The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: the zero degree case - Archive ouverte HAL Access content directly
Journal Articles Commun. Contemp. Math. Year : 2011

The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: the zero degree case

Mickaël dos Santos
Petru Mironescu
Oleksandr Misiats
  • Function : Author
  • PersonId : 878842

Abstract

We consider minimizers of the Ginzburg-Landau energy with pinning term and zero degree Dirichlet boundary condition. Without any assumptions on the pinning term, we prove that these minimizers do not develop vortices in the limit $\varepsilon\to0$. We next consider the specific case of a periodic discontinuous pinning term taking two values. In this setting, we determine the asymptotic behavior of the minimizers as $\varepsilon\to0$.
Fichier principal
Vignette du fichier
Periodic_GL_zero_degree.pdf (245.82 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00515893 , version 1 (08-09-2010)

Identifiers

  • HAL Id : hal-00515893 , version 1

Cite

Mickaël dos Santos, Petru Mironescu, Oleksandr Misiats. The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: the zero degree case. Commun. Contemp. Math., 2011, 13 (5), pp.885-914. ⟨hal-00515893⟩
216 View
109 Download

Share

Gmail Facebook X LinkedIn More