A comparison of classification techniques for the P300 speller - Archive ouverte HAL
Article Dans Une Revue Journal of Neural Engineering Année : 2006

A comparison of classification techniques for the P300 speller

Résumé

This study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for classifying offline data from eight users. The relative performance of the classifiers is evaluated, along with the practical concerns regarding the implementation of the respective methods. The results indicate that while all methods attained acceptable performance levels, SWLDA and FLD provide the best overall performance and implementation characteristics for practical classification of P300 Speller data.
Fichier principal
Vignette du fichier
krusienski_jne_2006.pdf (149.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00521054 , version 1 (24-09-2010)

Identifiants

Citer

Dean J Krusienski, Eric W Sellers, François Cabestaing, Sabri Bayoudh, Dennis J Mcfarland, et al.. A comparison of classification techniques for the P300 speller. Journal of Neural Engineering, 2006, 3 (4), pp.299-305. ⟨10.1088/1741-2560/3/4/007⟩. ⟨hal-00521054⟩
438 Consultations
4758 Téléchargements

Altmetric

Partager

More