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Abstract

Let G = (V,E) be a graph. Let c : V → N be a vertex-coloring of the vertices
of G. For any vertex u, we denote by N [u] its closed neighborhood (u and its
adjacent vertices), and for any S ⊆ V , let c(S) be the set of colors that appear on
the vertices of S. A proper vertex-coloring c is said to be locally identifying, if for any
edge uv, N [u] 6= N [v] ⇒ c(N [u]) 6= c(N [v]). Let χlid(G) be the minimum number
of colors used by a locally identifying proper vertex-coloring of G. In this paper,
we give several bounds on χlid for different families of graphs (planar graphs, some
subclasses of perfect graphs, graphs with bounded maximum degree) and prove that
deciding whether χlid(G) = 3 for a subcubic bipartite graph with large girth is an
NP-complete problem.

1 Introduction

In this paper we focus on colorings of graphs that allow to distinguish the vertices of a
graph. In [14], Horňák and Soták considered edge-coloring of a graph such that (i) the
edge-coloring is proper (i.e. no adjacent edges receive the same color) and (ii) for any
vertices u, v (with u 6= v) the set of colors assigned to the edges incident to u differs
from the set of colors assigned to the edges incident to v. Such a coloring is called a
vertex-distinguishing proper edge-coloring. The minimum number of colors required in any
vertex-distinguishing proper edge-coloring of G is called the observability of G and was
studied for different families of graphs [3, 6, 8, 11, 12, 14, 15]. This notion was then
extended to adjacent vertex-distinguishing edge-coloring where Property (ii) must be true
only for pairs of adjacent vertices; see [1, 13, 21].
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In the present paper we introduce the notion of identifying colorings: a vertex-coloring
is said to be identifying if (i) the vertex-coloring is proper (i.e. no adjacent vertices receive
the same color), and (ii) for any pair u, v (with u 6= v) the set of colors assigned to the
closed neighborhood of u differs from the set of colors assigned to the closed neighborhood
of v whenever these neighborhoods are distinct. A locally identifying vertex-coloring of
G is an identifying coloring of G where Property (ii) is only required to hold for pairs of
adjacent vertices. The locally identifying chromatic number of the graphG (or lid-chromatic
number, for short), denoted by χlid(G), is the smallest number of colors required in any
locally identifying coloring of G. In the following we study the parameter χlid for different
families of graphs, such as bipartite graphs, k-trees, interval graphs, split graphs, cographs,
graphs with bounded maximum degree, planar graphs with high girth, and outerplanar
graphs.

Let G = (V,E) be a graph. For any vertex u, we denote by N(u) its neighborhood and
by N [u] its closed neighborhood (u together with its adjacent vertices). Let c be a vertex-
coloring of G. For any S ⊆ V , let c(S) be the set of colors that appear on the vertices of
S. More formally, a locally identifying coloring of G is proper vertex-coloring c of G such
that for any edge uv, N [u] 6= N [v]⇒ c(N [u]) 6= c(N [v]). A graph G is k-lid-colorable if it
admits a locally identifying coloring using at most k colors.

First of all, observe that this coloring is not hereditary. For instance, if Pn denotes the
path on n vertices, then χlid(P5) = 3 whereas χlid(P4) = 4.

In Section 2, we prove that every bipartite graph has lid-chromatic number at most 4.
Moreover, deciding whether a bipartite graph is 3-lid-colorable is an NP-complete problem,
whereas it can be decided in linear time whether a tree is 3-lid-colorable.

In general, χlid is not bounded by a function of the usual chromatic number. Never-
theless it turns out that for several nice classes of graphs such a function exists: we study
k-trees (Section 3), interval graphs (Section 4), split graphs (Section 5), cographs (Section
6), and give tight bounds in each of these cases. We also conjecture that every chordal
graph G with clique number ω(G) has a lid-coloring with 2χ(G) = 2ω(G) colors.

Section 7 is dedicated to graphs with bounded maximum degree. We prove that the
lid-chromatic number of graphs with maximum degree ∆ is O(∆3) and that there are
examples with lid-chromatic number Ω(∆2).

In Section 8, we study graphs with a topological structure. Our result on 2-trees does
not give any information on outerplanar graphs, since lid-coloring is not monotone under
taking subgraphs. So we use a completely different strategy to prove that outerplanar
graphs and planar graphs with large girth have lid-colorings using a constant number of
colors.

Finally, in Section 9, we propose a tool that allows to extend the lid-colorings of the
2-connected components of a graph to the whole graph.
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2 Bipartite graphs

This section is dedicated to bipartite graphs. The main interest of the study of bipartite
graphs here comes from the following two lemmas:

Lemma 1 If a connected graph G satisfies χlid(G) ≤ 3, then G is either a triangle or a

bipartite graph.

Proof. Consider a 3-lid-coloring c of G with colors 1, 2, 3, and assume first that G does
not contain any edge uv with N [u] = N [v]. Then the coloring c′ defined by c′(x) = |c(N [x])|
for any vertex x is a proper 2-coloring of G (with colors 2 and 3, if we assume that G is
not a single vertex): If two vertices u, v satisfy c′(u) = c′(v) = 3, then c(N [u]) = c(N [v]) =
{1, 2, 3} and u, v are not adjacent by definition of c. If c′(u) = c′(v) = 2 and u, v are
adjacent, then without loss of generality c(N [u]) = {1, 2}, c(N [v]) = {1, 3}, and we must
have c(u) = c(v) = 1, a contradiction. It follows that G is bipartite.

Assume now that there exists an edge uv with N [u] = N [v], and that G does not
consists of the single edge uv. Then there exists a vertex w adjacent to u and v. But in
this case c(N [u]) = c(N [v]) = c(N [w]) = {1, 2, 3}, which implies that N [u] = N [v] = N [w]
by definition of c. This is only possible if G contains a K4 (which would imply that
χlid(G) > 3) or if G consists only of the triangle uvw. �

Indeed, more can be said about the color classes in a 3-lid-coloring of a (bipartite)
graph:

Lemma 2 Let G be a 3-lid-colorable connected bipartite graph on at least 3 vertices, with

bipartition (U, V ), and let c be a 3-lid-coloring of G with colors 1, 2, 3. If for some vertex

u ∈ U , c(N [u]) = {1, 2, 3}, then c(U) = {c(u)} and c(V ) = {1, 2, 3} \ {c(u)}.

Proof. Without loss of generality, assume that c(u) = 1. Then all the neighbors of u
must be colored 2 or 3, and the vertices at distance two from u must be colored 1 (otherwise
there would be a neighbor v of u with c(N [v]) = {1, 2, 3}). Iterating this observation, we
remark that all the vertices at even distance from u must be colored 1, while the vertices
at odd distance from u must be colored either 2 or 3, which yields the conclusion. �

As a corollary we obtain a precise description of 3-lid-colorable trees.

Corollary 1 A tree T with at least 3 vertices is 3-lid-colorable if and only if the distance

between every two leaves is even.

Proof. Observe that for each leaf u of T , we have |c(N [u])| = 2 in any proper coloring
c of T , so by Lemma 2 the distance between every two leaves is even.

Now assume that the distance between every two leaves of T is even, and fix a leaf u of
T . Let c be the 3-coloring of T defined by c(v) = 2 if d(u, v) is odd, c(v) = 1 if d(u, v) ≡ 0
mod 4, and c(v) = 3 if d(u, v) ≡ 2 mod 4. The coloring c is clearly proper, and we have
c(N [v]) = {1, 2} if d(u, v) ≡ 0 mod 4, and c(N [v]) = {2, 3} if d(u, v) ≡ 2 mod 4. If
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v is a vertex at odd distance from u, then v is not a leaf and c(N [v]) = {1, 2, 3}. As a
consequence, c is a 3-lid-coloring of T . �

Another class of bipartite graphs that behaves nicely with regards to locally identifying
coloring is the class of graphs obtained by taking the Cartesian product of two bipartite
graphs. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1 and
G2, denoted by G1�G2, is the graph with vertex set V1×V2, in which two vertices (u1, u2)
and (v1, v2) are adjacent whenever u2 = v2 and u1v1 ∈ E1, or u1 = v1 and u2v2 ∈ E2.

Theorem 1 Let G1 and G2 be two bipartite graphs without isolated vertices. Then

χlid(G1�G2) = 3.

Proof. Let (U1, V1) and (U2, V2) be the partite sets of G1 and G2, respectively. Then
G1�G2 is a bipartite graph with partition ((U1×U2)∪ (V1×V2), (U1×V2)∪ (V1×U2)) and
because there are no isolated vertices in G1 and G2, each vertex of (U1 × U2) ∪ (V1 × V2)
has a neigbor in U1 × V2 and a neighbor in V1 × U2.

We define c by c(u) = 1 if u ∈ (U1 × U2) ∪ (V1 × V2), c(u) = 2 if u ∈ U1 × V2, and
c(u) = 3 if u ∈ V1 × U2. Then c is a lid-coloring of G1�G2: c(N [u]) = {1, 2, 3} for vertices
of (U1 × U2) ∪ (V1 × V2), c(N [u]) = {1, 2} for vertices of U1 × V2 and c(N [u]) = {1, 3} for
vertices of V1 × U2. �

As a corollary, we obtain that hypercubes and grids in any dimension are 3-lid-colorable.
We now focus on bipartite graphs that are not 3-lid-colorable.

Theorem 2 If G is a bipartite graph, then χlid(G) ≤ 4.

Proof. If G is disconnected, then we can color each component independently and if G
contains at most four vertices, then the theorem is trivially true. So we can assume that
G is connected and has at least five vertices. Then there exists a vertex u of G that is not
adjacent to a vertex of degree one. For any vertex v of G, set c(v) to be the element of
{0, 1, 2, 3} congruent with d(u, v) modulo 4. We claim that c is a lid-coloring of G. Since G
is bipartite, c is clearly a proper coloring. Let v, w be two adjacent vertices in G. We may
assume that they are at distance k ≥ 0 and k+1 from u, respectively. If k = 0, then v = u
and w has a neighbor at distance two from u, so c(N [v]) = {0, 1} and c(N [w]) = {0, 1, 2}.
If k ≥ 1, then (k − 1) mod 4 is in c(N [v]) but not in c(N [w]), so c(N [v]) 6= c(N [w]). �

Moreover,

Theorem 3 For any fixed integer g, deciding whether a bipartite graph with girth at least

g and maximum degree 3 is 3-lid-colorable is an NP-complete problem.

Proof. We recall that a 2-coloring of a hypergraph H = (V, E) is a partition of its
vertex set V into two color classes such that no edge in E is monochromatic. We re-
duce our problem to the NP-complete problem of deciding the 2-colorability of 3-uniform
hypergraphs [16].
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LetH = (V, E) be a hypergraph with at least one hyperedge. We construct the bipartite
graph G = (V,E) in the following way. A vertex v ∈ V is associated to a path v0, . . . , v4t
in G (where t will depend on the degree of v in H and g). A hyperedge e ∈ E is associated
to a vertex we in G. If a hyperedge e contains a vertex v in H, then we add an edge in
G between we and a vertex vi with some index i ≡ 2 mod 4. We require that a vertex vi
is adjacent to at most one vertex corresponding to a hyperedge. The graph G is clearly
bipartite with maximum degree 3. Moreover, we can construct G in polynomial time such
that it has girth at least g by putting enough space between the vertices of degree 3 lying
on a same path v0, . . . , v4t.

Then χlid(G) = 3 if and only if H is 2-colorable.
Assume first that H admits a 2-coloring C : V → {1, 2}. We define the following 3-

coloring c of G such that c(vi≡2 mod 4) = C(v), c(vi≡0 mod 4) = 3 − C(v), c(vi≡1 mod 2) =
3 if v ∈ V , and c(w) = 3 if e ∈ E . Let us check that c is a lid-coloring of G. We
have c(N [w]) = {1, 2, 3} since c(w) = 3 and w is adjacent to a vertex colored 1 and
to a vertex colored 2 because of the 2-coloring of H. Also, c(N [vi≡1 mod 2]) = {1, 2, 3},
c(N [vi≡2 mod 4]) = {C(v), 3}, and c(N [vi≡0 mod 4]) = {3− C(v), 3}. So, for every edge uv
in G, we have c(N [u]) 6= c(N [v]).

Conversely, assume that G (with bipartition (U, V ) admits a lid-coloring c using colors
1, 2, 3. By Lemma 2, we can assume that c(U) = {1, 2} and c(V ) = {3}, and that the
vertices of degree one in G are in U . This implies that c(vi≡2 mod 4) ∈ {1, 2}, c(vi≡0 mod 4) =
3 − c(vi≡2 mod 4), and c(vi≡1 mod 2) = c(w) = 3. Hence, this coloring restricted to the
vertices vi≡2 mod 4 gives a 2-coloring of the hypergraph H. �

It turns out that the connection between 3-lid-coloring and hypergraph 2-coloring high-
lighted in the proof of Theorem 3 has further consequences. For a connected bipartite graph
G with bipartition (U, V ), let HU be the hypergraph with vertex set U and hyperedge set
{N(v), v ∈ V }. A direct consequence of Lemmas 1 and 2 is that a connected graph G
distinct from a triangle is 3-lid-colorable if and only if it is bipartite (say with bipartition
(U, V )) and at least one of HU and HV is 2-colorable.

A consequence of a result of Moret [17] (see also [2] for further details) is that if G is a
subcubic bipartite planar graph with bipartition (U, V ), then we can check in polynomial
time whether HU (or HV ) is 2-colorable. As a counterpart of Theorem 3, this implies:

Theorem 4 It can be checked in polynomial time whether a planar graph G with maximum

degree three is 3-lid-colorable.

It was proved by Burstein [7] and Penaud [18] that every planar hypergraph in which
all hyperedges have size at least three is 2-colorable, and Thomassen [19] proved that for
any k ≥ 4 any k-regular k-uniform hypergraph is 2-colorable. As a consequence, we obtain
the following two results:

Theorem 5 Let G be a bipartite planar graph with bipartition (U, V ) such that all vertices

in U or all vertices in V have degree at least three. Then G is 3-lid-colorable.
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Theorem 6 For k ≥ 4, a k-regular graph is 3-lid-colorable if and only if it is bipartite.

Since bipartite graphs have bounded lid-chromatic number, a natural question is whether
χlid is upper-bounded by a function of the (usual) chromatic number. However, this is not
true, since the graph G obtained from a clique on n vertices by subdividing each edge
exactly twice has χlid(G) = n (it suffices to observe that two vertices of the initial clique
cannot have the same color in the subdivided graph), whereas it is 3-colorable. This ex-
ample also shows that if the edges of a graph G are partitioned into two sets E1 and E2,
and the subgraphs of G induced by E1 and E2 have bounded lid-chromatic number, then
χlid(G) is not necessarily bounded.

We propose the following conjecture relating χlid and χ for highly structured graphs.
A graph is chordal if it does not contain an induced cycle of length at least four.

Conjecture 1 For any chordal graph G, χlid(G) ≤ 2χ(G).

The next three sections are dedicated to important subclasses of chordal graphs on
which we are able to verify Conjecture 1.

3 k-trees

This section is devoted to the study of k-trees. A k-tree is a chordal graph in which every
maximal clique is a (k+1)-clique (a clique on k+1 vertices). A k-tree can be constructed
inductively from a (k + 1)-clique by adding at each step a vertex whose neighborhood is a
k-clique in the previous graph.

Theorem 7 If G is a k-tree, then χlid(G) ≤ 2k + 2.

Proof. In this proof the colors are the integers modulo 2k+2. For instance, x 7→ x+k+1
is an involution.

First observe that every k-clique of a k-tree is contained in a (k + 1)-clique. Let
v0, . . . , vn−1 be the n vertices of G ordered in such way that G is constructed from a (k+1)-
clique induced by v0, . . . , vk by adding at each step i, with k + 1 ≤ i ≤ n− 1, a vertex vi
whose neighborhood is a k-clique in Gi−1, the subgraph of G induced by v0, . . . , vi−1 (which
is also a k-tree). We construct the following coloring c of G iteratively for 0 ≤ i ≤ n− 1.
If i ≤ k, then we set c(vi) = i. Suppose i ≥ k + 1. Let C be the neighborhood of vi in
Gi. Since Gi−1 is a k-tree, the clique C is contained in a (k + 1)-clique C ′ of Gi−1. Let
{vj} = C ′ \ C. We set c(vi) = c(vj) + k + 1 (we may have several choices for C ′ and thus
for j).

We now prove that c is a lid-coloring of G. Throughout the procedure, the following
two properties remain trivially satisfied: (i) c is a proper coloring of G, and (ii) no vertex
colored i has a neighbor colored i+ k + 1. Consider an edge vivj of G with N [vi] 6= N [vj ].
We may assume without loss of generality that some neighbors of vi are not adjacent to
vj . If i, j ≤ k + 1, then consider the minimum index ℓ such that vℓ is a neighbor of vi
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not adjacent to vj . By definition of c, we have c(vj) = c(vℓ) + k + 1. Otherwise we can
assume that j > i and j > k + 1. Let C be the neighborhood of vj in Gj. By definition
of c, there exists a (k + 1)-clique C ′ of Gj−1 containing C such that c(vj) = c(vℓ) + k + 1,
where C ′ \ C = {vℓ}. In both cases, c(vℓ) ∈ c(N [vi]) while c(vℓ) 6∈ c(N [vj ]) by Property
(ii). Hence, c is a lid-coloring of G. �

vk+2
vk+3

v2k+2

v1
v2

vk+1

v3 vk+4

.
.
.

.
.
.

(a)

v1 v2vk+2 vk+3 v2k+2vk+1v3 vk+4 . . .

(b)

Figure 1: The graph P k
2k+2 as an interval graph (a) and as a permutation graph (b).

Since for fixed t, the fact that a graph admits a lid-coloring with at most t colors
can be easily expressed in monadic second-order logic, Theorem 7 together with [10] im-
ply that for fixed k, the lid-chromatic number of a k-tree can be computed in linear time.
Another remark is that for trees, Theorem 7 provides the same 4-lid-coloring as Theorem 2.

For any two integers k, ℓ ≥ 1, we define P k
ℓ as the graph with vertex set v1, . . . , vℓ

in which vi and vj are adjacent whenever |i − j| ≤ k. The graph P k
2k+2 is clearly a k-

tree: it can be constructed from the clique formed by v1, . . . , vk+1 by adding at each step
k+2 ≤ i ≤ 2k+2 a vertex vi adjacent to vi−k, . . . , vi−1. The graph P k

2k+2 is also an interval
graph (see Figure 1(a)) and a permutation graph (see Figure 1(b)). We now prove that
the graph P k

2k+2 also provides an example showing that Theorem 7 is best possible.

Proposition 1 For any k ≥ 1, we have χlid(P
k
2k+2) = 2k + 2.

Proof. Let c be a lid-coloring of P k
2k+2. Without loss of generality we have c(vi) = i for

each 1 ≤ i ≤ k + 1. Observe that for any 1 ≤ i ≤ k, the symmetric difference between
N [vi] and N [vi+1] is precisely {vi+k+1}. Therefore, c(vi) > k+1 for any i ≥ k+2. And we
can assume that c(vi) = i for any 1 ≤ i ≤ 2k + 1.

Let α = c(v2k+2), and assume for the sake of contradiction that α 6= 2k + 2. Since
vertices vk+2, . . . , v2k+2 induce a clique, we have α ≤ k + 1. The symmetric difference
between N [vα+k] and N [vα+k+1] is precisely {vα} if α ≥ 2 and is {v1, v2k+2} if α = 1.
In both cases, c(v2k+2) = c(vα) = α would imply that c(N [vα+k]) = c(N [vα+k+1]), a
contradiction. �

4 Interval graphs

In this section, we prove that the previous example is also extremal for the class of interval
graphs.

7



Theorem 8 For any interval graph G, χlid(G) ≤ 2ω(G).

Proof. In this proof the colors are the integers modulo 2k. Let G be a connected
interval graph on n vertices. We identify the vertices v1, . . . , vn of G with a family of
intervals (Ii = [ai, bi])1≤i≤n such that vivj is an edge of G precisely if Ii and Ij intersect.
We may assume that a1 ≤ a2 ≤ . . . ≤ an. Without loss of generality, we can assume that if
ai < aj and Ii ∩ Ij 6= ∅, then there exists an interval Iℓ such that ai ≤ bℓ < aj ; otherwise,
we can change Ij to the interval [ai, bj ] and the intersection graph remains the same. By a
similar argument, we can also assume that if bj < bi and Ii ∩ Ij 6= ∅, then there exists an
interval Iℓ such that bj < aℓ ≤ bi.

Let {a1 = at1 < at2 < . . . < ats} be the set of starting endpoints. At each step
i = 1, . . . , s, we color all the intervals starting at time ati . We first color the intervals
starting at at1 with distinct colors in {0, . . . , k − 1}. Assume we have colored all the
intervals starting strictly before ati . Now, we color all the intervals I(ti) starting at ati .
First, we define the following subsets of intervals:

• V(ti): intervals Ij such that aj < ati ≤ bj ,

• U(ti): intervals Ij such that ati−1
≤ bj < ati ,

• T (ti): intervals Ij of U(ti) such that there is an interval Iℓ in V(ti) with aj = aℓ.

Note that V(ti) is the set of intervals that are already colored and intersect I(ti). The
set U(ti) is a subset of intervals already colored that intersect all the intervals of V(Ti).
It is not empty (take any interval with rightmost end finishing before ati). Necessarily,
all the intervals of U(ti) have the same end because no interval begins between ati−1

and
ati . Finally, if T (ti) 6= ∅, then let I0 be an interval of T (ti) with leftmost beginning, and
otherwise let I0 be any interval of U(ti). Let c0 be the color of I0. Note that any interval of
U(ti) and V(ti) intersects I0, and thus has color c0 in its neighborhood. We can now color
the intervals of I(ti). We color with color c0 + k one of the intervals having the latest end.
We color the other intervals with colors in {0, . . . , 2k − 1} such that no edge with colors
(j, j) or (j, j + k) appears (this is always possible since intervals of V (ti) ∪ I(ti) induce a
clique of size at most k). This coloring c is clearly a proper 2k-coloring.

We now show that c is a lid-coloring of G. Let Ii and Ij be two intersecting intervals
with N [Ii] 6= N [Ij ]. Assume first that ai 6= aj . Without loss of generality, ai < aj . During
the process, when Ij is colored, an interval Iℓ also starting at aj is colored with a color
c0 + k such that c0 ∈ c(N [Ii]). Necessarily, Ij ⊆ Iℓ since Iℓ has the rightmost end among
all intervals starting at aj . So c0 + k ∈ c(N [Ij ]) but c0 /∈ c(N [Iℓ]) and so c0 /∈ c(N [Ij ]).
Hence, c(N [Ii]) 6= c(N [Ij ]). Assume now that ai = aj . Without loss of generality, bj < bi
and so Ij ⊆ Ii. Let atℓ be the leftmost beginning such that bj < atℓ ≤ bi (it exists
because N [Ii] 6= N [Ij ]). Then we have Ii ∈ V(tℓ) and Ij ∈ T (tℓ). By construction, one of
the intervals of I(tℓ), say I, will receive color c0 + k where c0 is the color of an interval
I0 ∈ T (tℓ). Necessarily, Ij ⊆ I0 and c0 ∈ c(N [Ij ]) ⊂ c(N [Ii]). We also have c0+k ∈ c(N [Ii])
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because Ii is a neighbor of I. But c0 + k /∈ c(N [Ij ]) since c0 + k /∈ c(N [I0]) and Ij ⊆ I0.
Hence, c(N [Ii]) 6= c(N [Ij ]). �

5 Split graphs

A split graph is a graph G = (K∪S,E) whose vertex set can be partitioned into a clique K
and an independent set S. In the following, we will always consider partitions K ∪ S with
K of maximum size. A split graph is a chordal graph with clique number and chromatic
number |K|. We prove that it is lid-colorable with 2|K| − 1 colors.

We say that a set S ′ ⊆ S discriminates a set K ′ ⊆ K if for any u, v ∈ K ′ with
N [u] 6= N [v], we also have N [u] ∩ S ′ 6= N [v] ∩ S ′. The following theorem is due to Bondy:

Theorem 9 ([4],[9]) If A1, A2, . . . , An is a family of n distincts subsets of a set A with at

least n elements, then there is a subset A′ of A of size n− 1 such that all the sets Ai ∩A
′

are distinct.

Corollary 2 Let G = (K ∪ S,E) be a split graph. For any K ′ ⊆ K, there is a subset S ′

of S of size at most |K ′| − 1 such that S ′ discriminates K ′.

Proof. We apply Theorem 9 with the (at most) |K ′| pairwise distinct sets among
{N [v] ∩ S | v ∈ K ′}. �

One can easily show that every split graph G has lid-chromatic number at most 2|K|
by giving colors 1, . . . , |K| to the vertices of K, colors |K| + 1, . . . , |K| + k − 1, for some
k ≤ |K|, to the vertices of a discriminating set S ′ ⊆ S of K, and finally color |K| + k to
the vertices of S \ S ′.

We now prove the following stronger result:

Theorem 10 Let G = (K ∪ S,E) be a split graph. If |K| 6= 2 or G = K1,n, then

χlid(G) ≤ 2ω(G)− 1.

Proof. Assume that |K| = k and denote the vertices of K by v1, . . . , vk. If k = 1,
then G has no edges and it is clear that χlid(G) ≤ 1. If G = K1,n, then χlid(G) ≤ 3 by
Corollary 1. So we can assume that k ≥ 3. If |S| ≤ k − 1 or if S contains a set of size at
most k − 2 that discriminates K, then the result is trivial, so we assume that |S| ≥ k and
consider a minimal set S1 that discriminates K (therefore S1 has size precisely k − 1 and
there is no edges uv with N [u] = N [v]). We consider two cases.

Case 1. There is a vertex x ∈ S \ S1 of degree k − 1 and a neighbor vi ∈ K of x such
that N [vi] ∩ S1 = ∅. Without loss of generality, we can assume that vi = vk−1 and that
K \ N(x) = {vk}. Let Sx = {y ∈ S,N(y) = N(x) = K \ {vk}}. We have Sx ∩ S1 = ∅

(recall that vk−1 has no nieghbor in S1) and by definition of S1, for each vertex vi 6= vk−1,
N [vi] ∩ S1 6= ∅ (S1 is a discriminating set).

Let K1 = K \ {vk−1, vk}, and let S2 be a subset of S1 of size at most |K1| − 1 = k − 3
that discriminates K1. Let S

′ = S \ (S1 ∪ Sx). We define a coloring c as follows:

9



• for 1 ≤ i ≤ k, c(vi) = i;

• assign pairwise distinct colors from k + 1, . . . , 2k − 3 to the vertices of S2;

• for u ∈ S1 \ S2, c(u) = 2k − 2;

• for u ∈ Sx, c(u) = 2k − 1;

• for u ∈ S ′, take vi ∈ K \N(u) (vi exists by maximality of K), and set c(u) = c(vi).

Then c is a proper coloring of G. We show that c is a lid-coloring of G. First observe
that for each vertex vi of K, c(N [vi]) contains one color of {k + 1, . . . , 2k − 1}. Indeed
2k − 1 ∈ c(N [vk−1]) and if vi 6= vk−1, then N [vi] ∩ S1 6= ∅ and therefore c(N [vi]) ∩ {k +
1, . . . , 2k− 2} 6= ∅. This implies that for each vi ∈ K, c(N [vi]) is distinct from all c(N [y]),
y ∈ S. In fact, either c(y) ∈ c(K) and then c(N [y]) ⊆ c(K), or c(y) /∈ c(K) but then
there is at least one color of c(K) that c(N [y]) does not contain. Furthermore, c(N [vk]) is
different of all the sets c(N [vi]) with i 6= k because 2k−1 ∈ c(N [vi]) and 2k−1 /∈ c(N [vk]).
The set c(N [vk−1]) is different of all the sets c(N [vi]) with i 6= k − 1 because c(N [vk−1])
contains no color of c(S1) whereas c(N [vi]) contains at least one color of this set. Finally,
c(N [vi]) 6= c(N [vj ]) for i, j ≤ k− 2 because there is a vertex in S2 that separates them and
its color is used only once. Hence, for each edge uv of G such that N [u] 6= N [v], we have
c(N [u]) 6= c(N [v]).

Case 2. For each vertex x of S \ S1, either x has degree at most k − 2 or x has degree
k − 1 and each vertex of N(x) has a neighbor in S1. We define a coloring c as follows:
vertices of K are assigned colors 1, . . . , k, and vertices of S1 are assigned (pairwise distinct)
colors within k + 1, . . . , 2k − 1. For any vertex u in S \ S1, take a vertex vi in K \ N(u)
(such a vertex exists by the maximality of K) and set c(u) = c(vi). We claim that c is
a lid-coloring of G. It is clear that c is a proper coloring of G. Let uv be an edge of G
with N [u] 6= N [v]. If u, v ∈ K, then without loss of generality there is a vertex w of S1

such that, w ∈ N [x] and w /∈ N [y]. Then, c(w) ∈ c(N [x]) and c(w) /∈ c(N [y]). Otherwise,
without loss of generality, u ∈ K and v ∈ S. If v ∈ S1, then S1 does not contain the whole
set c(K) and so c(N [u]) 6= c(N [v]). Otherwise, v /∈ S1. If the degree of v is k − 1, then u
has a neighbor w in S1 and c(w) ∈ c(N [u]), c(w) /∈ c(N [v]). If the degree of v is at most
k − 2, then there is a color 1 ≤ i ≤ k such that i ∈ c(N [u]) and i /∈ c(N [v]). In all cases,
c(N [u]) 6= c(N [v]). Hence, c is a lid-coloring of G. �

Observe that this bound is sharp: the graph obtained from a k-clique by adding a
pendent vertex to each of the vertices of the clique is a split graph and requires 2k − 1
colors in any lid-coloring.

6 Cographs

A cograph is a graph that does not contain the path P4 on 4 vertices as an induced subgraph.
Cographs are a subclass of permutation graphs, and so they are perfect (however, they are
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not necessarily chordal). It is well-known that the class of cographs is closed under disjoint
union and complementation [5]. Let G ∪H denote the disjoint union of G and H , and let
G+H denote the complete join of G and H , i.e. the graph obtained from G∪H by adding
all possible edges between a vertex from G and a vertex from H . A consequence of the
previously mentioned facts is that any cograph G is of one of the three following types:

(S) G is a single vertex.

(U) G =
⋃k

i=1
Gi with k ≥ 2 and every Gi is a cograph of type S or J.

(J) G =
∑k

i=1
Gi with k ≥ 2 and every Gi is a cograph of type S or U.

We will use this property to prove the following theorem:

Theorem 11 If G is a cograph, then χlid(G) ≤ 2ω(G)− 1.

Proof. Let χ̃lid(G) be the least integer k such that G has a lid-coloring c with colors
1, . . . , k such that for any vertex v that is not universal, c(N [v]) 6= {1, . . . , k} (in other
words, if a vertex sees all the colors, then it is universal). Such a coloring is called a strong

lid-coloring of G. Observe that if G has a universal vertex, then G must be of type S or J.
We will prove the following result by induction:

Claim. For any cograph G, χlid(G) ≤ 2ω(G)− 1 and χ̃lid(G) ≤ 2ω(G).

If G is a single vertex, then it is universal and therefore χ̃lid(G) = χlid(G) = 1 = 2×1−1
and the assumption holds.

Assume now that G is of type J. There exist G1, . . . , Gk, k ≥ 2, each of type S or U,
such that G =

∑k

i=1
Gi. Let G1, . . . , Gs (0 ≤ s ≤ k) be of type S and Gs+1, . . . , Gk be of

type U. Consider a lid-coloring c1 of G1 and a strong lid-coloring ci of Gi for 2 ≤ i ≤ k,
such that the sets of colors within Gi and Gj, i 6= j, are disjoint. Then the coloring c of
G defined by c(v) = ci(v) for any v ∈ Gi is a lid-coloring of G. To see this, assume two
adjacent vertices u and v such that N [u] 6= N [v] and c(N [u]) = c(N [v]). Since every ci is
a lid-coloring of Gi the vertices u and v must be in different Gi’s, say u ∈ Gi and v ∈ Gj ,
i < j. But then in order to have c(N [u]) = c(N [v]), u and v must see all the colors in ci
and cj , respectively. Since cj is a strong lid-coloring of Gj, v is universal in Gj . This means
that Gj (and therefore Gi) is of type S. Hence, u and v are universal in G and N [u] = N [v],
a contradiction. As a consequence c is a lid-coloring of G.

If c1 is a strong coloring of G1, then c is a strong lid-coloring of G: take a vertex v ∈ Gi

that sees all the colors in c. Then it also sees all the colors in ci, so it is universal in Gi

and G.
So we have χlid(G) ≤ χlid(G1) +

∑k

i=2
χ̃lid(Gi) and χ̃lid(G) ≤

∑k

i=1
χ̃lid(Gi). Since

ω(G) =
∑k

i=1
ω(Gi) we have by induction:

χlid(G) ≤ 2ω(G1)− 1 +

k∑

i=2

(2ω(Gi)) = 2×

k∑

i=1

ω(Gi)− 1 = 2ω(G)− 1

11



and

χ̃lid(G) ≤

k∑

i=1

(2ω(Gi)) = 2ω(G).

Assume now that G is of type U. There exist G1, . . . , Gk, k ≥ 2, each of type S or J, such
that G =

⋃k

i=1
Gi. Consider a lid-coloring ci of Gi with colors 1, . . . , χlid(Gi). Without

loss of generality we have χlid(G1) = maxki=1 χlid(Gi). The coloring c of G defined by
c(v) = ci(v) for any v ∈ Gi is clearly a lid-coloring of G, and so χlid(G) = maxki=1 χlid(Gi).

To obtain a strong lid-coloring, assign a new color χlid(G1)+1 to all the vertices colored 1
inG1, and color all the other vertices ofG as they were colored in c. The coloring c′ obtained
is still a lid-coloring of G. Since no vertex u satisfies c(N [u]) = {1, . . . , χlid(G1) + 1} (the
vertices in G1 miss color 1, while the others miss color χlid(G1) + 1), c′ is also a strong
lid-coloring of G. Therefore χ̃lid(G) ≤ maxki=1 χlid(Gi) + 1. Since ω(G) = maxki=1 ω(Gi) we
have by induction

χlid(G) ≤
k

max
i=1

(2ω(Gi)− 1) = 2ω(G)− 1

and
χ̃lid(G) ≤

k
max
i=1

(2ω(Gi)− 1) + 1 = 2ω(G).

�

The bound of Theorem 11 is tight. The following construction gives an example of
cographs of clique number ω requiring 2ω − 1 colors in any lid-coloring. For any k ≥ 1,
take a complete graph with vertex set v1, . . . , vk and for each 2 ≤ i ≤ k add a vertex ui such
that N(ui) = {vi, vi+1, . . . , vk}. This graph is a cograph with clique number k, the vertices
ui form an independent set U , and every vertex vi satisfies N(vi) ∩ U = {u2, . . . , ui}. Let
c be a lid-coloring of this graph, then for any 3 ≤ i ≤ k the vertex ui must be assigned
a color distinct from c(u2), . . . , c(ui−1) and c(v1), . . . , c(vk) since otherwise we would have
c(N [vi]) = c(N [vi−1]). Hence, at least k + (k − 1) = 2k − 1 distinct colors are required.

Since cographs have bounded clique-width (indeed, these are exactly the graphs with
clique-width at most two), Theorem 11 together with [10] imply that the lid-chromatic
number of a cograph of bounded clique number can be computed in linear time.

Given the results in Sections 2 to 6, it seems natural to conjecture that every perfect
graph G has lid-chromatic number at most 2χ(G). This is not true, however, as the follow-
ing example shows. Take three stable sets S1, S2, S3, each of size k, add all possible edges
between S1 and S2, add a perfect matching between S1 and S3, and add the complement
of a perfect matching between S2 and S3. The obtained graph Gk is perfect: since the
subgraph of Gk induced by S1 and S2 is a complete bipartite graph, Gk is bipartite if and
only if it does not have a triangle, and is 3-colorable otherwise.

Consider a lid-coloring c of Gk, and a vertex x2 of S2. Let x3 be the only vertex of
S3 that is not adjacent to x2, and x1 be the unique neighbor of x3 in S1. Observe that
N [x1] = N [x3] ∪ {x2}. Since c(N [x1]) 6= c(N [x3]), the color of x2 appears only once in
S2. Hence, all the vertices of S2 have distinct colors and it follows that χlid(Gk) ≥ k + 2,
whereas χ(Gk) = ω(Gk) = 3.
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7 Graphs with bounded maximum degree

Proposition 2 If a graph G has maximum degree ∆, then χlid(G) ≤ ∆3 −∆2 +∆+ 1.

Proof. Let c be a coloring of G so that vertices at distance at most three in G have
distinct colors. Since every vertex has at most ∆3 −∆2 +∆ vertices at distance at most
three, such a coloring using at most ∆3 −∆2 +∆ + 1 colors exists. Let uv be an edge of
G. Let Nu be the set of neighbors of u not in N [v] and Nv be the set of neighbors of v not
in N [u]. Using that vertices at distance at most two in G have distinct colors, we obtain
that all the elements of Nu (resp. Nv) have distinct colors. Since vertices at distance at
most three have distinct colors, the set of colors of Nu and Nv are disjoint. If N [u] 6= N [v],
then Nu ∪Nv 6= ∅, and c(N [u]) 6= c(N [v]) by the previous remark. �

We believe that this result is not optimal, and that the bound should rather be quadratic
in ∆:

Question 1 Is it true that for any graph G with maximum degree ∆, we have χlid(G) =
O(∆2)?

If true, then this result would be best possible. Take a projective plane P of order n,
for some prime power n. Let Gn+1 be the graph obtained from the complete graph on
n + 1 vertices by adding, for every vertex v of the clique, a vertex v′ adjacent only to v.
Note that in any lid-coloring of Gn+1, all vertices v′ must receive distinct colors. For any
line l of the projective plane P , consider a copy Gl

n+1 of Gn+1 in which the new vertices
v′ are indexed by the n + 1 points of l. For any point p of P , identify the n + 1 vertices
indexed p in the graphs Gl

n+1, where p ∈ l, into a single vertex p∗. The resulting graph
Hn+1 is (n + 1)-regular and has (2n+ 1)(n+ 2) vertices. By construction, all the vertices
p∗, p ∈ P , have distinct colors in any lid-coloring. Hence, at least n2 +n+1 = ∆2−∆+1
colors are required in any lid-coloring of this ∆-regular graph. The 3-regular graph H3

with χlid(H3) ≥ 7 is depicted in Figure 2.

We saw that the lid-chromatic number cannot be upper-bounded by the chromatic
number. For a graph G, the square of G, denoted by G2, is the graph with the same vertex
set as G, in which two vertices are adjacent whenever they are at distance at most two
in G. The following question is somehow related to the previous one (depending of the
possible linearity of f).

Question 2 Does there exist a function f so that for any graph G, we have χlid(G) ≤
f(χ(G2))?

8 Planar and outerplanar graphs

This section is devoted to graphs embeddable in the plane. A maximal outerplanar graph
is a 2-tree and so is 6-lid colorable by Theorem 7. However, χlid is not monotone under
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Figure 2: In any lid-coloring of the 3-regular graph H3, the seven white vertices must
receive pairwise distinct colors.

taking subgraphs and so this result does not extend to all outerplanar graphs. So we have
to use a different strategy to give an upper bound of the lid-chromatic number on the class
of outerplanar graphs.

Theorem 12 Every outerplanar graph is 20-lid-colorable.

Proof. Let G be an outerplanar graph embedded in the plane such that all the vertices
lie in the outer face. If G is not connected, then we can color each connected component
independently, so we may assume that G is connected.

Let x0 be a vertex of minimum degree in G (x0 has degree at most two). For any i ≥ 1,
let Li be the set of vertices at distance i from x0. The embedding of G induces a cyclic
order on the neighbors of every vertex, and these cyclic orders inductively define an order
x1
i , . . . , x

ki
i on the vertices of Li. In Li, there may be only edges between two consecutives

vertices xj
i and xj+1

i (this implies that Li induces a disjoint union of paths). Furthermore,

a vertex of Li has at most two neigbors in Li−1 and two vertices xj
i and xj′

i of Li have no
common neighbor in Li+1 if j′ 6= j + 1 and at most one if j′ = j + 1.

For i ∈ {1, 2, 3, 4}, let Ci be the set of 5 integers {1 + 5(i − 1), . . . , 5i}. We start by
coloring x0 with color 1, and mark the vertex xk1

1 . We then apply Algorithm 1.

It is easy to check that this algorithm provides a proper coloring c of G with 20 colors
such that for any i, c(Li) ⊆ Ci mod 4. Furthermore, for any vertex xj

i , |c(N(xj
i ))∩Li+1| ≤ 4.

Let us call forbidden color of xj
i the color of Ci+1 mod 4 that does not appear in N(xj

i )∩Li+1.
Then the forbidden color of xj

i is in c(N [xj−1

i ]) and in c(N [xj+1

i ]) if possible (i.e. if those
vertices have a neighbor in Li+1 not adjacent to xj

i ).

Let us prove that the coloring given by the algorithm is locally identifying. Let uv
be an edge of G such that N [u] 6= N [v]. If uv is not an edge of a layer Li, then we can
assume that u ∈ Li and v ∈ Li+1. If u 6= x0, then there is a neighbor t of u in Li−1 and
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Algorithm 1 Lid-coloring of outerplanar graphs

1: for all Li do
2: for all vertex xj

i in Li do
3: mark, if it exists, the last neighbor in Li+1 of xj

i

4: end for
5: c1 ← 1 + 5× (i mod 4)
6: c∅ ← 5× (i mod 4)
7: repeat
8: begin with color c1 and color Li in order until the next marked vertex xj

i by
alternating colors of Ci mod 4 \ {c∅} (following the pattern c1c2c3c4c1 . . .)

9: c1 ← c∅
10: c∅ ← c

x
j−1

i

11: until Li is completely colored
12: end for

then c(t) /∈ c(N [v]). So we may assume that u = x0. The vertex v has degree at least 2,
otherwise N [u] = N [v], so there is a neighbor t 6= u of v. If t ∈ L1 then there is another
neighbor t′ of v in L2 (because N [u] 6= N [v]). So we can assume that t ∈ L2 and then
c(t) /∈ c(N [u]). So in all cases, c(N [u]) 6= c(N [v]).

Assume now that u, v ∈ Li for some i. Without loss of generality, we may assume that
u = xj

i , v = xj+1

i for some j and that there is a vertex t ∈ N(u) \N(v). If t ∈ Li, then we
are done because 4 consecutives vertices have different colors in Li. If t ∈ Li−1, then v has
at most two neighbors in Li−1. Those two neighbors are just following t in the layer Li−1

and so c(t) /∈ c(N [v]). Otherwise, t ∈ Li+1, we can choose t to be the last vertex of Li+1

that is in N [u] but not in N [v]. Then c(t) /∈ c(N [v]) because it is the forbidden color of v
in Li+1. So c is a lid-coloring of G. �

We believe that this bound is far from tight.

Question 3 Is it true that every outerplanar graph G satisfies χlid(G) ≤ 6?

We now prove that sparse enough planar graphs have low lid-chromatic number.

Theorem 13 If G is a planar graph with girth at least 36, then χlid(G) ≤ 5.

Proof. Let us call nice a lid-coloring c using at most 5 colors such that every vertex v
with degree at least 2 satisfies |c(N [v])| = 3. We show that every planar graph with girth
at least 36 admits a nice lid-coloring.

Suppose that G is a planar graph with girth at least 36 that does not admit a nice
lid-coloring and with the minimum number of vertices. Let us first show that G does not
contain a vertex of degree at most 1. The case of a vertex of degree 0 is trivial, so suppose
that G contains a vertex u of degree 1 adjacent to another vertex v. By minimality of
G, the graph G′ = G \ u admits a nice lid-coloring c. We consider three cases according
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to the degree of v in G′, and in all three cases, we extend c to a nice lid-coloring of G in
order to obtain a contradiction. If v has degree at least 2 in G′, then we assign to u a color
in c(N [v]) \ {c(v)}. So c(N [v]) is unchanged, and c(N [u]) 6= c(N [v]) since |c(N [u])| = 2
and |c(N [v])| = 3. We thus have a nice lid-coloring of G. If v has degree 1 in G′, then v
is adjacent to another vertex w in G′ and we assign to u a color that does not belong to
c(N [w]). Such a color exists since |c(N [w])| = 3 and the obtained coloring of G is nice:
|c(N [v])| = 3 and c(N [v]) 6= c(N [w]) since c(u) ∈ c(N [v]) but c(u) 6∈ c(N [w]). If v has
degree 0 in G′, then N [u] = N [v] in G, so u and v do not need to be identified.

It follows that G has minimum degree at least 2. It is well-known that if the girth of
a planar graph is at least 5k + 1, then it contains either a vertex of degree at most 1, or
a path consisting of k consecutive vertices of degree 2. The graph G thus contains a path
of 7 vertices of degree 2. So we can assume that G contains a path P = x1x2 . . . x9 such
that the degree of x1 is at least 3, the degree of x2, . . . , x8 is exactly 2, and the degree of
x9 is at least 2. By minimality of G, the graph G′ = G \ {x2, x3, . . . , x8} admits a nice
lid-coloring c. Without loss of generality, assume that c(x1) = 1 and c(N [x1]) = {1, 2, 3},
since x1 has degree at least 2 in G′. We note a = c(x9). If the degree of x9 in G′ is at least
2, then we note {b, c} = c(N(x9)). If the degree of x9 in G′ is 1, then x9 is adjacent to
a vertex x10 and we note {b, c} = {1, 2, 3, 4, 5} \ c(N [x10]). The following table gives the
colors of x2, x3, . . . , x8 for all the possible values of (a; b, c). We can thus extend c to a nice
lid-coloring of G, a contradiction.

2431243 (1;2,3) 2431543 (2;1,3) 2431542 (3;1,2) 2534152 (4;1,2) 2435142 (5;1,2)
2431254 (1;2,4) 2541354 (2;1,4) 2431254 (3;1,4) 2431253 (4;1,3) 2431243 (5;1,3)
2431245 (1;2,5) 2451345 (2;1,5) 2431245 (3;1,5) 2451235 (4;1,5) 2435124 (5;1,4)
2431253 (1;3,4) 2531453 (2;3,4) 2431254 (3;2,4) 2431253 (4;2,3) 2431243 (5;2,3)
2431243 (1;3,5) 2431543 (2;3,5) 2431245 (3;2,5) 2451235 (4;2,5) 2435214 (5;2,4)
2431524 (1;4,5) 3421534 (2;4,5) 2431524 (3;4,5) 2431523 (4;3,5) 2435123 (5;3,4)

�

We conjecture that planar graphs have bounded lid-chromatic number.

9 Connectivity and lid-coloring

Most of the proofs we gave in this article heavily depend on the structure of the classes
of graphs we were considering. We now give a slightly more general tool, allowing us to
extend results on the 2-connected components of a graph to the whole graph:

Theorem 14 Let k be an integer and G be a graph such that every 2-connected component

of G is k-lid-colorable. Let H be the subgraph of G induced by the cut-vertices of G. Then

χlid(G) ≤ k + χ(H).
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Proof. In this proof, we will consider two different colorings of the vertices: the lid-
coloring of the vertices of G and the proper coloring of the graph induced by the cut
vertices. To avoid confusion, we call type the color of a cut vertex in the second coloring.
We prove the following stronger result:

Claim: If t is a proper coloring of H with colors t1, . . . , th, then G admits a (k + h)-
lid-coloring c such that for each maximal 2-connected component C of G, (∗) there are h
colors not appearing in c(C), say cC1 , . . . , c

C
h , such that for every cut-vertex v of G lying in

C, if t(v) = ti, then c(N(v)) contains cCi but none of the cCj , j 6= i.

We prove the claim by induction on the number of cut-vertices of G. We may assume
that G has a cut-vertex, otherwise the property is trivially true.

Let t be a proper coloring of H with colors t1, . . . , th. Let u be a cut-vertex of G and
let C1, . . . , Cs be the connected components of G−u. We can choose u so that at most one
of the Ci’s, say C1, contains the cut-vertices. Let G′ = C1 + u and let C be the maximal
2-connected component of G′ containing u. Observe that the vertex u is not a cut-vertex
in G′. By the induction, G′ has a (k + h)-lid-coloring c such that c(C) ⊆ {1, . . . , k} and
every cut-vertex v of C with t(v) = ti has a neighbor colored k+ i, but no neighbor colored
k + j, j 6= i. We can also assume that t(u) = t1 and 1 ∈ c(N [u]) but c(u) 6= 1.

We now extend the coloring c to G by lid-coloring each component C2 + u, . . . , Cs + u
with colors 2, 3, . . . , k + 1 such that k + 1 ∈ c(N [u]). Let us prove that the coloring
obtained is a lid-coloring of G satisfying (∗). In order to prove that c is a lid-coloring, by
the induction one just needs to check that u has no neighbor v with c(N [v]) = c(N [u]).
For the sake of contradiction, suppose that such a vertex v exists. Since 1 ∈ c(N [u]), v has
to lie in C. If v is a cut-vertex of G′, then t(v) 6= t1 (t is a proper coloring of H) and by
the induction, k + 1 6∈ c(N [v]). If v is not a cut-vertex of G′, then all its neighbors lie in
C and again, k + 1 6∈ c(N [v]). Since k + 1 ∈ c(N [u]), we obtain a contradiction.

It remains to prove that (∗) holds for every maximal 2-connected component of G. It
clearly does for C2 + u, . . . , Cs + u, since u is the only cut-vertex of G that they contain
and 1 ∈ c(N [u]) ⊆ {1, . . . , k+1}, while none of these components contains color 1 or color
k + i with 2 ≤ i ≤ h. The component C also satisfies (∗), since u has a neighbor colored
k+1 and no neighbor colored k+ i with 2 ≤ i ≤ h. By the induction, Property (∗) trivially
holds for the remaining maximal 2-connected components of G. This completes the proof
of the claim. �

Among others, this result can be used to prove that outerplanar graphs without triangles
can be 8-lid-colored. We omit the details; we suspect that Theorem 14 can be used to prove
results on much wider classes of graphs.

References

[1] S. Akbari, H. Bidkhori, and N. Nosrati. r-Strong edge colorings of graphs. Discrete

Math., 306(23):3005–3010, 2006.

17



[2] N. Alon, R. Berke, K. Buchin, M. Buchin, P. Csorba, S. Shannigrahi, B. Speckmann
and P. Zumstein. Polychromatic colorings of plane graphs. Proc. of the 24 Annual

Symposium on Computational Geometry, 338–345, 2008.

[3] P.N. Balister, O.M. Riordan, and R.H. Schelp. Vertex-distinguishing edge-colorings of
graphs. Journal of graph theory, 42:95–109, 2003.

[4] J. A. Bondy. Induced subsets. J. Combin. Theory Ser. B, 12(2):201–202, 1972.
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