Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2012

Non-Local Methods with Shape-Adaptive Patches (NLM-SAP)

Résumé

We propose in this paper an extension of the Non-Local Means (NL-Means) denoising algorithm. The idea is to replace the usual square patches used to compare pixel neighborhoods with various shapes that can take advantage of the local geometry of the image. We provide a fast algorithm to compute the NL-Means with arbitrary shapes thanks to the fast Fourier transform. We then consider local combinations of the estimators associated with various shapes by using Stein's Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improve the standard NL-Means performance and is close to state-of-the-art methods, both in terms of visual quality and numerical results. Moreover, common visual artifacts usually observed by denoising with NL-Means are reduced or suppressed thanks to our approach.
Fichier principal
Vignette du fichier
draft.pdf (1.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00536723 , version 1 (16-11-2010)

Identifiants

Citer

Charles-Alban Deledalle, Vincent Duval, Joseph Salmon. Non-Local Methods with Shape-Adaptive Patches (NLM-SAP). Journal of Mathematical Imaging and Vision, 2012, 43 (2), pp.103-120. ⟨10.1007/s10851-011-0294-y⟩. ⟨hal-00536723⟩
360 Consultations
2177 Téléchargements

Altmetric

Partager

More