Locally identifying coloring of graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Locally identifying coloring of graphs

Sylvain Gravier
Pascal Ochem
Aline Parreau

Résumé

A vertex-coloring of a graph G is said to be locally identifying if for any pair (u,v) of adjacent vertices of G, with distinct closed neighborhood, the set of colors that appears in the closed neighborhoods of u and v are distinct. In this paper, we give several bounds on the minimum number of colors needed in such a coloring for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether a subcubic bipartite graph with large girth has a locally identifying coloring with 3 colors is an NP-complete problem.
Fichier principal
Vignette du fichier
lidcoloring.pdf (217.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00529640 , version 1 (27-10-2010)
hal-00529640 , version 2 (03-05-2012)

Identifiants

Citer

Louis Esperet, Sylvain Gravier, Mickael Montassier, Pascal Ochem, Aline Parreau. Locally identifying coloring of graphs. 2010. ⟨hal-00529640v1⟩
454 Consultations
319 Téléchargements

Altmetric

Partager

More