of period τ is finite.

In the next part we will give other examples of generic properties. They are often obtained
in the same way:

– One first proves a perturbation result, which is in general the difficult part. In the previous
example, one shows that for every integers τ, k ≥ 1, any Ck-diffeomorphism f can be
perturbed in the space Diffk

v as a diffeomorphism g whose periodic orbits of period τ are
elliptic or hyperbolic.

– One then uses Baire theorem for getting the genericity. An example of this standard
argument is given at section I.3.1.

The last two parts are devoted to some important perturbation results. In part II, we discuss
Pugh’s closing lemma that allows to create periodic orbits and Hayashi’s closing lemma that
allows to glue two half orbits together; the perturbations in these two cases are local. In
part III, we state a connecting lemma for pseudo-orbits obtained with M.-C. Arnaud and C.
Bonatti through global perturbations and explain the main ideas of its proof.
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I Overview of genericity results on the dynamics of C1 conser-

vative surface diffeomorphisms

This part is a survey of the properties satisfied by the C1-generic conservative diffeomor-
phisms of compact surfaces

I.1 Discussions on the space Diffk
v

In general, the generic properties depend strongly on the choice of the space Diffk
v . We will

here illustrate this on an example and explain why we will focus on the C1-topology.

I.1.1 Some generic properties in different spaces. One of the first result was given by Ox-
toby and Ulam [OU], in the C0 topology.

Theorem I.1 (Oxtoby-Ulam). For any generic homeomorphism f ∈ Diff0
v, the invariant mea-

sure v is ergodic.

Ergodicity means that for the measure v, the system can not be decomposed: any invariant
Borel set A has either measure 0 or 1. By Birkhoff’s ergodic theorem, the orbit of v-almost every
point is equidistributed in M .
The C0 topology also seems very weak: one can show that since for any generic diffeomor-
phism, once there exists a periodic point of some period p, then the set of p-periodic points is
uncountable. (In particular corollary 0.2 does not hold for Diff0

v.)
In high topologies, one gets Kolmogorov-Arnold-Moser theory. One of the finest forms is

given by Herman (see [Mo, section II.4.c], [He, chapitre IV] or [Y]).

Theorem I.2 (Herman). There exists a non-empty open subset U of Diffk
v , with k ≥ 4 and for

any diffeomorphism f ∈ U , there exists a smooth closed disk D ⊂M which is periodic by f : the
disks D, f(D),. . . , f τ−1(D) are disjoint and f τ (D) = D.

Theses disks are obtained as neighborhoods of the elliptic periodic orbits. The dynamics
in this case is very different from the generic dynamics in Diff0

v since the existence of invariant
domains breaks down the ergodicity of v: the orbit of any point of D can not leave the set
D ∪ f(D) ∪ · · · ∪ f τ−1(D).

Remark I.3. We should notice that by a result of Zehnder [Z2] for each k ≥ 1, the C∞-
diffeomorphisms are dense in Diffk

v . Therefore, for any 1 ≤ k < ℓ, any property that is generic
in Diffℓ

v will be dense in Diffk
v. This result is not known is this generality in higher dimensions

for conservative diffeomorphisms.

I.1.2 An elementary perturbation lemma. The reason why theorem I.1 is true is that per-
turbations in Diff0

v are very flexible: for any homeomorphism f ∈ Diff0
v and any point x ∈ M ,

one can perturb f in order to modify the image of f(x). More precisely, if y is close to f(x),
one chooses a small path γ that joints f(x) to y. Pushing along γ, one can modify f as home-
omorphism g so that g(x) = y. The homeomorphisms f and g will coincide outside a small
neighborhood of γ. Hence, the C0-norm of the perturbation is about equal to the distance
between x and y.
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In the space Diff1
v, the C

1-norm of the perturbation also should be small (for example smaller
than ε > 0) and one has to perturb f on a larger domain (in a ball of radius about ε−1 d(x, y)).
This can been seen easily from the mean value theorem: let x, y be two points and ϕ be a
perturbation of the identity which satisfies ϕ(x) = y and such that ‖Dϕ − Id ‖ ≤ ε; then, if a
point z is not perturbed by ϕ (i.e. ϕ(z) = z), we get

‖y − x‖ = ‖(ϕ(x) − x)− (ϕ(z) − z)‖ ≤ ε.‖z − x‖.

As a consequence, when ε is small, the perturbation domain has a large radius and lot of the
orbits of f will be modified.

This remark will be at the root of all the genericity results that will be presented below (a
more precise statement will be given at section I.1.2). It explains the difficulty of the perturba-
tions in Diff1

v. In higher topologies, the situation becomes much more complicate since in Diffk
v ,

the radius of the perturbation domain should be at least (ε−1 d(x, y))
1

k .
This justifies why we will now work in Diff1

v: we need a space of diffeomorphisms where the
elementary perturbations don’t have a too large support.

I.2 The closing and connecting lemmas

From the elementary perturbation lemma, one derivates more sophisticated perturbation
lemmas.

I.2.1 Pugh’s closing lemma. The first result was shown by Pugh [Pu1, Pu2, PR, A1]. It
allows to create by perturbation some periodic orbit once the dynamics is recurrent. More
precisely, one considers the points z whose orbit is non-wandering: for any neighborhood U of
z, there is a forward iterate fn(U) of U (with n ≥ 1) which intersects U .

The local perturbation result is the following (see also figure 2):

z z

perturbation

Figure 2: Perturbation given by the closing lemma.

Theorem I.4 (Closing lemma, Pugh). Let f be a C1-diffeomorphism in Diff1
v and z ∈ M a

non-wandering point. Then, there exists a C1-small perturbation g ∈ Diff1
v of f such that z is a

periodic orbit of f .

I.2.2 Hayashi’s connecting lemma. We have seen that the closing lemma allows to con-
nect an orbit to itself. About 30 years later, Hayashi [Ha, WX2, A2] proved a second local
perturbation lemma and showed how to connect an orbit to another one (see figure 3).
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perturbation

p

q

z

q

p

z

Figure 3: Perturbation given by the connecting lemma.

Theorem I.5 (Connecting lemma, Hayashi). Let f be a C1 diffeomorphism in Diff1
v and p, q, z ∈

M three points such that:
– both the accumulation sets of the forward orbit of p and of the backward orbit of q contain

the point z;
– the point z is not periodic.

Then, there exists a C1-small perturbation g ∈ Diff1
v of f and an integer n ≥ 1 such that

gn(p) = q.

The second assumption in the connecting lemma is purely technical (and maybe not essen-
tial). Some stronger versions of this result are given below.

Remark I.6. In the closing and connecting lemmas, the perturbations are local: there exists
an integer N ≥ 1 such that the support of the perturbation is contained in an arbitrarily small
neighborhood of the segment of orbit {z, f(z), . . . , fN−1(z)}.

I.2.3 The connecting lemma for pseudo-orbits. One can restate Hayashi’s connecting lemma
in the following form. It is possible to connect p to q by perturbation provided that these points
are almost on the same orbit: at some place (close to z) one allows a small jump between the
forward orbit of p and the backward orbit of q. The connecting lemma for pseudo-orbits, proved
in [BC, ABC] allows to deal with any number of jumps (see figure 4).

For any ε > 0, we say that a sequence (z0, . . . , zℓ) is a ε-pseudo-orbit of f if for any k ∈
{0, . . . , ℓ − 1}, we have d(f(zk), zk+1) < ε. In other terms, this sequence is an orbit with small
errors, bounded by ε, at each iterations.

Theorem I.7 (Connecting lemma for pseudo-orbits, Bonatti-Crovisier, Arnaud-B-C). Let f be
a C1-diffeomorphism in Diff1

v such that for each τ ≥ 1, the set periodic points with period τ of
f is finite. Let p, q ∈ M be two points such that for each ε > 0, there exists a ε-pseudo-orbit
(p = z0, z1, . . . , zℓ−1, zℓ = q) which joints p to q.

Then, there exists a C1-small perturbation g ∈ Diff1
v of f and an integer n ≥ 1 such that

gn(p) = q.

By corollary 0.2, the first assumption of theorem I.7 is generic in Diff1
v (here again, this

technical assumption is probably not essential). We will see below that the second one is always
satisfied (we assumed that M is connected).
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p

q q

p

perturbation

Figure 4: Perturbation given by the connecting lemma for pseudo-orbits.

I.3 C1-generic properties

We now give some consequences of these perturbation lemmas.

I.3.1 Density of periodic points. The first consequence shows the important role played by
the periodic orbits in C1-dynamics. For any diffeomorphism f and any non-empty open set U ,
using the fact that f preserves a smooth finite measure, we get that a forward iterate fn(U) of
U intersects U . This shows that any point in M is non-wandering.

Now, Pugh’s closing lemma implies:

Theorem I.8 (Pugh). For any generic diffeomorphism f ∈ Diff1
v, the periodic points of f are

dense in M .

We recall that according to Robinson’s theorem 0.1, each periodic orbit is either elliptic or
hyperbolic.

The proof follows from the closing lemma by a classical argument. We give it as an example
of Baire theory.

Sketch of the proof of theorem I.8. Let (Un) be a countable basis of neighborhoods in M . We
fix n and we have to show that any generic diffeomorphism has a periodic point in Un.

By the implicit function theorem, the diffeomorphisms which have a hyperbolic or elliptic
periodic point in Un form an open set Un. It now sufficient to show that for each n, the set Un

is dense: the countable intersection
⋂

Un then will be a dense Gδ set, hence generic.
Let us consider any diffeomorphism f0. Since any point in Un is non-wandering, by a small

perturbation, one can create in Un a periodic point p for a diffeomorphism f1 close to f0. For a
new perturbation f2 (given by a transversality argument extracted from the proof of theorem 0.1)
the point p will be elliptic or hyperbolic, as required.
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I.3.2 Study of the elliptic orbits. According to the last result, it should be interesting to
study separately the two kinds of periodic orbits that appear in generic dynamics. The elliptic
behavior was studied intensively but mostly in higher differentiability. The following result is
not specific to the C1-topology.

Theorem I.9 (Zehnder[Z1]). Let f be a generic diffeomorphism in Diff1
v. Any elliptic periodic

orbit is accumulated by hyperbolic saddles. Hence, the hyperbolic periodic points are dense in
M .

We give a different proof from Zehnder’s original one (which used approximations by smooth
diffeomorphisms). We need a useful perturbation lemma by Franks which allows to change the
tangent map along the periodic orbits.

Theorem I.10 (Franks lemma, [F2, BDP]). Let q, f(q),. . . , f τ (q) = q be a periodic orbit of
a conservative diffeomorphism f . Then, any C0-perturbation of the sequence of linear tangent
maps (Dq f,Df(q) f ,. . . , Dfτ−1(q) f), that preserves the volume forms v, can be realized as the
sequence of tangent maps (Dq g,Dg(q) g,. . . , Dgτ−1(q) g) associated to a conservative diffeomor-
phism g that is C1-close to f and preserves the orbit {q, f(q), . . . , f τ−1(q)}.

Sketch of the proof of theorem I.9. Let us consider some elliptic periodic point p. We explain
how to create by perturbation a hyperbolic saddle q close to p. Theorem I.9 then follows from
a standard Baire argument.

We first recall that the derivative Dp f
τ along the orbit of p is conjugate to a rotation. By

a transversality argument, one may perturb the dynamics so that the angle of this rotation is
irrational. The dynamics in a neighborhood of the orbit of p looks like the dynamics of an
irrational rotation. Hence, by a small perturbation one creates in a neighborhood of the orbit
of p a second periodic point q whose period τ ′ is an arbitrarily large multiple kτ of τ : this
argument uses Pugh’s closing lemma for dynamics C1-close to the rotation.

Note that the derivative along the orbit of q is close to the rotation (Dp f
τ )k. Since the

period kτ of q can be chosen arbitrarily large, one can perturb the derivative at points q,
f τ (q), . . . , fk−1τ(q) (by compositing by small rotations) in order to obtain a sequence of linear
maps whose product is equal to the identity. By using Franks lemma (theorem I.10), one gets
a C1-small perturbation of f whose derivative along the orbit of q is the identity. By a new
arbitrarily C1-small perturbation, the orbit of q can be made of saddle type.

I.3.3 Study of the hyperbolic saddles. We have seen that the hyperbolic periodic orbits are
dense in M . The next result shows the existence of homoclinic intersections, i.e. of transverse
intersections between the stable and unstable manifolds of these periodic orbits. This is impor-
tant since a transverse intersection between the invariant manifolds of a saddle periodic orbit
implies the existence of non-trivial hyperbolic sets: a compact and invariant set is hyperbolic if
the tangent bundle over K splits as two one-dimensional bundles, one is uniformly contracted
and the other one is uniformly expanded. The periodic saddle are the simplest examples of
hyperbolic sets but Smale has shown that the homoclinic intersections imply the existence of
larger hyperbolic sets, that are Cantor sets, and called horseshoes. The dynamics on horseshoes
is very rich, but has been well described.

Theorem I.11 (Takens [T]). For any generic diffeomorphism f and any periodic point p, the
transverse intersection points between the invariant manifolds W s(p) and W u(p) of p are dense
in W s(p) and W u(p).
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The proof now is easy from the connecting lemma.

p

q′

q

p

q′

q

perturbation
fm(z)

fn(z)

z

Figure 5: Creation of a homoclinic point by perturbation.

Sketch of the proof of theorem I.11. Let p be a saddle of some diffeomorphism f . We show how
to build one intersection between the stable and unstable manifolds.

Let us choose some point q on the unstable manifold of p. Since q is non-wandering, it is
accumulated by a sequence (zk) and by a sequence of forward iterates (fnk(zk)) of the points zk.
We note that each sequence (zk, f(zk), . . . , f

nk(zk)) should come close to the stable manifold of
p before visiting q. Hence, there is a sequence (fmk(zk)) with 1 < mk < nk which converges to
a point q′ on the stable manifold of p.

Now, the connecting lemma 1 (used twice) allows to connect the unstable manifold at q and
the stable manifold at q′ to a same segment of orbit (zk, f(zk), . . . , f

mk(zk)) (see figure 5). One
gets an intersection at q between the stable and unstable manifolds of p. By a new perturbation,
this intersection becomes transverse.

I.3.4 Global dynamics. Up to here, we proved that the periodic points, and saddles, are
dense in M . One could imagine however that M has some invariant domains so that each
periodic orbit stay in a small region of M . We will see that this picture is wrong generically.

We state before a property of conservative diffeomorphism which justifies the role of pseudo-
orbits:

Proposition I.12. For any diffeomorphism f ∈ Diff1
v and any ε > 0, any two points p, q ∈ M

can always be jointed by an ε-pseudo-orbit.

Proof. We recall Poincaré recurrence theorem: almost any point x ∈ M is recurrent: the accu-
mulation set of the forward orbit of x contains x. In particular, the recurrent points are dense
in M .
Let us fix some ε > 0 and denote by X ⊂ M be the set of points that can be attained from p
by a ε-pseudo-orbit. We choose x ∈ X. There exists a ε-pseudo-orbit from p to x. It is possible
to change a little bit the point x so that x is a recurrent point.

1. In fact, we use here a variation on the connecting lemma given later in the text. This variation asserts than
one chooses first the place where the perturbation is realized and then the orbits that should be connected. This
will be stated precisely at section II.3.5.
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Hence, one can consider a return f ℓ(x) of the orbit of x which is close to x. This shows that
any point y in the ball B(x, ε/2) can be jointed from x by a ε-pseudo-orbit. By concatening the
pseudo-orbit from p to x with the pseudo-orbit from x to y, one deduces that y may be attained
from p by a ε-pseudo-orbit. Thus, B(x, ε/2) is contained in X, for any point x ∈ X. Since M is
connected, one deduces that X =M and in particular q ∈ X.

As a consequence of the connecting lemma for pseudo-orbits, one gets the following global
result:

Theorem I.13 (Bonatti-Crovisier). Any generic diffeomorphism f ∈ Diff1
v is transitive: there

is a Gδ and dense subset G ⊂M such that the forward orbits of any x ∈ G is dense in M .

Proof. Let (Un) be a countable basis of neighborhoods of M . Using proposition I.12 and the
connecting lemma for pseudo-orbits, we get that for each open set Un, the set Gn ⊂M of points
whose forward orbit meets Un is dense in M . It is also open. Hence, G =

⋂
Gn is a dense Gδ

subset of M whose points have a forward orbit dense in M .

An other consequence of theorem I.7, is that for a generic diffeomorphism f and any pair of
periodic saddles p and q, the invariant manifolds W s(f i(p)) and W u(f j(q)) of some iterates of
p and q intersect transversally. One says that f possesses a unique homoclinic class.

This property implies the existence of many other periodic points. For example, there exists
a periodic orbit (whose period is very large) which shadows the orbit of p during a large number
of iterates and then shadows the orbit of q. Since the periodic saddles are dense in M (by
theorem I.9), we get the announced property:

Corollary I.14. For any generic diffeomorphism in Diff1
v and any ε, there exists a periodic

orbit which is ε-dense in M (i.e. which meets any ball of radius ε in M).

I.3.5 Repartition of periodic orbits. It is possible to improve the density theorem I.8 by
describing the repartition of the periodic orbits. From the measure theory, this is the ergodic
closing lemma due to Mañé [Man].

Theorem I.15 (Ergodic closing lemma, Mañé). Let f be a generic diffeomorphism in Diff1
v.

Then, any invariant probability measure 2 µ of f is the weak limit of periodic measures (µn)
whose supports converge towards the support of µ.

From the topological point of view, one may wonder what are the regions of M that are
shadowed by a single periodic orbit. This requires another global perturbation lemma that we
won’t detail here (see [C]).

We say that an invariant compact set K is chain transitive if for any points p, q ∈ K and any
ε > 0, there is a ε-pseudo-orbit contained in K that joints p to q. The result is the following:

Theorem I.16 (Crovisier). For any generic diffeomorphism in Diff1
v and any invariant compact

set K, the set K is the Hausdorff limit of a sequence of periodic orbits 3 if and only if it is chain-
transitive.

2. We do not assume here that the measure µ is ergodic. Hence, a consequence of this result is that in the
convex and compact set M of invariant measures, the ergodic measures (these are the extremal points of M) are
dense.

3. This means that for any δ > 0, there exists a periodic orbit contained in the δ-neighborhood of K and
which crosses all the δ-balls centered at points of K: at scale δ, the periodic orbit O and the set K can not be
distinguished.
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As a consequence, we get a weak shadowing property: pseudo-orbits whose jumps are very
small “can not be distinguished” from “true orbits”.

Corollary I.17. For any generic diffeomorphism f ∈ Diff1
v, for any δ > 0, there exists ε > 0

such that any ε-pseudo-orbit PO = {z0, . . . , zm} of f is δ-close to a genuine segment of orbit
O = {z, f(z), . . . , fn(z)} of f : this means that PO is contained in the δ-neighborhood of O and
that O is contained in the δ-neighborhood of PO.

I.4 Hyperbolic versus elliptic dynamics

Whereas the hyperbolic saddles of a generic diffeomorphism always exists and are dense in
M , the same is not true for the elliptic points.

I.4.1 Hyperbolic behavior: Anosov diffeomorphisms. An important example of conservative
surface dynamics are the Anosov diffeomorphisms: these are the diffeomorphisms such that the
whole manifold M is a hyperbolic set.

For example, any linear automorphism in SL(2,Z) acts on the two-torus T
2 = R

2/Z2 and
preserves the canonical Haar measure. When the modulus of the eigenvalues is different from 1,
one gets an Anosov diffeomorphism.

The general Anosov diffeomorphisms are important because they form an open subset of
Diffk

v . Their dynamics are well understood since Franks has shown [F1] that any Anosov surface
diffeomorphism is conjugate by a homeomorphism to a linear Anosov automorphism of T2.

I.4.2 The dynamics far away from the Anosov diffeomorphisms. It is clear that Anosov
diffeomorphisms don’t have any elliptic periodic orbit. For the other diffeomorphisms, Newhouse
showed [N] that the situation is completely different.

Theorem I.18 (Newhouse). For any generic diffeomorphism in Diff1
v, which is not Anosov, the

elliptic periodic points are dense in M .

In particular, ifM is not the torus, we get the same conclusion for any generic diffeomorphism
in Diff1

v. Combining the technics of [BDP] and [BC], one can improve this result and show that
for any generic diffeomorphism which is not Anosov, for any ε > 0, there exists an elliptic
periodic orbit which is ε-dense in M .

We note also that if f is an Anosov diffeomorphism, any diffeomorphism g that is C1-
close to f is transitive (f is said robustly transitive). This property characterizes the Anosov
diffeomorphisms.

Proposition I.19. For any diffeomorphism f ∈ Diff1
v which is not Anosov, there is a C1-small

perturbation g which is not transitive.

Proof. Using remark I.3, one can approach f by a smooth diffeomorphism f̄ which has an elliptic
periodic orbit. For a new perturbation g, the assumptions of KAM theorem I.2 are satisfied and
g is not transitive.

I.4.3 The Lyapunov exponents. The dichotomy hyperbolic/elliptic can be also detected
from the Lyapunov exponents of the diffeomorphism: Oseledets theorem asserts that for any

11



diffeomorphism f ∈ Diff1
v and at v-almost any point, the upper Lyapunov exponent exists:

λ+(f, x) = lim
n→+∞

1

n
log ‖Dx f

n‖.

This quantity, which is always non-negative, describes how the infinitesimal dynamics along the
orbits of x is stretched.

Bochi proved [B] the following property.

Theorem I.20 (Bochi). For any generic diffeomorphism f ∈ Diff1
v two cases can occur:

– either f is Anosov, (and λ+(f, x) is strictly positive at any point x where it is defined);
– or λ+(f, x) = 0 for v-almost every point x.

The proof is very interesting since it combines perturbation technics of the derivative along
some segments of orbits and a control of the measure of the points which exhibit the required
behavior.

I.5 Questions

We conclude this survey with some open problems.

1. Is any generic diffeomorphism topologically mixing?
A diffeomorphism f is topologically mixing if for any non-empty open sets U and V , there
is an integer n0 ≥ 1 such that fn(U) intersects V once n ≥ n0. It is a stronger property
than the transitivity. In fact, theorem I.7 implies that for a generic diffeomorphism, the
manifold splits into a finite number of pieces Λ, f(Λ),. . . , f τ (Λ) = Λ that are cyclically
permuted by the dynamics. The return map f τ on Λ is topologically mixing. The problem
here is to decide whether there is only one piece (τ = 1).

2. Is any generic diffeomorphism ergodic?
A weaker problem would be: is there a full measure set of point whose orbits are dense?

3. Is there a closing lemma in higher differentiability?
About perturbation lemmas on surfaces and in higher differentiability, there exist some
partial results that adopt a topological approach, see [R2, Mat, P, O, FL].
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II Local perturbations in C1-dynamics

In this part we explain the main ideas for closing or connecting orbits by perturbation. Most
of the technical details that are skipped here can be read in [PR, A1, WX1, BC].

II.1 The elementary perturbation lemma

II.1.1 Statement. The basic result that allows perturbations is the elementary perturbation
lemma introduced at section I.1.2. Since the perturbation is local, we state it in R

2 without
loosing in generality (see figure 6).

Proposition II.1 (Elementary perturbation lemma). For any neighborhood U of Id in the space
of conservative C1-diffeomorphisms of R2, there exists η > 0 with the following property:
If x, y ∈ R

2 are close enough to each other there is ϕ ∈ U which sends x onto y and coincides

with Id outside the ball B
(
x+y
2 , 1+η

2 d(x, y)
)
.

One gets the perturbation g of f announced at section I.1.2, as a composition ϕ ◦ f .

d
x

y

h

(1 + η)d

Figure 6: An elementary perturbation.

II.1.2 Why this result is not sufficient to our purpose? One can hope that this result will
be sufficient to get the closing lemma: if one considers a segment of orbit (p, f(p), . . . , fn(p))
and if p and fn(p) are close enough one may want to introduce a perturbation ϕ given by
proposition II.1 which sends fn(p) on p. However the point p will not be periodic for the
diffeomorphism g = ϕ◦f in general. The reason is that the segment of orbit (p, f(p), . . . , fn(p))
could have many intermediate returns in the support of the perturbation ϕ and could be broken
by the perturbation (figure 7).

II.1.3 Proof of the closing lemma when η = 1
2 . When η ≤ 1

2 (but in this case the C1-size of
the perturbation is not so small) one can deduce the closing lemma directly from the elementary
perturbation lemma. The main difficulty is to select two close iterates that could be jointed to
each other by a perturbation (figure 8).
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p

B

p

perturbation

fn(p)

Figure 7: Orbit broken by the perturbation.

p
pi

pj

Figure 8: Selection of returns in B.

Let us consider a point p whose orbit is recurrent 4: the forward orbit of p has some returns
arbitrarily close to p. We fix also a small ball B = B(p, r) centered at p, that will contain the
support of the perturbation. We choose a time n ≥ 1 such that fn(p) and p are close enough.

Let us denote by p0 = p, p1, . . . , ps−1, ps = fn(p) the points of {p, f(p), . . . , fn(p)} that
belong to the interior of B. Among the pairs (pi, pj) with i < j, we choose one which minimizes
the quantity

Di,j =
d(pi, pj)

d
(
pi+pj

2 , ∂B
) .

This plays the role of a “hyperbolic distance in the ball B” between the points pi. Note that
since the distance between x and fn(x) has been chosen arbitrarily small in comparison to the
radius r of B, the minimum of the Di,j can be assumed arbitrarily small.

4. The assumption in the closing lemma is that p is non-wandering. In order to simplify the proof, our
assumption here is a little bit stronger but the argument is the same.
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An easy estimate gives the following claim.

Claim II.2. If Di0,j0 is small enough and realizes the minimum over all the Di,j , the ball

B
(
pi0+pj0

2 , 1+η
2 d(pi0 , pj0)

)
is contained in B and does not intersect any other point p0, . . . , ps.

In particular, one now can realize the perturbation ϕ which sends pj0 onto pi0 . The segment
of orbit (pi0 , f(pi0), . . . , f

−1(pj0)) is not perturbed by the perturbation and the point pi0 is now
periodic. Hence, we get a periodic point close to the initial point p. A small perturbation (one
conjugates by a translation) can move the periodic point pi0 onto p, as required.

II.1.4 Composition of perturbations. In the general case, a unique elementary perturbation
ϕ is not sufficient and we will realize several perturbations at different places. We will now
see that this is allowed, since the size of the perturbation one obtains do not increase with the
number of independent elementary perturbations that have been realized.

If U is a neighborhood of a diffeomorphism f , the support of a perturbation g ∈ U is
the set of points x where f(x) and g(x) differ. If g1 = ϕ1 ◦ f and g2 = ϕ2 ◦ f are two
perturbations with distinct supports, the composition of the perturbations is the diffeomorphism
g = ϕ1 ◦ ϕ2 ◦ f = ϕ2 ◦ ϕ1 ◦ f . By shrinking the neighborhood U if necessary, one can choose it
with the composition property:

g1, g2 ∈ U ⇒ g ∈ U .

Hence, one may compose an arbitrary number of elementary perturbations without leaving the
neighborhood U of f .

II.2 The closing lemma

In order to prove the closing lemma, we would like to realize a small perturbation given by
proposition II.1 with a constant η ≤ 1

2 . As we explained in section I.1.2 this is not possible. The
idea of Pugh was to spread the perturbation in the time and to obtain it as a composition of
several elementary perturbation. This idea allows roughly to divide the (a priori large) constant
η, given by the size of the perturbations that are allowed, by the time we consider to spread the
perturbation.

II.2.1 Pugh’s perturbation lemma.

Theorem II.3. Let f ∈ Diff1
v be a diffeomorphism and let us consider a point z which is not

periodic. Then, for any neighborhood U of f in Diff1
v, there exists an integer N and a Riemannian

metric d′ which have the following property:
If x, y are two points contained in a small ball S = Bd′(z, δ) centered at z, for the metric d′,

there is a perturbation g ∈ U of f which sends x onto fN(y) by gN .
The support of the perturbation g is contained in the union Ŝ ∪ f(Ŝ) ∪ · · · ∪ fN−1(Ŝ) of the

ball Ŝ = Bd′(z,
3
2δ) with its N − 1 first iterates.

Note that since z is not periodic, the ball Ŝ and its N − 1 first iterates are disjoint. With
this result we “recover a constant η = 1

2”: the perturbation around x and y occurs in the ball of
diameter less than 1 + 1

2 times the diameter of the ball S which contains x and y. The price to

pay is that we also perturb in the N −1 iterates of the ball Ŝ (figure 9). However, the argument
given at section II.1.3 remains and theorem II.3 implies the closing lemma.
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fN−1(Ŝ)

f2(Ŝ)
f(Ŝ)

Ŝ
= support of the elementary perturbation

y

S

Ŝ

x

Figure 9: Perturbations in theorem II.3.

Remark II.4. Note that all the sets Ŝ, f(Ŝ),. . . , fN−1(Ŝ) have roughly the shape of ellipsis.
An important improvement (used in the connecting lemma below) is that in each ellipsis fk(Ŝ)
with k ∈ {0, , . . . , N − 1}, the support of the perturbation g is contained in a ball which is small
with respect to the smaller axis of fk(Ŝ).

II.2.2 Proof of theorem II.3 when f is conformal. In order to explain how to spread the
perturbation in the time and get theorem II.3, we first consider the case where f is “conformal”
(i.e. the image of a small Euclidean ball is roughly a small euclidian ball). One considers the
(large) constant η given by the elementary perturbation lemma, a small ball S = B(z, δ) around
z (for the standard metric) and two points x, y ∈ S.

We choose N = 4(1 + η) and we divide the segment between x and y by a sequence (ζ0 =
x, . . . , ζN = y) of points at distance d(x, y)/N from each other.

For each i ∈ {0, . . . , N − 1}, the image of the ball Ŝ = B(z, 32δ) by f i is roughly a ball,
by assumption. The two points f i(ζi), f

i(ζi+1) are contained in this ball. Moreover, by our
assumption, the relative distance between these two points in comparison to their distance to the
boundary of f i(Ŝ) is small: it is close to the relative distance between ζi and ζi+1 in comparison
to their distance to the boundary of Ŝ. So that the elementary perturbation lemma gives a
perturbation gi = ϕi ◦f in U with support in f i(Ŝ) (figure 10) such that gi(f

i(ζi)) = f i+1(ζi+1).
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Ŝ f(Ŝ) f2(Ŝ) fN−1(Ŝ)

y = ζn

x = ζ0

ζ1

ζ2

Figure 10: Perturbation when f is conformal.

All the perturbations gi have by construction disjoint supports so that the composed pertur-
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bation g = (ϕ0 ◦ϕ1 ◦ · · · ◦ϕN−1) ◦ f belongs to U (by the composition property of section II.1.4)
and satisfies gN (ζ0) = fN (ζN ), as announced.

II.2.3 Proof of theorem II.3 when f is not conformal. The difficulty when f is not confor-
mal is that the image of a ball is no more a ball (after several iterations, it could be a ellipsis
with a large eccentricity). Hence, the two points f i(ζi), f

i(ζi+1) could be at a small distance
from the boundary of the ellipsis f i(Ŝ) (in comparison to their relative distance). This is the
case in particular if the segment that joints them follows the direction of the largest axis of
the ellipsis. Therefore, the support of perturbation given by proposition II.1 which sends f i(ζi)
on f i(ζi+1) is no more contained in f i(Ŝ). On the contrary, if one assumes that the segment
between these points follows the direction of the small axis of the ellipsis, the perturbation can
be realized inside f i(Ŝ) as in the conformal case. On figure 11, the right part shows the case
where the points are in a bad position so that the elementary perturbation can not be realized;
a good position is pictured on the left part of the figure.
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Ŝ

ζi ζi+1

f i f i

f i(Ŝ)

f i(Ŝ)

The perturbation can not be realized in fi(Ŝ).The perturbation can be realized.

Figure 11: Difficulty when f is not conformal.

In order to bypass this problem, we introduce a different metric d′, so that S and Ŝ are
chosen as balls for d′ but as ellipsis for the initial metric. The perturbation is not realized at
each time i (hence the integer N could be larger than in the previous case, depending on the
behavior of the derivatives of f along the orbit of z) and the points (ζi) are not chosen along a
segment. What is important is that there are times 0 ≤ n0 < n1 < · · · < ni < · · · ≤ N such that
the segment between the points fni(ζi) and f

ni(ζi+1) follows roughly the direction of the small
axis of the ellipsis fni(Ŝ). At these times, one realizes the elementary perturbations. Figure 9
gives an idea of the way the perturbations are chosen. We refer the reader to [WX1] for a good
detailed presentation of this proof.

Remark II.5. One can choose N large enough and the sequences (ζi) and (ni) carefully so that
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at each time ni, the distance between fni(ζi) and fni(ζi+1) is small in comparison to the small
axis of fni(S). This implies the remark II.4.

II.3 The connecting lemma

II.3.1 Why the connecting lemma is more difficult than the closing lemma? In the proof of
the closing lemma (section II.1.3) we had to select two returns f i0(p) and f j0(p) in a ball B, with
the property that they should be far enough from the other intermediate iterates. When one
tries to connect one orbit {fn(p)} to another one {f−m(q)}, one may also selects two points in B
among the returns {fnℓ(p)} ∪ {f−mk(q)} of the two orbits. However if the two selected returns
that we get belong both to the first or both to the second orbit, a perturbation will produce a
periodic orbit that crosses B but not an orbit that joints the two points p and q. Hence, one
should require that the two selected returns does belong to different orbits. In general, it is not
possible to find a pair of points which has this additional property (figure 12).

B

: return of p

: return of q

Figure 12: A wrong selection of returns for the connecting lemma.

II.3.2 Hayashi’s strategy. One idea of Hayashi is to clean up the cloud of returns of the
two orbits in B by forgetting some of them. If two returns of the same orbit are close enough
(for example two iterates fn1(p) and fn2(p) of p), they prevent us from using the argument of
section II.1.3 as we explained at II.3.1. In this case, one will consider that these two points are
the same (fn1(p) = fn2(p)) and forget the intermediate returns in between. One should also
hope that a small perturbation could move fn1(p) on fn2(p) so that the assumption is fulfilled.
Hence, Hayashi’s strategy consists in selecting a large number of pairs of returns and not only
one pair as in the closing lemma. We then realize, for each of these pairs, a perturbation given
by Pugh’s theorem II.3 in order to close the orbits. One difficulty is to guarantee that all these
perturbations have disjoint supports.

More precisely, let us consider the first returns p0, p1, . . . , pr of the forward orbit of p in
B, ordered chronologically and the last returns q−s, . . . , q−1, q0 of the backward orbit of q in
B, also ordered chronologically. Recall that the two orbits accumulate on a same point z. It is
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thus possible to choose the ball B centered at z so that one can assume moreover that the last
returns fn(p)(p) = pr and f−n(q)(q) = q−s are very close to the center of the ball B.

In the chronological sequence (p0, . . . , pr, q−s, . . . , q0) we extract a subsequence of the form
(x0, y0, x1, y1, . . . , xℓ, yℓ) so that (using Pugh’s theorem II.3) for each i one can perturb f as a
diffeomorphism gi = ψi ◦ f which satisfies gNi (xi) = fN (yi). The support of this perturbation is

contained in a small ball Ŝi contained in B, and in the N − 1 first iterates of Ŝi. Moreover, the
supports of the different perturbations (gi) should be pairwise disjoint.

If moreover one has, x0 = p0, yℓ = q0 and if for each i, the point xi+1 is the first return
of the orbit of yi to the ball B, then, by composing all these perturbations gi of f , one gets a
diffeomorphism g = ψ0 ◦ · · · ◦ ψN−1 ◦ f ∈ U which sends by some forward iteration the point p
on q. After perturbation the segment of orbit from p to q is shorter than the initial pseudo-orbit
(p, f(p), . . . , fn(p)(p), f−n(q)+1(q), . . . , f−1(q), q) (see figure 13).

p p

B fN(B)

q

After perturbation.Before perturbation.

q

p0

p1

p2

p3

q−2

q−1

q0

q−3

B fN(B)

Figure 13: Combinatorics of the perturbations realized by the connecting lemma.

The main difficulty is to choose the subsequence (x0, y0, x1, y1, . . . , xℓ, yℓ). It is not built
directly: we first introduce (section II.3.3) an intermediary sequence (x′0, y

′

0, x
′

1, y
′

1, . . . , x
′

ℓ′ , y
′

ℓ′)
by cleaning up the points in the regions where there are too much accumulations. We then
select a second time (section II.3.4) so that the perturbations associated to each pair (xi, yi)
have disjoint supports.

II.3.3 Tiled cubes: first selection. In order to select the points, it is more convenient to
replace the euclidian ball B by a square 5 (for a metric d′ given by theorem II.3). Viewed with

5. We one replaces a ball by a square, one should specify the orientation of the axes. One chooses the axis
in the directions of the axis of the ellipsis B. In other terms, the square will be viewed in the initial metric as a
rectangle and not as a parallelogram.
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the initial metric, the set B is a rectangle. We then tile it as pictured on figure 14. This tiling
allows us to decide when too much points of the cloud of returns accumulate in a region of the
cube B.

Figure 14: A tiled cube.

We select a first subsequence (x′0, y
′

0, x
′

1, y
′

1, . . . , x
′

ℓ′ , y
′

ℓ′) from (p0, . . . , pr, q−s, . . . , q0) so that
each tile of the square B contains at most one pair (x′i, y

′

i). This can be done by induction: once
(x′i, y

′

i) has been defined, one chooses x′i+1 as the first return of y′i to B. The point y′i+1 is then
the last point in {p0, . . . , pr, q−s, . . . , q0} which belong to the tile of B which contains x′i+1. The
only assumption used here is that pr and q−s are close enough to z so that they belong to the
same central tile of B. The picture after this first selection is represented at figure 15.

x′i
y′i

x′j
y′j

Figure 15: The first selection.

This first selection is not sufficient for the connecting lemma. Indeed, if one applies Pugh’s
theorem II.3 to define some perturbations g′i such that (g′i)

N (xi) = fN (yi), the supports of
these perturbations may overlap: if xi and yi belong to a tile T of B, the support of the
perturbation will be contained in the rectangle T̂ (obtained from T by an homothety of ratio
3/2) and in the N − 1 first iterates of T̂ . The problem here appears if one has to perturb
in two adjacent tiles, since the two perturbations will conflict. Hence, we can not compose in
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general these perturbations g′i and we before need to select a second sequence from the cloud
{x′0, y

′

0, x
′

1, y
′

1, . . . , x
′

ℓ′ , y
′

ℓ′}.

II.3.4 Shortcuts: second selection. In order to explain how to handle the conflicts described
before, let us consider the case where the support of two perturbations g′i and g

′

j defined above

overlap (they may not overlap in the cube B but in the image fk(B) of B for some k ∈
{0, . . . , N − 1}). This means that the points {x′i, y

′

i} (in a tile Ti) and the points {x′j , y
′

j} (in a

tile Tj) have their images by fk close. We also will assume that i < j.
The idea to solve the conflict is two replace the two perturbations which send x′i and on fN (y′i)

and x′j on fN (y′j) respectively, by a single perturbation which sends x′i on fN (y′j) (figure 16).
After this construction, we erase the intermediary points {x′k, y

′

k} with k ∈ {i + 1, . . . , j − 1}
from the sequence (x′0, y

′

0, x
′

1, y
′

1, . . . , x
′

ℓ′ , y
′

ℓ′) and get a new pseudo-orbit from p to q. In other
words, we realized a shortcut in the pseudo-orbit that connects p to q.

x′

j

y′

i

y′

j

x′

i

y′

j

x′

i

Conflict. New perturbation.

Figure 16: A shortcut.

Recall that the supports of the perturbations g′i and g
′

j should be very small in comparison
to the iterates of the tiles Ti and Tj (remark II.4) hence, we get that the tiles Ti and Tj should
be adjacent and that the support of the new perturbation remains small in comparison to these
tiles.

We then continue in this way in order to solve all the conflicts. We note that each time one
solve a conflict, one gets a new perturbation whose support is a little bit larger. Hence, it could
meet the support of another perturbation g′k and one should solve a new conflict. One may
wonder if the number of conflicts one should consider starting from an initial pair (x′i, y

′

j) can be
arbitrarily large so that the support of the final perturbation may become huge in comparison
to the size of the initial tile Ti.

This is not the case: we control a priori the size of all the perturbations so that all the
conflicts that can occur happen with tiles that are adjacent to the initial tile Ti. Since the
geometry of the tiling is bounded, the number of tiles that are adjacent to Ti is bounded (by
12) and we know that we will have to solve at most 12 conflicts. If one chooses (in Pugh’s
theorem) the supports of the perturbations (g′k) very small in comparison to the size of the
corresponding tiles as it is allowed by remark II.4, the perturbation that we will get after
solving 12 conflicts will remains small in comparison to the initial tile Ti. Hence, its support can
not reach any new tile (the other tiles are not tangent to Ti and consequently are far from the
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support of the perturbation we obtained, see figure 17). After solving all the conflicts, we get

No more conflict.New conflict.

y′

j

y′

k

x′

k
x′

i

y′

j

x′

k

Figure 17: The number of conflicts remains bounded.

a new pseudo-orbit, a new sequence (x0, y0, x1, y1, . . . , xℓ, yℓ) and a collection of perturbations
(gi) whose supports are pairwise disjoint and such that, for each i, we have gNi (xi) = yi.

II.3.5 Conclusion. The proof gives a better statement than theorem I.5. The tiled cube
B and the integer N are built independently from the orbits of the points p and q. The only
assumption we used was that p and q have two returns fn(p)(p) and f−n(q)(q) in a same tile of
B (for example the central tile of the cube).

Theorem II.6 (Connecting lemma, 2nd version). Let f be a C1-diffeomorphism and U a neigh-
borhood of f in Diff1

v. For any point z that is not periodic, there is an integer N such that for
any neighborhood U of z, there exists a smaller neighborhood V which has the following property:

If p and q are two points outside U ∪ f(U) ∪ · · · ∪ fN (U) that have some iterates fn(p)(p)
and f−n(q)(q) inside V , then, there is a perturbation g ∈ U of f with support in U ∪ f(U)∪ · · · ∪
fN−1(U) and an integer n ≥ 1 which satisfy gn(p) = q.

This is this statement that was used to get theorem I.11. We prove it by choosing the square
B inside U ; the neighborhood V is the central tile of B.
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III Global perturbations in conservative dynamics

In this part, we explain the proof of the connecting lemma for pseudo-orbits.

Theorem III.1. Let f ∈ Diff1
v be a diffeomorphism such that for any τ ≥ 1, the periodic orbits

of period less than τ are finite. Then, for any p, q ∈ M , there exists a C1-small perturbation
g ∈ Diff1

v of f and an integer n ≥ 1 such that gn(p) = q.

The proof we give here is due to Arnaud-Bonatti-Crovisier but is slightly different from the
arguments in [BC, ABC].

III.1 Introduction

It is clear that one can not hope to connect a pseudo-orbit into an orbit by performing only
a local perturbation: we shall use several perturbations, given by Hayashi’s connecting lemma.
Provided they have disjoint supports, the composed perturbation remains small as it is explained
at section II.1.4.

The proof will use two main ingredients:

1. we will consider (section III.2) a generalization of the tiled cubes given by the proof of the
local connecting lemma (see section II.3.3): we call them perturbation domains;

2. using strongly the existence of an invariant probability measure with full support (here, a
smooth volume), we build (section III.3), for each pair of points x, y that are not periodic,
some perturbation domains and a pseudo-orbit that joints x to y and whose jumps are
contained in the tiles of the perturbation domains.

The final argument (section III.4) consists in perturbing in each perturbation domain.

III.2 The perturbation domains

One can revisit the proof of Hayashi’s connecting lemma and obtain a more general statement.
Let us recall the main ideas. We consider a diffeomorphism f ∈ Diff1

v and a neighborhood U of
f . To any point z ∈M , which is not periodic, one can associates:

– an integer N ≥ 1,
– a small tiled cube B, as pictured on figure 14 and disjoint from its N − 1 first iterates,

such that the following property is satisfied:

Let p be a point whose forward orbit meets the central tile Tc of the tiling of B, and q a
point whose backward orbit meets Tc. Then, there exists a perturbation g ∈ U of f with
support in B ∪ f(B) ∪ · · · ∪ fN−1(B) and an integer m ≥ 1 such that gm(p) = q.

We also recall that the existence of the cube B was given by Pugh’s perturbation lemma (theo-
rem II.3, see also section II.3.3).

We now explain how to generalize the assumptions of Hayashi’s connecting lemma.

III.2.1 More jumps. The connecting lemma allows to connect an orbit to another one
provided that the concatenation of these two segments of orbit is a pseudo-orbit whose unique
jump is moreover contained in the cental tile Tc ofB. However, the central tile Tc may be replaced
by any other tile of B, and the proof of the connecting lemma, as explained at section II.3, can
also deal with pseudo-orbits (zk) with any number of jumps. The only assumption that should

23



be required is that “the jumps of the pseudo-orbit are contained in the tiles of B”. This means
that for each k, if f(zk) 6= zk+1 then f(zk) and zk+1 are contained in a same tile. (Note that
for proving the connecting lemma, we already considered this kind of pseudo-orbit: in the first
step of the proof we cleaned up the cloud of returns of the two orbits and obtained, after a first
selection, a pseudo-orbit whose jumps are contained in the tiles of the cube B.)

Sometimes it is useful to allow also jumps that are slightly larger than the tiles of B: we
introduce the enlarged tiles T̂ of B as the squares, having the same centers and the same axis
as the tiles T of B, but with sizes 1 + 1

10 times larger. Then, we will say that a pseudo-orbit

(zk) respects the tiling of B if for any k such that f(zk) 6= zk+1, there exists an enlarged tile T̂
which contains both f(zk) and zk+1.

We now claim that the following property is satisfied by the cubes B given by the connecting
lemma (figure 18):

(P) For any pseudo-orbit (z0, . . . , zn) which respects the tiling of B, there exists a perturbation
g ∈ U of f with support in B ∪ f(B) ∪ · · · ∪ fN−1(B) and an integer m ∈ {1, . . . , n} such
that gm(z0) = zn.

perturbation

Figure 18: Perturbation in a tiled cube (property (P)).

Property (P) is obtained easily from the arguments of section II.3: by a first selection, one
can assume that each enlarged tile of B is associated at most to one jump of the pseudo-orbit.
One then removes all the jumps, using the elementary perturbation lemma (proposition II.1) for
each enlarged tile that contains a jump. One has to solve the conflicts if necessary: the crucial
argument is that the number of conflicts that are related to a jump is a priori bounded by 12:
This comes from the following facts:

– if two enlarged tiles T̂ and T̂ ′ intersect, then the tiles T and T ′ are adjacent,
– the number of tiles T ′ adjacent to a tile T is bounded by 12.

III.2.2 Tiled domains. The cube B which supports the perturbations is obtained from the
metric d′ given by Pugh’s theorem II.3. More precisely, there is a local chart ψz : Uz → R

2

defined on a small neighborhood Uz of z such that Pugh’s metric d′ is the pull back by ψz of the
standard Euclidian metric on R

2. In the proof of the connecting lemma, we did not use however
the fact that B was a cube; we just needed the bounded geometry of the tiling: the image B0

of B by ψz is a tiled open set of R2 which has the following properties:

(T1) The tiles of B0 are squares of R2 that are oriented along the canonical axis of R2.
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(T2) Let us associate to any tile T0, the enlarged cube
ˆ̂
T0 with the same center but obtained

from T0 by scaling by a ratio 1 + 1
5 . Then, any two tiles T0 and T ′

0 are adjacent once the

enlarged cubes
ˆ̂
T0,

ˆ̂
T ′

0 intersect.

(T3) There exits a uniform constant (here 12) that bounds the number of tiles T ′

0 that are
adjacent to a tile T0 of B0.

Any tiled open set B ⊂ Uz which satisfies these two properties will be called a tiled open set for
the chart (ψz, Uz) (figure 19).

Figure 19: A tiled open set.

One ends this paragraph by showing how to tile any open set (figure 20):

Proposition III.2. Any open set B̃ of R2 admits a tiling by squares which satisfies properties
(T1), (T2) and (T3).

Proof. We introduce the standard tilings Tn of R by squares of size 2−n. Let U be any open
subset of R2. The announced tiling T is built from the standard tiling Tn by deciding inductively
what are the tiles of Tn that belong to T : a tile T ∈ Tn will belong to T if

– T and all the tiles in Tn that are adjacent to T are contained in U ,
– T is not contained in the sub-domain of U tiled at the previous steps by tiles of lower

tiling Tm, m < n.

III.2.3 An improved connecting lemma We mention two other technical improvements: up
to here, we have assumed that the point z where we defined the tiled cube or open set is not
periodic. This was necessary, since we need to spread the perturbations in the time during N
iterates. However, the construction of Pugh’s metric d′ around z, or equivalently of the chart
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Figure 20: How to tile an open set.

ψz : Uz → R
2 does not require that z is non-periodic: we only have to consider the sequence of

derivatives Dz f
n at z in order to analyze what are the directions mostly contracted or expanded

by the dynamics. Then, any tiled cube (or tiled open set) contained in Uz and disjoint from
its N − 1 first iterates will satisfy property (P). This remark is important since it allows by
compactness to cover M by finitely many charts ψz. Hence, it is now clear that the integer N
depends only on (f,U) and not on the choice of the point z.

We sum up all the previous remarks by saying that the connecting lemma asserts the existence
of tiled open sets which satisfy condition (P): these sets will be called perturbation domain.

Theorem III.3 (Connecting lemma, 3rd version). For any diffeomorphism f and any neigh-
borhood U of f in Diff1

v, there exists an integer N ≥ 1 and, at any point z ∈M , there is a chart
ψz : Uz → R

2 such that any tiled open set B ⊂ Uz for the chart (ψz, Uz), that is disjoint from its
N − 1 first iterates, satisfies property (P).

III.2.4 Additional remark One can state theorem III.3 without using tilings. This uses the
idea of the proof of the closing lemma: once Pugh’s metric d′ has been given in a chart Uz, one
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considers the “hyperbolic distance” of B defined for pair of points z, z′ ∈ B as

dB(z, z′) =
d′(z, z′)

inf(d′(z, ∂B),d′(z′, ∂B))
.

One extends it to the pair of points in M : if z or z′ does not belong to B, then dB(z, z′) = ∞
unless z = z′ (then dB(z, z′) = 0). If B is tiled as it is described in the proof of proposition III.2
and if dB(z, z′) is smaller than 1

10 , then z and z′ are contained in a same enlarged tile of B or
are equal. This implies the following statement of the connecting lemma:

Theorem III.4 (Connecting lemma, 4th version). For any pair (f,U), there exists an integer
N ≥ 1 and, at any point z ∈M , there exists an open neighborhood Uz endowed with a metric d′z
such that any open set B ⊂ Uz that is disjoint from its N − 1 first iterates satisfies the following
property:

if two points p, q ∈ M may be jointed by a pseudo-orbit of f whose jumps are smaller than
1
10 for the hyperbolic distance dB of B associated to d′, then there exists a perturbation g ∈ U
with support in B ∪ f(B) ∪ · · · ∪ fN−1(B) and an integer m ≥ 1 such that gm(p) = q.

III.3 Choice of the perturbation domains

In order to prove theorem III.1, we consider a neighborhood U of f (which has the compo-
sition property, section II.1.4) and we apply the connecting lemma (theorem III.3) so that we
get

– an integer N ,
– a finite covering of M by charts ψz : Uz → R

2.
We consider two points p, q ∈ M that one wants to connect by a same orbit. One difficulty
is that the perturbation domains given by theorem III.3 should be disjoint from their N − 1
first iterates so that they cannot contain any periodic point of small period. This motivates the
following argument.

We denote by Σ2N the set of points that are periodic of period less or equal to 2N . It is finite
by assumption. It is always possible to assume that p and q are not periodic (and not in Σ2N ):
if this is not the case, one chooses p′ and q′ not periodic and close to p and q (using the fact that
the set of periodic points is only countable), one then realizes the perturbation as explained in
the section below and connects p′ to q′; one ends by a little conjugacy of the perturbed map in
order to move p′ on p and q′ on q.

III.3.1 Connection by segments of orbits and paths. In a first step, we build a “geometrical
pseudo-orbit” that joints the points p to q: the jumps are obtained as translations along small
paths which are pairwise disjoint.

Proposition III.5. There are a sequence of points (x0, . . . , xs) in M , a sequence of integers
(n0, . . . , ns−1), and a sequence of paths (γ0, . . . , γs−1) in M such that:

– we have x0 = p and xs = q;
– for each k ∈ {0, . . . , s − 1}, the points fnk(xk) and xk+1 are the endpoints of the path γk;
– each path γk is small and contained in some domain Uz;
– all the paths f i(γk) with i ∈ {0, . . . , N − 1} and k ∈ {0, . . . , s− 1} are disjoint.
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In particular the points p and q are connected by a pseudo-orbit of the form

(p = x0, f(x0), . . . , f
n0−1(x0), x1, f(x1), . . . , f

n1−1(x1), . . . , xs−1, f
ns−1−1(xs−1), xs = q).

Proof. The proof is very similar to the proof of proposition I.12: since p and q are not periodic,
one chooses a large compact set K which contains in its interior p and q and which is disjoint
from the compact set Σ2N . One may also assume that the interior of K is connected.

There is a pseudo-orbit from p to q whose jumps are contained in the interior of K and
arbitrarily small (in particular each jump is contained in a domain Uz). Hence, for any two
consecutive points x and y of the pseudo-orbit, there is a simple path σ that connects f(x) to
y. One can choose σ small and contained in the interior of K so that σ is disjoint from its 2N
first iterates and contained in some open set Uz. We get a family of path (σk). This gives all the
required properties but the last one (a path σ may have some iterate f ℓ(σ) with ℓ ∈ {0, . . . , N}
that intersects another path σ′).

We now suppress the intersections between the paths. This is done inductively: one considers
the smallest i such that one iterate of σi intersects one iterate of some other path σj . One
considers also the largest possible j. One then modifies the pseudo-orbit and the sequence (σk):
we suppress the intersections between σi and σj , we do not create any new intersection and we
do not use anymore the paths σk with k ∈ {i + 1, . . . , j − 1}. Hence, after a finite number of
modifications, we have removed all the intersections and we get the announced sequences.

Let us explain how to handle with the intersections (we will assume for instance that f ℓ(σi)
intersect σj): the path σi connects the point fni(xi) to xi+1 and the path σj connects the two
points fni(xj) and xj+1. One considers the path σ′i ⊂ σi which connects fni(xi) to the first
intersection point x′i+1 of σi with f

−ℓ(σj). We introduce also the path σ̃j ⊂ σj which connects
f ℓ(x′i+1) to xj+1. Note that f ℓ(σ′i) and σ̃j only intersect at their endpoint f ℓ(x′i+1).

One now considers a return fn
′

i+1(x′i+1) of f ℓ(x′i+1) close to f ℓ(x′i+1) (by Poincaré recurrence

theorem, changing a little bit the point x′i+1 if necessary). One may also assume that fn
′

i+1(x′i+1)
does not belong to f ℓ(σ′i) (perturbing a little bit σ′i again). It is then possible to modify σ̃j in

a neighborhood of f ℓ(x′i+1) so that it connects fn
′

i+1(x′i+1) to xj+1 and is disjoint from f ℓ(σ′i):
we get a path σ′j (see figure 21).

By this construction, there is no more intersection between the iterates of σ′i and σ
′

j. There
is also a segment of orbit that connects one endpoint of σ′i to an endpoint of σ′j. Hence, one can
forget the intermediary paths σk with k ∈ {i+ 1, . . . , j − 1}.

III.3.2 Construction of perturbation domains. In the second step, we here build:

1. A finite number of perturbation domains (Bs)s∈S . One requires that all the sets f i(Bs),
with s ∈ S, and i ∈ {0, . . . , N − 1} are pairwise disjoint.

2. A pseudo-orbit (z0, . . . , zn) between p and q which respects the tiling of the perturbation
domains Bk.

For this, one first considers the sequences (xk), (nk) and (γk) introduced at the previous
section and that connect p to q. One thicks each path γk as a small open set Bk. As it is the
case for the paths γk, one can assume that each Bk is contained in some open set Uz and all the
sets f i(Bk) with i ∈ {0, . . . , N − 1} and s ∈ S are pairwise disjoint.
By proposition III.2, one can tile each Bk as a tiled domain of the chart (ψz, Uz) and by theo-
rem III.3, it becomes a perturbation domain.
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Figure 21: Modification of the paths σi and σj.

It remains to define the pseudo-orbit (z0, . . . , zn). Note that the pseudo-orbit

(p = x0, f(x0), . . . , f
n0−1(x0), x1, . . . , xs = q)

has its jumps contained in the domains Bk but maybe not in the tiles of the Bk. Therefore,
one will define a longer pseudo-orbit by introducing between each pair of points (fni(xi), xi+1)
a segment of pseudo-orbit which has its jumps in the enlarged tiles of the domains (Bk).
The argument is again the same as in the proof of proposition I.12: since γk is connected, one
can build a pseudo-orbit from fni(xi) to xi+1 (using the recurrence of almost every point of
M by f) and having jumps arbitrarily small and all contained in any neighborhood of γk. In
particular, if the size of the jumps and the distance from each jump to γk are small with respect
to the tiles of Bk that meet γk, then, the pseudo-orbit respect the tiling of Bk. This gives the
pseudo-orbit (zk).

III.4 Conclusion: proof of theorem III.1

We have built some domains (Bk) and a pseudo-orbit (zi) from p to q at section III.3.2.
Using the definition of the perturbation domains (theorem III.3), one may perturb in each Bk

in order to remove the jumps inside (property (P)). Since the perturbation domains are disjoint,
one can perturb independently in each of them, the final perturbation will stay in U by the
composition property.
Hence, one considers each perturbation domains one after the other and eliminates in this way
all the jumps of the pseudo-orbit (zi) (figure 22). We get at the end for the perturbed map a
genuine orbit that connects p to q as required.
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Figure 22: Final perturbation.
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