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Université de Lyon, Université Lyon 1 , Institut Camille Jordan CNRS UMR 5208

43, boulevard du 11 novembre 1918, F-69622 Villeurbanne, France

dossantos@math.univ-lyon1.fr

Petru Mironescu
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Abstract

We consider minimizers of the Ginzburg-Landau energy with pinning term and zero degree
Dirichlet boundary condition. Without any assumptions on the pinning term, we prove that these
minimizers do not develop vortices in the limit ε → 0. We next consider the specific case of a
periodic discontinuous pinning term taking two values. In this setting, we determine the asymptotic
behavior of the minimizers as ε→ 0.

1 Introduction

Let Ω ⊂ R
2 be a simply connected domain and let aε : Ω → R be a measurable function such that

0 < b ≤ aε ≤ 1. We associate with aε a generalized Ginzburg-Landau (GL, in short) type energy

Eε(u) =
1

2

∫

Ω

{

|∇u(x)|2 +
1

2ε2
(a2
ε(x) − |u(x)|2)2

}

dx. (1)

Here, u ∈ H1(Ω,C) and ε > 0 is the GL parameter.
This variant of the standard GL type energy (which corresponds to aε ≡ 1) is called GL functional

with pinning term aε or pinned GL functional. We quote here few relevant papers among the vast
literature concerning this energy functional.

• In [2], the authors consider the case where aε = a ∈ Cβ(Ω) is independent of ε.
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• [18] and [3] treat the case where aε = a is independent of ε and takes the value b in ω and
1 outside ω, with ω smooth subset of Ω. The latter article considers the case of an applied
magnetic field.

• In [1], aε depends on ε and is smooth. The oscillation rate of aε depends on ε.

The goal of this article is to study the pinned GL functional with a fast oscillating discontinuous
pinning term aε. This may be viewed as a simplification of more realistic models which describe
superconductivity phenomena for composite superconductors. The experimental pictures suggest
nearly 2D structure of parallel vortex tubes ([21], Fig I.4). Therefore, the domain Ω can be viewed
as a cross-section of a multifilamentary wire with a number of thin superconducting filaments. Such
multifilamentary wires are widely used in industry, including magnetic energy-storing devices, trans-
formers and power generators [17], [15].

Another important practical issue in modeling superconductivity is to decrease the energy dissi-
pation in superconductors. Here, the dissipation occurs due to currents associated with the motion of
vortices ([19], [4]). This dissipation as well the thermomagnetic stability can be improved by pinning
(”fixing the positions”) of vortices. This, in turn, can be done by introducing impurities or inclusions
in the superconductor.

Our pinning term is periodic with respect to a δ × δ grid where δ = δ(ε) → 0. As in [1], due to
the fast oscillations, this problem is related to a periodic homogenization problem (depending on the
relation between ε and δ).

The boundary condition we consider is the Dirichlet one. More specifically, we fix some g ∈
H1/2(∂Ω,S1). Our class of test functions is

H1
g := {u ∈ H1(Ω,C) |u = g on ∂Ω}. (2)

We consider solutions uε of the minimization problem

inf
u∈H1

g

Eε(u). (3)

In this article we will consider only the case where the boundary data g has zero degree. The case
where the degree is not zero requires additional techniques and will be investigated in a forthcoming
paper.

Recall that the degree (winding number) of g is defined as

deg∂Ω(g) =
1

2π

∫

∂Ω
g × ∂τg dτ = 0,

where:

• For z ∈ C, ℜz denotes the real part of z and ℑz denotes the imaginary part of z.

• ”×” stands for the ”vectorial product” in C, z1 × z2 = ℑ(z1z2), z1, z2 ∈ C.

• τ is the unit and direct tangent vector at ∂Ω, i.e., denoting ν to be the unit outward normal to
∂Ω, one has τ = ν⊥.
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• ∂τ is the tangential derivative.

This degree is an integer. For a proof of this assertion and for more properties of the topological
degree of g, see e.g. [10] or [5].

If uε is a minimizer of the problem (3), then it satisfies the Euler-Lagrange equation







−∆uε =
1

ε2
uε(a

2
ε − |uε|2) in Ω

uε = g on ∂Ω
. (4)

Following [18], one may prove that in the special case g ≡ 1 there is a unique minimizer Uε.
Moreover, this minimizer satisfies b ≤ Uε ≤ 1. This Uε plays an important role in the study of GL

functional with pinning term. Indeed, define, for u ∈ H1
g , a new map v =

u

Uε
∈ H1

g . Then Eε

decouples as follows [18]
Eε(u) = Eε(Uεv) = f(ε) + Fε(v), (5)

where

f(ε) := Eε(Uε), Fε(v) :=
1

2

∫

Ω

{

U2
ε |∇v|2 +

1

2ε2
U4
ε (1 − |v|2)2

}

. (6)

Therefore, u minimizes Eε in H1
g (Ω) if and only if v minimizes Fε in H1

g . In what follows, we denote
by vε a minimizer of Fε in H1

g .
Following again [18], we have |vε| ≤ 1 and |uε| ≤ 1 in Ω.
From (5) and (6) we see that the study of the pinned GL is reduced to the study of the weighted

GL functional Fε and to the study of the asymptotics of Uε.
The plan of our work is the following: in Section 2 we prove a ”clearing out” result (Theorem

1). More specifically, we prove that vε is ”vortexless” for small ε, i. e., that |vε| → 1 uniformly in Ω
as ε → 0. (Recall that deg∂Ω(g) = 0; this assumption is essential for our conclusion.) This result is
true for any weighted GL functionals. Such general functionals are defined by formula (7) and do not
require any assumption except uniform bounds on the weights. In particular, clearing out does not
rely on any periodicity assumption. We believe that this result has its own interest.
The clearing out result reduces the study of the behavior of vε to the one of S

1-valued maps. In other
words, we will reduce the problem of minimizing Fε in the class of all test functions to the one of
minimizing Fε in the class of S

1-valued maps. The latter problem will be studied in detail in Section
3. There, the asymptotic analysis of minimizers of the Fε among S

1-valued maps, combined with an
asymptotic analysis of Uε (analysis performed at the beginning of Section 3), will allow us to conclude
Section 3 by describing the behavior of uε as ε→ 0.
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2 Clearing out for general weighted Ginzburg-Landau type func-

tionals

Let b ∈ (0, 1) and let αε ∈ W 1,∞(Ω), βε ∈ L∞(Ω) be such that b ≤ αε, βε ≤ 1. We associate to αε
and βε the weighted GL type functional defined through the formula

Fε : H1(Ω,C) → R
+

v 7→ 1

2

∫

Ω

{

αε|∇v|2 +
βε
2ε2

(1 − |v|2)2
}

. (7)

Let g ∈ H1/2(∂Ω,S1) be such that deg∂Ω(g) = 0. For ε > 0, we denote by vε a minimizer of Fε in
H1
g . One may easily prove that vε satisfies







−div(αε∇vε) =
βε
ε2
vε(1 − |vε|2) in Ω

vε = g on ∂Ω
. (8)

Since deg∂Ω(g) = 0, we have [7] H1
g (Ω,S

1) = {v ∈ H1
g | |v| = 1 in Ω} 6= ∅.

If we take any fixed map v ∈ H1
g (Ω,S

1) as a test function for Fε, we find that there is C0 depending
only on g such that

min
v∈H1

g (Ω)
Fε(v) = Fε(vε) ≤ C0. (9)

2.1 Uniform convergence of |vε| to 1

This part is devoted to the proof of the following theorem.

Theorem 1. When ε→ 0, we have |vε| → 1 uniformly in Ω.

For the convenience of the reader, we split the rather long proof of Theorem 1 into two parts.

2.1.1 Theorem 1 holds far away the boundary

We prove that, for sufficiently small ε, |vε| is arbitrarly close to 1 outside an 2
√
ε-neighborhood of

∂Ω.

Proposition 1. Let εn ↓ 0 and {xn}n ⊂ Ω be such that dist(xn, ∂Ω) ≥ 2
√
εn. Then |vεn(xn)| → 1.

Proof. We write ε instead of εn. Let n be sufficiently large such that
√
ε > ε and consider the circular

annulus B√
ε(xn) \Bε(xn).

From (9), we have, with Cr := {|x− xn| = r},

C0 ≥ b

4

∫

B√
ε(xn)\Bε(xn)

{

|∇vε|2 +
1

ε2
(1 − |vε|2)2

}

=
b

4

∫

√
ε

ε

1

r
· r

∫

Cr

{

|∇vε|2 +
1

ε2
(1 − |vε|2)2

}

. (10)

By mean value argument, there are C1 (depending only on g,Ω and b) and r ∈ (ε,
√
ε) such that

r

∫

Cr

{

|∇vε|2 +
1

ε2
(1 − |vε|2)2

}

≤ C1

| ln ε| . (11)
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Lemma 1. Let δ > 0. Then, for large n and for r as in (11), we have

1. Var (vε, Cr) ≤ δ, where Var (vε, Cr) :=

∫

Cr

|∂τvε|;

2. |vε| ≥ 1 − 2δ on Cr.

Proof. Assertion 1. is a direct consequence of the bound (11), which yields

(
∫

Cr

|∂τvε|
)2

≤
(

∫

Cr

|∇vε|
)2

≤
∫

Cr

1

∫

Cr

|∇vε|2 = 2πr

∫

Cr

|∇vε|2 ≤ 2πC1

| ln ε| .

It follows that, for large n, we have |Var (vε, Cr)| ≤ δ.
In order to prove 2., we argue by contradiction. Assume that there are δ > 0, a subsequence

{nk}k and points xnk
∈ Cr such that |vε(xnk

)| < 1 − 2δ (here ε = εnk
).

From the estimate 1. on Var (vε, Cr), one has, for large k, |vε| < 1 − δ on Cr.
Consequently, r

∫

Cr

(1 − |vεnk
|2)2 ≥ 2πr2δ2. Since r ≥ ε, this inequality contradicts the estimate

(11) for small ε.

So far, we proved the existence of a circle around xn such that, on that circle, |vε| is close to 1 and
vε varies little. More specifically: if 0 < γ < 1 then, for large n, there exists Sε ⊂ B1(0) such that

• dist(Sε, 0) ≥ 1 − γ,

• Sε is the smallest of the two regions delimited by a chord in the closed unit disc,

• vε(Cr) ⊂ Sε.

The following lemma implies that, under the above assumptions on Sε and on r, we have, for large
n, |vε(xn)| ≥ 1 − γ. This inequality completes the proof of Proposition 1, which is the first step in
the proof of Theorem 1.

Lemma 2. Let C be a chord in the closed unit disc, C different from a diameter. Let S be the
smallest of the two regions enclosed by the chord and the boundary of the disc.
Let O be a Lipchitz bounded open set and let g ∈ H1/2(∂O, S).
Let α̃, β̃ ∈ L∞(O,R) satisfy ess inf α̃ > 0, ess inf β̃ > 0.
If v minimizes GL type energy

F̃ (v) =

∫

O

{

α̃(x)|∇v|2 + β̃(x)(1 − |v|2)2
}

in H1
g (O), then v(O) ⊂ S.

Remark 1. This statement generalizes Lemma 8 in [6] (there α̃ = 1, β̃ = 1/(2ε2)). However, the
proof in [6] does not apply directly to our situation.
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Proof. Clearly, one may assume that O is connected.
We start by noting that v has the following properties:

• v is continuous in O (this relies on the equation satisfied by v, on Theorem 2 in [20] and on Sobolev
embeddings).

• |v| ≤ 1. Indeed, consider the test function v′ =







v, if |v| ≤ 1
v

|v| , if |v| > 1
. Since v′ has more energy than v,

we find that |v| ≤ 1 a. e. and thus |v| ≤ 1.

Without loss of generality, we may assume that, for some µ ∈ (0, 1), we have C = {z ∈ B1(0) : ℜz = µ}
and S = {z ∈ B1(0);ℜz ≥ µ}.

The map w := |ℜv| + iℑv equals g on ∂O and has the same energy as v. Thus w minimizes F̃ .
In particular, w is continuous. Therefore, if we prove that w(O) ⊂ S, we will have v(O) ⊂ S. In
conclusion, we reduced the problem to the case where ℜv ≥ 0.

Let P be the orthogonal projection on S. When z ∈ B1(0) ∩ {ℜz ≥ 0}, we have

P (z) =











z, if ℜz ≥ µ

µ+ iℑz, if |ℑz| ≤
√

1 − µ2 and ℜz < µ

µ+ i(sign ℑz)
√

1 − µ2, if |ℑz| >
√

1 − µ2 and ℜz < µ

. (12)

One may check easily that

|z| ≤ |P (z)| ≤ 1 for z ∈ B1(0) ∩ {ℜz ≥ 0}. (13)

Set ψ(z) := P (w(z)), which equals g on ∂O. Since P is 1-Lipschitz, we have |∇ψ| ≤ |∇w|. On the
other hand, (13) implies |w| ≤ |ψ| ≤ 1. Consequently, F̃ (ψ) ≤ F̃ (w).

Since w is a minimizer, ψ is also a minimizer. Using the previous pointwise estimates and the
equality of the energies, one may conclude that |ψ(z)| = |w(z)| for each z (by continuity of w and ψ)
and |∇ψ| = |∇w| a.e.

By solving the equation |z| = |P (z)|, we see that |ψ| = |w| implies that w takes values in S ∪ V ,
where V := {z′ ∈ S

1 | 0 ≤ ℜz′ < µ}.
We have to prove that U := w−1(V ) = ∅. We argue by contradiction and assume U 6= ∅. Then U

is open, since U = O \ w−1(S) with S a closed set.
We first prove that w is locally constant in U . Indeed, in U , w satisfies div(α∇w) = 0. Since

w ∈ H1(U,S1), we may write, in U , w = eıϕ, where ϕ ∈ H1 [8]. Let ζ ∈ C∞
c (U). If we multiply the

equation div(α∇(cosϕ)) = 0 by ζ cosϕ and the equation div(α∇(sinϕ)) = 0 by ζ sinϕ and add the

two results, we obtain

∫

αζ|∇ϕ|2 = 0, so that ϕ (and thus w) is locally constant in U .

Let W 6= ∅ be a connected component of U , so that w ≡ s ∈ V in W . Consider the non empty
set Y := w−1({s}). Then Y is open in O (since w is locally constant in U), and clearly Y is closed in
O. Therefore, Y = O, i. e., w ≡ s in O. This contradicts the facts that g : ∂O → S, tr∂Ow = g and
s /∈ S.
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2.1.2 Theorem 1 holds close to the boundary

We prove that, inside an oε(1)-strip along ∂Ω and for sufficiently small ε, |vε| is arbitrarily close to 1.
The key argument will be provided by the following lemma.

Lemma 3. Let (xε)ε>0 ⊂ Ω be such that rε := dist(xε, ∂Ω) → 0. Then we have, for all C ≥ 2,
Fε(vε, BCrε(xε)) → 0.

Proof. Note that it suffices to prove the result for C = 2. (For larger values of C, it suffices to replace

xε by the point at distance
C + 1

2
rε from xε and at distance

C + 3

2
rε from ∂Ω.)

Let δ > 0. We will prove that there is εδ > 0 such that for ε < εδ, we have Fε(vε, B2rε(xε)) ≤ δ.
For the convenience of the reader, the proof is divided into four steps.

Step 1: Flattening of Ω and choice of a good triangle
Without loss of generality, we may assume that ∂Ω is flat near xε. The general case is obtained by
flattening the boundary. This will affect the equation satisfied by vε and the energy associated with
it, but not the conclusion of the proof below (which relies only on energy bounds and qualitative
conclusions derived form the equation of vε). From now on, we assume that Ω ⊂ R

2
+ and ∂Ω ⊂ R in

a neighborhood of fixed size of xε. We also assume, without loss of generality, that xε = (0, rε).
For ℓ > 0, we set

Tℓ := {(s, t) | t = s+ ℓ, s ∈ [−ℓ, 0]} ∪ {(s, t) | t = −s+ ℓ, s ∈ (0, ℓ]} ⊂ R
2
+

(thus Tℓ is the union of two segments).
Denote by ωℓ the (solid) triangle enclosed by Tℓ and R. Then we have B(xε, 2rε) ∩ Ω ⊂ ω5rε .
Our goal is to construct, for an appropriate small ℓ (depending on xε and such that ℓ > 5rε) a test
function h : ωℓ → C such that tr∂ωℓ

h = tr∂ωℓ
vε and Fε(h, ωℓ) → 0. Since vε is a global minimizer of

Fε in H1
g (Ω,C), it follows that vε is also a minimizer of Fε in H1

tr∂ωℓ
v(ωℓ,C).

Our goal is to prove that Fε(vε, ωℓ) → 0. Since B2rε(xε) ⊂ ωℓ, the lemma will follow.
Let ε1 > 0 be such that for ε < ε1, 5r <

√
r. Let w be the harmonic extension of g to Ω. We

claim that

1. ∃C1 > 0 (independent of ε) and ∃ ℓ ∈ (5r,
√
r) such that

ℓ

∫

Tℓ

{

|∇vε|2 +
1

ε2
(1 − |vε|2)2 + |∇w|2

}

≤ C1

| ln r| , (14)

2. |vε(x)| −→
x∈Tℓ, x→∂Ω

1,

3. |vε| ≥ 1/2 on Tℓ (for sufficiently small ε).

The claim 1. comes directly from (9) and a mean value argument.
Claim 2. is proved in Lemma 4 below, using an argument essentially due to Boutet de Monvel and
Gabber [14].
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In order to prove Claim 3., we start by noting that

(
∫

Tℓ

|∂τ |vε||
)2

≤ Cℓ

∫

Tℓ

|∂τ |vε||2 ≤ Cℓ

∫

Tℓ

|∇vε|2 ≤ C ′

| ln r| . (15)

Consequently, there exists 0 < ε2 ≤ ε1 such that, for ε < ε2, the variation of |vε| on Tℓ is smaller than
1/2. Since, by Lemma 4, we have |vε| = 1 at the endpoints of Tℓ, we obtain that Claim 3. holds.

Lemma 4. Let α ∈ W 1,∞(Ω), β ∈ L∞(Ω; R+) be such that inf α > 0. Let v be a critical point of

u 7→
∫

α|∇u|2 +

∫

β(1 − |u|2)2 in the class H1
g (Ω), where g ∈ H1/2(∂Ω; S1). Then |v| ∈ C(Ω).

Proof. We first note that |v| ≤ 1 a. e. (by the maximum principle. This is obtained, e. g., by

noting that U := 1 − |v|2 satisfies

{

−div(α∇U) + 4β|v|2U = 2α|∇v|2 in Ω

U = 0 on ∂Ω
, and consequently

U ≥ 0 in Ω.) We next split v = v1 + v2, where v1 is the harmonic extension of g. It follows that v2

satisfies

{

−∆v2 = α−1∇α · ∇v + 2α−1βv(1 − |v|2) in Ω

v2 = 0 on ∂Ω
. Since |v| ≤ 1 and α ∈ W 1,∞, we obtain

v2 ∈ H2(Ω) ∩H1
0 ⊂ C0(Ω). On the other hand, we have v1 ∈ C(Ω) and |v1| ∈ C(Ω) (the last point

is essentially due to Boutet de Monvel and Gabber [14]; see also [11], Theorem A.3.2). Therefore, we
have |v| ∈ C(Ω).

Now that ℓ was properly chosen, we construct our test function h. This function will coincide
with vε outside ωℓ. Therefore, we will only explain how to construct h inside ωℓ. In order to obtain a
globally H1-map, we will set h equal vε on Tℓ. Let h be of the form h = ρeıψ; in order to have h = vε
on Tℓ, we will make sure that ρ = |v| and eıψ =

vε
|vε|

on Tℓ. In Step 2, we construct ρ. In Step 3, we

construct ψ. Finally, in Step 4 we estimate the energy of h and conclude.

Step 2 : Choice of the modulus ρ of the test function h
Let ρ : ωℓ → [0, 1] be defined by

ρ(s, t) =











t

s+ ℓ
(|vε(s, s+ ℓ)| − 1) + 1, if s < 0

t

−s+ ℓ
(|vε(s,−s+ ℓ)| − 1) + 1, if s > 0

.

Clearly, ρ ∈ H1(ωℓ, [0, 1]), ρ = |vε| on Tℓ and ρ = 1 on ∂ωℓ ∩ ∂Ω.

For further use, we estimate

∫

ωℓ

{

|∇ρ|2 +
1

ε2
(1 − ρ2)2

}

. We denote ω−
ℓ = {x = (s, t) ∈ ωℓ | s < 0}

(this is the left half of the triangle ωℓ). We will estimate the quantity

∫

ω−
ℓ

{

|∇ρ|2 +
1

ε2
(1 − ρ2)2

}

.

By symmetry, a similar estimate will hold in ω+
ℓ := ωℓ \ ω−

ℓ , and thus in ωℓ.
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We have

1

ε2

∫

ω−
ℓ

(1 − ρ2)2 ≤ 4

ε2

∫

ω−
ℓ

(1 − ρ)2 ≤ C

ε2

∫ 0

−ℓ
ds

∫ ℓ+s

0

t2

(s+ ℓ)2
(|vε(s, s+ ℓ)| − 1)2 dt

≤Cℓ
ε2

∫ 0

−ℓ
(|vε(s, s+ ℓ)| − 1)2 ds ≤ Cℓ

ε2

∫

Tℓ

(|vε| − 1)2 ds ≤ C

| ln r| .

(The last inequality comes from Claim 1.)

In order to estimate

∫

ω−
ℓ

|∇ρ|2, we start from the identity

∫

ω−
ℓ

|∇ρ|2 =

∫ 0

−ℓ
ds

∫ ℓ+s

0
dt

{

|∂sρ|2 + |∂tρ|2
}

.

On the one hand,

∫ 0

−ℓ
ds

∫ ℓ+s

0
dt|∂tρ|2 =

∫ 0

−ℓ

(|vε(s, s+ ℓ)| − 1)2

s+ ℓ
ds =

∫ 0

−ℓ

ds

s+ ℓ

(
∫ s

−ℓ

d

dk
[|vε|(k, k + ℓ)]

)2

≤
√

2ℓ

∫

Tℓ

|∇vε|2 ≤ C

| ln r| .

On the other hand, we have

|∂sρ|2 ≤ 2

(

t2

(s+ ℓ)4
(|vε(s, s+ ℓ)| − 1)2 +

t2

(s+ ℓ)2
(∇|vε|(s, s+ ℓ) · (1, 1))2

)

= 2(A1 +A2).

Since

∫ 0

−ℓ

∫ ℓ+s

0
A1 ≤

∫ 0

−ℓ

∫ ℓ+s

0

1

(s+ ℓ)2
(|vε(s, s+ ℓ)| − 1)2 =

∫ 0

−ℓ

1

s+ ℓ
(|vε(s, s+ ℓ)| − 1)2 ≤ C

| ln r|

and
∫ 0

−ℓ

∫ ℓ+s

0
A2 ≤ 2ℓ

∫

Tℓ

|∇vε|2 ≤ C

| ln r| ,

we find that

∫

ωℓ

|∇ρ|2 ≤ C

| ln r| . In conclusion, the following estimate holds:

∫

ωℓ

{

|∇ρ|2 +
1

ε2
(1 − ρ2)2

}

≤ C

| ln r| . (16)

Step 3 : Construction of an auxiliary phase ψ
Recall that |w(z)| → 1 uniformly as z → ∂Ω [11]. Thus, there is some 0 < ε3 ≤ ε2 such that for

ε < ε3 we have |w| ≥ 1/2 in ωℓ. For ε < ε3, we may write, in ωℓ, w = |w|eıϕ with ϕ ∈ H1(ωℓ,R). Note
that, by choice of ℓ, we have |vε| ≥ 1/2 on Tℓ and vε ∈ H1(Tℓ). Therefore, we may write vε = |vε|eıφ
on Tℓ, with 1/2 ≤ |vε| ≤ 1 and φ ∈ H1(Tℓ).

9



Since vε−w ∈ C(Ω) (cf the proof of Lemma 4) and vε = w on ∂Ω, it follows that lim
z→∂Ω

(vε−w)(z) =

0. Therefore, we have

lim
z→∂Ω

z∈Tℓ∩∂ω−
ℓ

eı(φ(z)−ϕ(z)) = lim
z→∂Ω

z∈Tℓ∩∂ω+

ℓ

eı(φ(z)−ϕ(z)) = 1.

Consequently, there are k+, k− ∈ Z such that

lim
z→∂Ω

z∈Tℓ∩∂ω−
ℓ

φ(z) − ϕ(z)

2π
= k− and lim

z→∂Ω
z∈Tℓ∩∂ω+

ℓ

φ(z) − ϕ(z)

2π
= k+.

By (14) and the fact that |vε|, |w| ≥
1

2
on Tℓ, we obtain ℓ

∫

Tℓ

{

|∇φ|2 + |∇ϕ|2
}

≤ C

| ln r| .
Thus, for small ε, the variations of φ and ϕ are small on ∂ωℓ\∂Ω and consequently, there is 0 < ε4 < ε3
such that for ε < ε4, we have k− = k+. Without loss of generality, we may assume k− = k+ = 0.

Let ψ : ωℓ → R be defined by

1. tr∂ωℓ
ψ = tr∂ωℓ

(φ− ϕ),

2. ψ(s, t) =











t

ℓ+ s
[φ(s, s+ ℓ) − ϕ(s, s+ ℓ)] , if s < 0

t

ℓ− s

[

φ(s,−s+ ℓ) − ϕ′(s,−s+ ℓ)
]

, if s > 0
.

For further use, we estimate the Dirichlet energy of ψ. It suffices to estimate the energy in ω−
ℓ ; a

similar estimate holds in ωℓ.
We have

∫

ω−
ℓ

|∇ψ|2 =

∫ 0

−ℓ
ds

∫ ℓ+s

0
dt

{

|∂sψ|2 + |∂tψ|2
}

= B1 +B2.

First, we obtain, denoting ξ = φ− ϕ,

B1 =

∫ 0

−ℓ

∫ ℓ+s

0
|∂sψ|2 ≤ 2

∫ 0

−ℓ

∫ ℓ+s

0

{

∣

∣

∣

∣

ξ(s, s+ ℓ)

ℓ+ s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

d

ds
ξ(s, s+ ℓ)

∣

∣

∣

∣

2
}

= 2(B11 +B12).

Now

B11 =

∫ 0

−ℓ

1

ℓ+ s
|ξ(s, s+ ℓ)|2 ≤

∫ 0

−ℓ

1

ℓ+ s

∣

∣

∣

∣

∫ s

−ℓ

∣

∣

∣

∣

d

dα
ξ(α, α+ ℓ)

∣

∣

∣

∣

dα

∣

∣

∣

∣

2

≤C
∫ 0

−ℓ

∫

Tℓ

|dξ|2 ≤ ℓ

∫

Tℓ

|dξ|2 ≤ C

| ln r| .

Next, we have

B12 =

∫ 0

−ℓ

∫ ℓ+s

0
|dξ|2(s, s+ ℓ) ≤ ℓ

∫

Tℓ

|dξ|2 ≤ C

| ln r| .

Similarly, we have B2 ≤ C

| ln r| .
Finally, we find that

∫

ωℓ

|∇ψ|2 ≤ C

| ln r| . (17)
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Step 4: Conclusion (proof of Lemma 3 completed)
Consider the following test function

h :=

{

v in Ω \ ωℓ
ρeı(ϕ+ψ) inωℓ

.

Clearly h ∈ H1
g and

Fε(vε, B2rε(xε)) ≤Fε(vε, ωℓ) ≤ Fε(h, ωℓ) ≤
C

| ln r| + 4

∫

ωℓ

|∇w|2. (18)

The last estimate follows by combining (16) with (17) and the fact that |∇h|2 = |∇ρ|2+ρ2|∇(ϕ+ψ)|2.
Since

∫

ωℓ

|∇w|2 → 0 as ε→ 0, we find that Fε(v,B2r(x)) < δ for small ε.

The next result completes the proof of Theorem 1.

Proposition 2. Let εn ↓ 0 and {xn}n ⊂ Ω be such that dist(xn, ∂Ω) → 0. Then |vεn(xn)| → 1.

Proof of Proposition 2. Let δ ∈ (0, 1). Denote dn := dist(xn, ∂Ω) and vn := vεn . Since there is C0 > 0
such that Fεn(vn) ≤ C0, we may choose C1 > 1 and rn ∈ (dn/C1, dn) such that

2πC0

lnC1
<

δ

104
(19)

and

rn

∫

Cn

{

|∇vn|2 +
1

ε2n
(1 − |vn|2)2

}

≤ C0

lnC1
, with Cn = {x ∈ Ω | |x− xn| = rn}. (20)

As in the proof of 1. in Lemma 1, we have

[Var(vn, Cn)]2 ≤ 2πC0

lnC1
. (21)

Using (21) and the bound (19), we find that one of the two cases occurs:

1. |vn| ≥ 1 − δ

10
on Cn,

2. |vn| < 1 − δ

103
on Cn.

In the first case, using (21) and Lemma 2, we obtain |vn(xn)| ≥ 1 − δ.
Assume that for infinitely many n the second case occurs. Up to subsequence, we may assume

that it is true for each n.
For large n, let yn := Π∂Ω(xn) be the orthogonal projection of xn on ∂Ω and let x′n be the intersec-

tion point of the segment [xn, yn] with Cn. For large n and for all z ∈ Tn :=
{

z ∈ Cn | |x′n − z| ≤ r

2

}

we have
|z − wz| ≤ 3dn. (22)
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Here, wz is the first intersection point with ∂Ω of the ray starting from x and passing through z.
Note that

z ∈ Tn ⇔ z = xn + (x′n − xn)e
ıθ with θ ∈ [−π/6, π/6]. (23)

For θ ∈ [−π/6, π/6] we denote Iθ := [z, wz], where z = z(θ) is given by (23). Since |vn(z)| < 1− δ

103

and |vn(wz)| = 1 we have

δ2

106
≤

(
∫

Iθ

∂τ |vn|
)2

≤ 3dn

∫

Iθ

|∂τvn|2. (24)

Denote A :=
⋃

θ∈[−π/6,π/6]
Iθ and write each x ∈ A as x = xn + seıθ (s ≥ rn). By (22), (23) and (24) we

have
∫

A
|∇vn|2 ≥

∫ π/6

−π/6
dθ

∫

Iθ

|∂τvn|2sds ≥ π

3C1
inf
z∈Tn

dn

∫

Iθ

|∂τvn|2 ≥ πδ2

9 · 106 · C1
.

Since C1 is independent of n and A ⊂ B3dn(xn), the above estimate contradicts Lemma 3.

Hence, for sufficiently large n, we have |vn| ≥ 1 − δ

10
on Cn. This estimate together with Lemma

2 implies |vn(xn)| ≥ 1 − δ.

2.2 A corollary of Theorem 1

From Theorem 1 one may easily prove that the contribution of the modulus is negligible. Indeed we
have

Corollary 1. The following hold.

1. We have

∫

Ω

{

|∇|vε||2 +
1

ε2
(1 − |vε|2)2

}

→ 0 as ε→ 0.

In particular, we have |vε| → 1 in H1(Ω).

2. Assume that (possibly along some subsequence) we have αε → κ in L2(Ω). Write g = eıϕ0 (see
[7]), where ϕ0 ∈ H1/2(∂Ω,R). Write, for small ε, vε = |vε|eıϕε, where ϕε ∈ H1

ϕ0
(Ω,R). Then

ϕε → ϕ∗ in H1(Ω), where ϕ∗ is the solution of

{

−div(κ∇ϕ∗) = 0 in Ω

ϕ∗ = ϕ0 on ∂Ω
.

The above statement implicitly uses two results on lifting, for which we refer to [8, 9]. The first one
is that each zero degree map g ∈ H1/2(∂Ω; S1) may be lifted as g = eıϕ0 for some ϕ0 ∈ H1/2(∂Ω; R).
The second is that each map in u ∈ H1

g (Ω; S1) may be written as u = eıϕ, with ϕ ∈ H1
ϕ0

(Ω; R).
Consequently, each map u ∈ H1

g (Ω; R2) such that 0 <essinf |u| ≤esssup |u| < ∞ may be written as
u = ρeıϕ, where ρ = |u| ∈ H1

1 (Ω; R+) and ϕ ∈ H1
ϕ0

(Ω; R).

Proof. We start by noting that b ≤ κ ≤ 1.
Let vε be a minimizer of Fε in H1

g . By Theorem 1, we may write, for small ε , vε = ρεe
ıϕε , with

1/2 ≤ ρε := |vε| ≤ 1 and ϕε ∈ H1
ϕ0

(Ω,R).

12



Recall that Fε(vε) ≤ C0 (with C0 depending only on g,Ω and b). Thus, for small ε, we have
∫

Ω
|∇ϕε|2 ≤ 8C0

b
.

If we set wε := eıϕε ∈ H1
g , then we have

Fε(vε) =
1

2

∫

Ω

{

αε(ρ
2
ε|∇ϕε|2 + |∇ρε|2) +

βε
2ε2

(1 − ρ2
ε)

2

}

≤ Fε(wε) =
1

2

∫

Ω
αε|∇ϕε|2.

Consequently,

∫

Ω

{

|∇ρε|2 +
1

ε2
(1 − ρ2

ε)
2

}

≤ 2

b

∫

Ω
(1 − ρ2

ε)|∇ϕε|2 ≤ 16C0

b2
‖1 − ρ2

ε‖L∞(Ω) →
ε→0

0.

We now prove 2. We start by noting that ϕε − ϕ∗ satisfies

{

−div[αερ
2
ε∇(ϕε − ϕ∗)] = div[(αερ

2
ε − κ)∇ϕ∗] in Ω

ϕε − ϕ∗ = 0 on ∂Ω
.

By the Lax-Milgram theorem, we find that

‖∇(ϕε − ϕ∗)‖L2 ≤ C‖(αερ2
ε − κ)∇ϕ∗‖L2 . (25)

We will next use the following simple fact: if |fn| ≤ C and fn → f in L2 and if gn → g in L2, then
fngn → fg in L2. This implies that αερ

2
ε − κ→ 0 in L2 as ε→ 0. Finally, (25) implies that ϕε → ϕ∗

in H1.

2.3 More on the convergence of vε

This part provides a more quantitative version of Theorem 1. Specifically, under some additional
hypotheses on the boundary data g or on the behavior of the weight αε, we derive estimates on the
rate of convergence of |vε| to 1 or derive better convergence of the phase ϕε of vε respectively.

In what follows, we assume that g ∈ W 1−1/q,q(∂Ω,S1) for some q > 2. Let ϕ0 ∈ W 1−1/q,q(∂Ω,R)
be such that eıϕ0 = g (for the existence of ϕ0, see, e. g., [8]). For a fixed measurable function

κ : Ω → [b, 1], let ϕ∗ ∈W 1,q(Ω,R) be the solution of

{

−div(κ∇ϕ∗) = 0 in Ω

ϕ∗ = ϕ0 on ∂Ω
.

Proposition 3. There is p ∈ (2, q], α ∈ (0, 1), C > 0 (depending only on q, b, Ω and g) such that, for
0 < ε < 1 and vε a minimizer of Fε in H1

g , we have

1. {vε} is bounded in W 1,p by a constant C which depends only on g, b and Ω.

2. {vε} is relatively compact in C0,α(Ω).

3. 1 − |vε| ≤ Cεγ and

∫

Ω

{

|∇|vε||2 +
1

ε2
(1 − |vε|2)2

}

≤ Cεγ with γ =
2α

2 + α
.
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4. Furthermore, if (possibly after passing to a subsequence) we have αε → κ in L2, then we have
ϕε → ϕ∗ in W 1,p.
Here, we write, for small ε and in virtue of Theorem 1, vε = ρεe

ıϕε, with ϕε ∈ H1
ϕ0

, ρε := |vε| ∈
[1/2, 1].

Proof. Let ϕ be any fixed W 1,q-extension of ϕ0. Then ϕε − ϕ satisfies

{

−div
[

αερ
2
ε∇(ϕε − ϕ)

]

= div(αερ
2
ε∇ϕ) in Ω

ϕε − ϕ = 0 on ∂Ω
. (26)

Since
‖αερ2

ε∇ϕ‖Lq(Ω) ≤ C,

it follows from Theorem 1 in [20] that there are p1 ∈ (2, q] and C > 0 (depending only on b and Ω)
such that ‖∇(ϕε − ϕ)‖Lp1 (Ω) ≤ C. Thus {ϕε} is bounded in W 1,p1(Ω).

We next prove that ‖1− ρε‖Lp1/2 ≤ Cε2. For this purpose, we start with the equation satisfied by
ρε:

{

div(αε∇ρε) +
βε
ε2
ρε(1 − ρ2

ε) = αερε|∇ϕε|2 in Ω

1 − ρε = 0 on ∂Ω
. (27)

Let ηε := 1 − ρε and p1 > 2 be as in the conclusion of Theorem 1 in [20]. Set r := p1/2 and consider
a sequence {φk} ⊂ C∞([0, 1], [0, 1]) such that

φk is nondecreasing, φk(0) = 0 and φk(s) → |s|r−1 as k → ∞, ∀ s ∈ [0, 1].

Let Aε := βερε(1 + ρε), which satisfies, for small ε, 3b/4 ≤ Aε ≤ 2. Set Bε := αερε|∇ϕε|2, which is
bounded in Lp1/2. If we multiply (27) by φk(ηε), we find that

∫

Ω
αε|∇ηε|2φ′k(ηε) +

1

ε2

∫

Ω
Aεηεφk(ηε) =

∫

Ω
Bεφk(ηε).

Consequently, we have
∫

Ω
ηεφk(ηε) ≤ Cε2

∫

Ω
Bεφk(ηε). (28)

Note that, in (28), the constant C depends only on b. By letting k → ∞, we obtain, with s being the
conjugate exponent of r, that

∫

Ω
ηrε ≤ Cε2

∫

Ω
Bεη

r−1
ε ≤ Cε2

(
∫

Ω
ηrε

)
1

s

‖Bε‖Lr .

This implies that ‖1 − ρε‖Lp1/2 ≤ Cε2 which we wanted to prove.
Going back to (27), we observe that ηε satisfies div(αε∇ηε) = hε, where hε is bounded in Lp1/2(Ω).

Using again [20], we find that there is some p2 > 2 such that ∇ηε is bounded in Lp2(Ω).
It follows that vε is bounded in W 1,p(Ω), with p := min(p1, p2) > 2.

We next prove that |1 − ρε| ≤ Cεγ and

∫

Ω

{

|∇|vε||2 +
1

ε2
(1 − |vε|2)2

}

≤ Cεγ , where γ :=
p− 2

p− 1
.
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Indeed, let α := 1− 2

p
, so that vε is bounded in Cα(Ω) and

∫

Ω
(1−ρε) ≤ Cε2. Let x0 = x0(ε) be a

minimum point of ρε in Ω. Since Ω is smooth, for r > 0 sufficiently small we have |Br(x0)∩Ω| ≥ Cr2.
It follows that

Cε2 ≥
∫

Br(x0)
(1 − ρε) ≥ C(1 − ρε(x0) − Crα)r2.

With r := ε
2

α+2 , we find that 1 − ρε(x0) = sup
Ω

{1 − ρε} ≤ Cεγ .

The above estimate together with the inequality Fε(vε) ≤ Fε(e
ıϕε) yield the bound on ∇ρε:

∫

Ω

{

αε|∇ρε|2 +
βε
2ε2

(1 − ρ2
ε)

2

}

≤
∫

Ω
αε(1 − ρ2

ε)|∇ϕε|2 ≤ Cεγ .

Finally, 4. follows from the equation

{

−div
[

αερ
2
ε∇(ϕε − ϕ∗)

]

= div
[

(αερ
2
ε − κ)∇ϕ∗] in Ω

ϕε − ϕ∗ = 0 on ∂Ω
.

Indeed, since (αερ
2
ε − κ)∇ϕ∗ → 0 in Lp3(Ω) for a suitable p3 such that ∇ϕ∗ ∈ Lp3 , we obtain,

using again [20], that ϕε → ϕ∗ in W 1,p4 , for a suitable p4 > 2. We conclude by choosing p :=
min{p1, . . . , p4}.

3 The Ginzburg-Landau functional with a periodic pinning term

In this part, we apply the results obtained in the previous section to the study of a GL energy with a
discontinuous periodic pinning term. Inside unit square Y = [0, 1)2, consider a smooth subset ω ≺ Y ,
which will play a role of inclusion (or impurity). The relative size of this inclusion (with respect to
the size of the square) will be controlled by some parameter λ > 0 in the following way: for x0 ∈ ω,
we set ωλ = λω + (1 − λ)x0. We now define the pinning term a = a(x, λ) so that it takes different
constant values inside and outside of the inclusion:

a(x, λ) =

{

b, if x ∈ ωλ

1, if x ∈ Y \ ωλ
, (29)

where b ∈ (0, 1) is a fixed (material) parameter. We extend a to a periodic function in R
2.

The analysis we develop here could apply to the more complicated situation where x0 is allowed
to depend on λ; however, we will not pursue in this direction here.

Let Ω ⊂ C be a smooth, bounded, simply connected domain. For 1 > δ > 0, denote {Cδn, n ≥ 1} a
partition of R

2 into squares with side δ; for simplicity, we suppose that the origin is an edge of one of
the squares. We may assume, with no loss of generality, that the squares that lie inside Ω are labelled

Cδn with 1 ≤ n ≤ Nδ. Denote Ωδ :=

Nδ
⋃

n=1

Cδn.
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We define the pinning term in Ω as

aε(x) =

{

a(x/δ, λ), if x ∈ Ωδ

1, if x ∈ Ω \ Ωδ

;

the notation aε is justified by the fact that we will later let δ depend on the GL parameter ε. The
following energy will be associated with this pinning term:

Eε(u) =
1

2

∫

Ω

{

|∇u|2 +
1

2ε2
(a2
ε − |u|2)2

}

.

Under the Dirichlet condition tr∂Ωu = 1, one has the existence of the unique minimizer Uε of Eε [18].
The following lemma is straightforward.

Lemma 5. There exists a constant C (independent of ε ∈ (0, 1)) such that

Eε(Uε) ≤ Cλmin

(

1

εδ
,
λ

ε2

)

and

|∇Uε| ≤
C

ε
.

When ε < λδ, the above lemma is obtained by considering as a test function an ε-regularization
of aε. When ε ≥ λδ, it suffices to estimate the energy of the test function 1.

As explained in [18], if u is of modulus 1 on ∂Ω and we set v := u/Uε, then the energy Eε decouples
as follows:

Eε(u) = Eε(Uε) + Fε(v),

where

Fε(v) :=
1

2

∫

Ω

{

U2
ε |∇v|2 +

U4
ε

2ε2
(1 − |v|2)2

}

.

We next note that, by the maximum principle, we have b ≤ Uε ≤ 1. Thus Fε satisfies the assumptions
of Theorem 1, Corollary 1 and Proposition 3. Therefore, if we let uε minimize Eε in H1

g , where
g : ∂Ω → S

1 is of zero degree, if Uε minimizes Eε in H1
1 and if we decompose uε = Uεvε, then the

conclusions of these results apply to vε.
To be more specific, we fix g ∈ H1/2(∂Ω,S1) such that deg∂Ω(g) = 0. Then:

1. there is some ϕ0 ∈ H1/2(Ω,R) is such that g = eiϕ0

2. we decompose a minimizer uε of Eε in H1
g as uε = Uεvε, where Uε minimizes Eε in H1

1 and vε
minimizes Fε in H1

g

3. using Theorem 1 we have, for small ε, |uε| ≥ b/2. Thus we may decompose, for small ε,
uε = |uε|eıϕε with ϕε ∈ H1

ϕ0
(Ω,R)

4. consequently, for small ε we have vε = |vε|eıϕε with |uε| = Uε|vε|.
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From Corollary 1, we know that |vε| → 1 uniformly and in H1. Consequently, we will obtain the
asymptotics of uε from the one of Uε and of ϕε.

The remaining part of this section is devoted to the asymptotic analysis of Uε and vε; as a
byproduct, this will give the asymptotics of uε. It turns out that the analysis is governed by the
relation between ε and δ, as well as by the size of λ. Possibly after passing to subsequences and
rescaling, we may assume, with no loss of generality, that we are in one of the four following cases:
Section 3.1: λ→ 0, the dilute case,
Section 3.2: λ = 1, δ = ε, the critical case,
Section 3.3: λ = 1, ε≪ δ, the physical case,
Section 3.4: λ = 1, δ ≪ ε, the non-physical case.

3.1 The dilute limit λ → 0

3.1.1 Behavior of Uε

In this case, the energy bound given by Lemma 5 immediately implies

Proposition 4. We have
Uε → 1 in L2(Ω). (30)

3.1.2 Limit of ϕε

Proposition 5. Let ϕ∗ be the harmonic extension of ϕ0 in Ω. Then, as ε→ 0,

1. ϕε → ϕ∗ in H1

2. if, in addition, there is some q > 2 such that g ∈W 1−1/q,q(∂Ω), then we have ϕε → ϕ∗ in W 1,p

for some suitable p ∈ (2, q].

Proof. The first part is a direct consequence of Corollary 1 and of Proposition 4. The second part is
a direct consequence of Propositions 3 and 4.

3.2 The case λ = 1, δ = ε

3.2.1 Limit of Uε

Recall that Y := [0, 1)2. Let

H1
per(Y,R) = {u ∈ H1(Y,R) | the extension by Y -periodicity of u in R

2 is in H1
loc(R

2)}.

We define similarly H1
per(Y,C). For simplicity, we ignore the reference to R or C when irrelevant.

Note that u ∈ H1(Y ) extends to a Y -periodic H1
loc-map if and only if

tr{y1=0}u(0, ·) = tr{y1=1}u(1, ·) and tr{y2=0}u(·, 0) = tr{y2=1}u(·, 1)

⇔ y1(1 − y1) [u(y1, y2) − u(y1, 1 − y2)] + y2(1 − y2) [u(y1, y2) − u(1 − y1, y2)] ∈ H1
0 (Y ).
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Using these characterizations of H1
per(Y ), we find that H1

per(Y ) is weakly H1-closed. (For more
properties of H1

per(Y ), see, e. g., [13], part 3.4.)
It follows that there exists û which is a minimizer of

E(u) =
1

2

∫

Y

{

|∇u|2 +
1

2
(u2 − a2)2

}

in the class H1
per(Y,R).

Theorem 2. The following hold:

1. The functional E has a unique (modulo multiplication by ±1) minimizer û in H1
per

(Y,R). Among
the (exactly) two minimizers, one is positive, the other one negative

2. If û is the positive minimizer of E in H1
per

(Y,R), then we have Uε ⇀

∫

Y
û in L2(Ω) as ε→ 0.

Proof. We first investigate property 1. This is done via the following two lemmas.

Lemma 6. The energy functional E admits a positive global minimizer in H1
per

(Y,R). Furthermore,
all global minimizer have constant sign and satisfy

−∆û = û(a2 − û2) in Y, (31)

b ≤ |û| ≤ 1, (32)

∂ν û(0, y2) = −∂ν û(1, y2) and ∂ν û(y1, 0) = −∂ν û(y1, 1). (33)

Proof. (31) is clear. In order to prove (32), let u ∈ H1
per(Y,R) minimize E . Let

v :=











|u|, if b ≤ |u| ≤ 1

1, if |u| > 1

b, if |u| < b

.

It is clear that v ∈ H1
per(Y,R). On the other hand, we have

E(v) =
1

2

∫

{b≤|u|≤1}

{

|∇u|2 +
1

2
(a2 − u2)2

}

+
1

4

∫

{|u|>1}
(a2 − 1)2 +

1

4

∫

{|u|<b}
(a2 − b2)2.

By the minimality of E(u), we find that b ≤ |u| ≤ 1 a. e. Noting that, if u is a minimizer, then u
is continuous, we find that either u is either positive, or negative. In addition, either b ≤ u ≤ 1 or
−1 ≤ u ≤ −b.

We next prove that minimizers û satisfy (33). Indeed, for all φ ∈ H1
per(Y ) ∩ C(Ω) we have

0 =

∫

Y
∇û · ∇φ− ûφ(a2 − û2) = −

∫

∂Y
φ ∂ν û. (34)
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We next note that

0 =

∫

∂Y
φ ∂ν û =

∫ 1

0
(∂ν û(0, t) + ∂ν û(1, t))φ(0, t) +

∫ 1

0
(∂ν û(t, 0) + ∂ν û(t, 1))φ(t, 0)

= T1(φ1(t)) + T2(φ2(t)),

with φ1(t) = φ(0, t) and φ2(t) = φ(t, 0).
Since for each ψ ∈ C∞

0 ((0, 1),R) there is some φ ∈ H1
per(Y,R) such that φ1(t) = ψ(t) and φ2 ≡ 0,

(34) implies that the map

T1 : C∞
0 ((0, 1),R) → R

ψ 7→
∫ 1

0
(∂ν û(0, t) + ∂ν û(1, t))ψ(t)

is identically zero. It follows that ∂ν û(0, t) + ∂ν û(1, t) = 0. A similar argument leads to ∂ν û(t, 0) +
∂ν û(t, 1) = 0.

Lemma 7. The energy E has a unique positive minimizer in H1
per

(Y,R).

Proof. Let u, v be two positive minimizers and let w := v/u ∈ H1
per. By the energy decoupling

formula [18] (which adapts to the periodic case), we have

Eε(u) = Eε(v) = Eε(u) +
1

2

∫
{

u2|∇w|2 +
1

2
u4(1 − w2)2

}

.

Thus w ≡ 1, which implies u = v.

As a next (and rather long) step in the proof of Theorem 2, we examine the asymptotic behavior
of the energy carried by Uε.

Proposition 6. We have lim
ε→

ε2Eε(Uε) = |Ω|E(û).

Proof. We use the unfolding operator (see [12], definition 2.1). More specifically, we define, for p ∈
(1,∞),

Tε : Lp(Ω) → Lp(Ω × Y )

φ 7→ Tε(φ)(x, y) =

{

φ
(

ε
[x

ε

]

+ εy
)

, if (x, y) ∈ Ω̂ε × Y,

0 if (x, y) ∈ Λε × Y

,

Ω̂ε :=
⋃

Y K
ε ⊂Ω

Y K
ε =ε(K+Y ),K∈Z

2

Y K
ε , Λε := Ω \ Ω̂ε and

[x

ε

]

:=
([x1

ε

]

,
[x2

ε

])

.

Here, for s ∈ R, [s] is the integer part of s.
We will use the following results:

i) Tε is linear and continuous, of norm at most 1 ([12], prop. 2.5);
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ii) Tε(uv) = Tε(u)Tε(v) and Tε
(u

v

)

=
Tε(u)
Tε(v)

1IΩ̂ε×Y ([12], equation (2.2));

iii) ”Unfolding criterion for integrals” (u. c. i., [12], prop. 2.6) : If φε ∈ L1(Ω) is such that
∫

Λε

|φε| → 0, then we have
∫

Ω
φε −

∫

Ω×Y
Tε(φ) → 0;

iv) εTε(∇φ)(x, y) = ∇yTε(φ)(x, y) for φ ∈W 1,p(Ω) ([12], equation (3.1)).

As a first step in the proof of Proposition 6, we prove that lim sup
ε

ε2Eε(Uε) ≤ |Ω|E(û). Indeed,

we consider the test function Hε ∈ H1
1 defined by

Hε(x) := ρε(x)û
({x

ε

})

+ 1 − ρε(x),

with

ρε(x) := min

(

1,
dist(x, ∂Ω)

ε

)

and
{x

ε

}

=
x

ε
−

[x

ε

]

∈ Y.

Then we have

Tε(Hε) → û(y) in L4(Ω × Y ) and Tε(ε∇Hε)(x, y) → ∇yû(y) in L2(Ω × Y ). (35)

Indeed, the first convergence in (35) is a consequence of the fact that Tε(Hε)− û(y) is bounded in
L∞(Ω × Y ) and that its support is contained inside {x ∈ Ω |dist(x, ∂Ω) < 3ε} × Y . This implies at
once that Tε(Hε) → û(y) in L4(Ω × Y ).

In order to establish the second convergence in (35), we start from the identity

Tε(ε∇Hε) = Tε(ρε)Tε
[

ε∇
(

û
({x

ε

}))]

+ Tε(ε∇ρε)Tε
[

û
({x

ε

})

− 1
]

= ∇yû(y)1IΩ̂ε
(x) + (Tε(ρε) − 1)∇yû(y)1IΩ̂ε

(x) + ∇yTε(ρε)Tε
[

û
({x

ε

})

− 1
]

≡ ∇yû(y)1IΩ̂ε
(x) +Rε.

Since ρε ≡ 1 in {x ∈ Ω |dist(x, ∂Ω) > ε} and since ε|∇ρε| is bounded in L∞(Ω), it is clear that the
support of Rε is included in {x ∈ Ω |dist(x, ∂Ω) < 3ε} × Y and that Rε is bounded in L∞(Ω × Y ).
Thus Rε → 0 in L2(Ω × Y ). It then suffices to note that ∇yû(y)1IΩ̂ε

(x) → ∇yû(y) in L4(Ω × Y ) in
order to obtain the desired convergence result.

Similarly, we have Tε(aε)(x, y) → a(y) in L4(Ω × Y ).
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Finally,

lim sup
ε

ε2Eε(Uε) ≤ lim
ε
ε2Eε(Hε) = lim

ε

1

2

∫

Ω

{

|ε∇Hε|2 +
1

2
(H2

ε − a2
ε)

2

}

=

[

with φ = |ε∇Hε|2 +
1

2
(H2

ε − a2
ε)

2

]

= lim
ε

1

2

∫

Ω×Y
Tε(φ) = [here, we use u. c. i.]

= lim
ε

1

2

∫

Ω̂ε×Y

{

|∇û|2 +
1

2
(û2 − Tε(aε)2)2

}

=
1

2

∫

Ω×Y

{

|∇û(y)|2 +
1

2
(û(y)2 − a(y)2)2

}

= |Ω|E(û).

In order to complete the proof of Proposition 6, it suffices to establish the inequality

lim inf
ε

ε2Eε(Uε) ≥ |Ω|E(û).

In order to obtain this estimate, we perform the following change of functions: for u ∈ A := {u ∈
H1

1 (Ω) such that b ≤ u ≤ 1}, we let v := u2. We clearly have v ∈ B := {v ∈ H1
1 (Ω) such that b2 ≤

v ≤ 1}. Both A and B are convex and closed in H1
1 . We have the following equivalences

u minimizes Eε in H1
1 (Ω) ⇔ u minimizes Eε in {u ∈ H1

1 (Ω) such that b ≤ u ≤ 1}
⇔ u =

√
v minimizes Eε in {√v ∈ H1

1 (Ω) such that b2 ≤ v ≤ 1}
⇔ v = u2 minimizes Gε in {v ∈ H1

1 (Ω) such that b2 ≤ v ≤ 1}

with

Gε(v) :=
1

4

∫

Ω

{ |∇v|2
2v

+
1

ε2
(a2
ε − v)2

}

.

Let Uε be the minimizer of Eε in H1
1 . Then Vε := U2

ε is the global minimizer of Gε in {v ∈
H1

1 (Ω) such that b2 ≤ v ≤ 1}. Let, for v ∈ C := {v ∈ H1
per(Y,R) such that v ≥ b2},

G(v) :=
1

4

∫

Y

{ |∇v|2
2v

+ (a2 − v)2
}

.

It is clear that G has a unique minimizer in C, namely v̂ := û2.
With these notations, we have

lim inf
ε

ε2Eε(Uε) = lim inf
ε

ε2Gε(Vε) = lim inf
ε

1

4

∫

Ω

{ |ε∇Vε|2
2Vε

+ (a2
ε − Vε)

2

}

= lim inf
ε

1

4

∫

Ω
φ̃ε(Vε),

where φ̃ε(Vε) :=
|ε∇Vε|2

2Vε
+ (a2

ε − Vε)
2. Using the bound |∇Uε| ≤

C

ε
[7], we see that

∫

Λε

φ̃ε(Vε) → 0.

This property, together with the properties i)-iv) of the unfolding operator, imply

lim inf
ε

∫

Ω
φ̃ε(Vε) = lim inf

ε

∫

Ω×Y
Tε(φ̃(Vε)), (36)
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where

Tε(φ̃ε(Vε)) =







|∇yTε(Vε)|2
2Tε(Vε)

+ (Tε(Vε) − Tε(aε)2)2 in Ω̂ε × Y

0 in Λε × Y
:= φyε(Tε(Vε)).

For W ∈ L2(Ω, H1(Y )) such that W ≥ b2 a.e. in Ω̂ε × Y , define

φyε(W ) :=

( |∇yW |2
2W

+ (W − Tε(aε)2)2
)

1IΩ̂ε×Y .

Similarly, for W ∈ L2(Ω, H1(Y,R)) satisfying W ≥ b2 a.e. in Ω × Y , we denote

φy(W ) =
|∇yW (x, y)|2

2W (x, y)
+ (W (x, y) − a(y)2)2.

One may prove that φy is a convex function of its argument W .
Using the strong convergence in L4(Ω× Y ), as ε→ 0, of the family of Tε(aε) to the map (x, y) 7→

a(y), it is not difficult to prove that the assumptions Wε ∈ L2(Ω, H1(Y,R)), Wε ≥ b2 a.e. in Ω × Y
and |Wε|, |∇yWε| ≤ C in Ω × Y imply

∫

Ω×Y
{φyε(Wε) − φy(Wε)} → 0. (37)

Since ε∇Vε is bounded in L∞(Ω) [7] and since Vε is bounded in L2, Corollary 3.2 in [12] implies
that there exists some V̂ ∈ L2(Ω, H1

per(Y )) such that, up to a subsequence, we have

Tε(Vε) ⇀ V̂ in L2(Ω × Y ) and ∇y(Tε(Vε)) ⇀ ∇yV̂ in L2(Ω × Y ). (38)

LetWε := Tε(Vε)+1IΛε×Y , which satisfies the assumptions leading to (37) and, in addition, satisfies

Wε − Tε(Vε) → 0 in L2(Ω × Y ) and ∇yWε = ∇yTε(Vε).
To resume, the definition of Wε combined with (38) yields

Wε ⇀ V̂ in L2(Ω × Y ), ∇yWε ⇀ ∇yV̂ in L2(Ω × Y ), |Wε|, |∇yWε| ≤ C and Wε ≥ b2 (39)

(here, weak convergence is obtained after possibly passing to a subsequence.)
We are now in position to prove that lim inf

ε
ε2Eε(Uε) ≥ |Ω|E(û). Indeed, using the fact that

Tε(aε) → a in L4(Ω × Y ) and the convexity of φy, we obtain

lim inf
ε

ε2Eε(Uε) = [from (36)] = lim inf
ε

1

4

∫

Ω×Y
Tε(φε(Vε)) (40)

= [since Wε = Tε(Vε) in Ω̂ε × Y ] = lim inf
ε

1

4

∫

Ω×Y
φyε(Wε) (41)

= [using (37), (39)] = lim inf
ε

1

4

∫

Ω×Y
φy(Wε) (42)

≥ [using (39) and the convexity of φy] ≥ 1

4

∫

Ω×Y
φy(V̂ ) (43)

=

∫

Ω
G(V̂ (x, ·))dx ≥

∫

Ω
G(v̂)dx = |Ω|E(û). (44)
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It follows that
lim
ε
ε2Eε(Uε) = |Ω|E(û).

The proof of Proposition 6 is complete.

We are now in position to complete the proof of Theorem 2, point 2., by identifying the weak
limit of Uε. From (40), it follows that, for a. e. x ∈ Ω, V̂ (x, ·) is a positive global minimizer of G. For
such x, we have V̂ (x, ·) = v̂(·).

By combining the following facts:

lim
ε

1

4

∫

Ω×Y
Tε(φ̃ε(Vε)) = |Ω|E(û) = |Ω|G(v̂), Tε(Vε) ⇀ v̂, ∇yTε(Vε) ⇀ ∇yv̂ in L2(Ω × Y ),

we obtain

lim
ε

∫

Ω×Y
(Tε(Vε) − Tε(aε)2)2 = lim

ε

∫

Ω×Y
(v̂ − a2)2.

The above equality implies

lim
ε

∫

Ω×Y
Tε(Vε)2 = lim

ε

∫

Ω×Y
v̂2,

which in turn implies Tε(Vε) → v̂ in L2(Ω × Y ). Since v̂ = û2 and Vε = U2
ε , we obtain

∫

Ω×Y
(Tε(Uε) − û)2 ≤ 1

4b2

∫

Ω×Y
(Tε(Uε)2 − û2)2 → 0,

that is, we find that Tε(Uε) → û in L2(Ω × Y ). This fact combined with Proposition 2.9 iii) in [12]

implies Uε ⇀MY (û) ≡
∫

Y
û(y)dy, which is the desired conclusion.

3.2.2 Limit of vε in H1

Recall that we are in the critical case λ = 1, δ = ε.
In order to state the main result of this section we recall the following standard existence result

(see, e. g., Theorem 4.27 in [13])

Proposition 7. Let f ∈ (H1
per(Y ))′ have zero average. Then there exists an unique solution h ∈

H1
per

(Y ) of

div(û2∇h) = f and MY (h) = 0.

In view of this proposition, let χj ∈ H1
per(Y ) be the unique solution of

div(û2∇χj) = ∂j(û
2) and MY (χj) = 0. (45)

Recall that the homogenized matrix A of û2
(x

ε

)

IdR2 is given by

A =

∫

Y
û2

(

1 − ∂1χ1 −∂1χ2

−∂2χ1 1 − ∂2χ2

)

(46)

(see, e. g., [16] chapter 1 or [13] chapter 6).
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Proposition 8. Let ϕ∗ be the unique solution of
{

div(A∇ϕ∗) = 0 in Ω

ϕ∗ = ϕ0 on ∂Ω
. (47)

Let g = eıϕ0. Also, for small ε, represent a minimizer uε of Eε in H1
g as uε = Uερεe

ıϕε, where
ϕε ∈ H1

ϕ0
(Ω).

Then ϕε ⇀ ϕ∗ in H1(Ω) as ε→ 0.

Proof. This argument is an adaptation of the proof of Theorem 4 in [22].
First note that Tε(U2

ε )(x, y) → û2(y) in L2(Ω × Y ) and |vε|2 = ρ2
ε → 1 in L2(Ω) imply that

Tε(ρ2
εU

2
ε )(x, y) → û2(y) in L2(Ω × Y ).

Recalling that ϕε is the solution of
{

−div(ρ2
εU

2
ε∇ϕε) = 0 in Ω

ϕε = ϕ0 on ∂Ω
,

we find, using Proposition 6. iv) and the fact that ρ2
εU

2
ε∇ϕε ∈ H1

loc(Ω), that

0 = εTε
(

−div(ρ2
εU

2
ε∇ϕε)

)

(x, y) = −divy
(

Tε(ρ2
εU

2
ε )(x, y)Tε(∇ϕε)(x, y)

)

. (48)

In order to prove that ϕε ⇀ ϕ∗ it suffices to prove that if, possibly up to a subsequence, we have
ϕε ⇀ ϕ∗, then ϕ∗ solves (47).

Using Theorem 3.5 in [12], we have the existence of ϕ̂ ∈ L2(Ω, H1
per(Y )) such that

Tε(∇ϕε) ⇀ ∇ϕ∗ + ∇yϕ̂ in L2(Ω × Y ) and MY (ϕ̂) = 0. (49)

By inserting (49) into (48) and passing to the weak limits in L2(Ω, H−1(Y )), we obtain

−divy
[

û2(y) (∇ϕ∗(x) + ∇yϕ̂(x, y))
]

= 0

which is equivalent to
−divy

[

û2(y)∇yϕ̂(x, y)
]

= ∇yû
2(y) · ∇ϕ∗(x).

This equality combined with (45) implies that

ϕ̂(x, y) = −χ1∂x1
ϕ∗ − χ2∂x2

ϕ∗.

Consequently, we have

∇ϕ∗ + ∇yϕ̂ =

(

1 − ∂1χ1 −∂1χ2

−∂2χ1 1 − ∂2χ2

)

∇ϕ∗.

On the other hand, let ξ ∈ D(Ω). Then, for sufficiently small ε we have (cf Proposition 2.5. (i) in
[12])

0 = lim
ε→0

∫

Ω
ρ2
εU

2
ε∇ϕε · ∇ξ = lim

ε→0

∫

Ω×Y
Tε(ρ2

εU
2
ε )Tε(∇ϕε) · Tε(∇ξ)

=

∫

Ω

{
∫

Y
û2(y)(∇ϕ∗ + ∇yϕ̂)

}

· ∇ξ =

∫

Ω
divx

{
∫

Y
û2(y)(∇ϕ∗ + ∇yϕ̂)

}

ξ.
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Therefore one has

divx

[
∫

Y
û2(y)(∇ϕ∗ + ∇yϕ̂)

]

= divx

[
∫

Y
û2(y)

(

1 − ∂1χ1 −∂1χ2

−∂2χ1 1 − ∂2χ2

)

∇ϕ∗
]

= divx (A∇ϕ∗) = 0

and consequently ϕ∗ solves (47).

3.3 The case λ = 1, ε ≪ δ

Theorem 3. Assume that λ = 1, δ → 0 and ε/δ → 0. Then, as ε→ 0, we have

1. ρε = |uε|⇀MY (a) in L2(Ω),

2. ϕε ⇀ ϕ∗ in H1(Ω),

3. ρ2
ε∇ϕε ⇀ A∇ϕ∗ in L2(Ω),

where ϕ∗ solves the homogenized problem
{

div(A∇ϕ∗) = 0 in Ω

ϕ∗ = ϕ0 on ∂Ω
. (50)

Here, A is the homogenized matrix of a2
(x

δ

)

IdR2.

Proof. Theorem 1 combined with Lemma 5 yields ρε− aε → 0 in L2(Ω). On the other hand, we have
aε → MY (a) weakly in L2(Ω) (see, e. g.,[13] Theorem 2.6), so that 1. follows.

In order to prove 2. and 3., we start from the equation
{

div(ρ2
ε∇ϕε) = 0 in Ω

ϕε = ϕ0 on ∂Ω
(51)

satisfied by ϕε. In view of the fact that ρε − aε → 0 in L2(Ω), it is natural to compare ϕε to the
solution ϕ̂ε of

{

div(a2
ε∇ϕ̂ε) = 0 in Ω

ϕ̂ε = ϕ0 on ∂Ω
. (52)

The difference ψε := ϕ̂ε − ϕε is solution of
{

div(a2
ε∇ψε) = div

[

(ρ2
ε − a2

ε)∇ϕε
]

in Ω

ψε = 0 on ∂Ω.
(53)

We claim ψε ⇀ 0 in H1(Ω). Indeed, we first note that, by (51), ϕε is bounded in H1. Using the fact
that b2 ≤ a2

ε ≤ 1 and (53) we obtain, via the Lax-Milgram theorem, that, with C,C ′ > 0 and p < 2
independent of ε, we have

‖∇ψε‖L2 ≤ C‖(ρ2
ε − a2

ε)∇ϕε‖L2 ≤ C ′ <∞
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and (with r := 2/(2 − p))

‖∇ψε‖Lp ≤ C‖(ρ2
ε − a2

ε)∇ϕε‖Lp ≤ C‖ρ2
ε − a2

ε‖Lrp‖∇ϕε‖L2 .

Consequently, ψε is bounded in H1
0 and converges strongly to 0 in W 1,p(Ω). It follows that ψε ⇀ 0

in H1(Ω).
Now, using the classic periodic homogenization result (see, e. g., [16] chapter 1 or [13] chapter

6), we know that ϕ̂ε ⇀ ϕ∗ in H1(Ω) and a2
ε∇ϕ̂ε ⇀ A∇ϕ∗ in L2(Ω). These facts combined with the

weak convergences ψε ⇀ 0 in H1(Ω) and (a2
ε∇ϕ̂ε − ρ2

ε∇ϕε) ⇀ 0 in L2(Ω) complete the proof of the
theorem.

3.4 The case λ = 1, δ ≪ ε

In this case, ε need not tend to 0. Up to subsequences, we may assume that either ε = 1 or ε→ 0.

Theorem 4. The following hold.

1. Assume that ε = 1 and that δ → 0, and denote the energy by Eδ rather then Eε. If uδ is a
minimizer of Eδ, then uδ ⇀ û in H1(Ω), where û solves

{

−∆û = û(MY (a2) − û2) in Ω

û = g on ∂Ω
. (54)

2. Assume that ε→ 0 and that δ/ε→ 0. If uε = ρεe
iϕε is a minimizer of Eε, then we have

(i) ρε →
√

MY (a2) strongly in L2(Ω),

(ii) ϕε → ϕ∗ in H1(Ω).

Here, ϕ∗ denotes the harmonic extension of ϕ0.

Proof. In case 1., we start by noting that ‖uδ‖H1(Ω) is uniformly bounded with respect to δ. Let û
be such that, possibly after passing to a subsequence, uδ weakly converges to û in H1. In order to
identify û, we let δ → 0 in the weak form of the GL equation satisfied by uδ, namely:

∫

Ω
∇uδ · ∇ψ dx =

∫

Ω
uδ(a

2
δ − u2

δ)ψ dx, ∀ ψ ∈ C∞
0 (Ω)

and find that (54) holds.
In order to prove 2., we consider a partition of R

2 by a family {Cεk} of δ × δ squares. We may
assume that

{Cεk |Cεk ⊂ {x ∈ Ω |dist(x, ∂Ω) > ε}} = {Cεk | k ∈ {1, ..., Nε}}.

Clearly, we have Nε = |Ω|δ−2 + O(εδ−2). Denote Ω′
ε :=

Nε
⋃

k=1

Cεk.
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For C0 > 0 (independent of ε) consider

HC0

ε = {w ∈ H1
g | |∇w| ≤

C0

ε
in Ω′

ε and |w| ≤ 1 in Ω}.

Recall [7] that, for ε < 1 and a suitable C0, each minimizer uε of Eε in H1
g belongs to HC0

ε .

For w ∈ HC0
ε , we have

∫

Ω
(|w|2 − a2

ε)
2 =

∫

Ω
(|w|2 −MY (a2))2 + |Ω|

[

MY (a4) −MY (a2)2
]

+Hε(w). (55)

Here, the reminder Hε satisfies |Hε(w)| ≤ oε(1), with oε(1) independent of w. Indeed, we have

∫

Ω
(|w|2 − a2

ε)
2 −

∫

Ω
(|w|2 −MY (a2))2 =

∫

Ω

[

a2
ε −MY (a2)

]

a2
ε

+MY (a2)

∫

Ω
(a2
ε −MY (a2))

−2

∫

Ω

[

a2
ε −MY (a2)

]

|w|2.

We next note the three following facts. First, we have

∫

Ω

[

a2
ε −MY (a2)

]

a2
ε =

∑

k

{

∫

Ck
ε

[

a2
ε −MY (a2)

]

a2
ε

}

+ O(ε) = |Ω|
[

MY (a4) −MY (a2)2
]

+ O(ε).

Next, it holds that

∫

Ω
(a2
ε −MY (a2)) = O(ε) +

∑

k

∫

Ck
ε

(a2
ε −MY (a2)) = O(ε).

Finally, we have

∣

∣

∣

∣

∫

Ω

[

a2
ε −MY (a2)

]

|w|2
∣

∣

∣

∣

≤ O(ε) +
∑

k

∫

Ck
ε

∣

∣a2
ε −MY (a2)

∣

∣ |w|2

≤ O(ε) +
∑

k

∫

Ck
ε

∣

∣a2
ε −MY (a2)

∣

∣ = oε(1).

Thus (55) holds. Consequently, for u ∈ HC0
ε , one has

Eε(u) =
|Ω|
4ε2

(MY (a4) −MY (a2)2) +Gε(u) + o

(

1

ε2

)

, (56)

where

Gε(u) :=
1

2

∫

Ω
|∇u|2 +

1

4ε2

∫

Ω
(MY (a2) − |u|2)2.
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We next claim that

∫

Ω
(|uε|2 −MY (a2))2 dx→ 0. Indeed, we consider a test function in the spirit of

[18], more specifically we let wε = |wε|eıϕ∗ , where ϕ∗ is the harmonic extension of ϕ0 and

|wε|(x) =







1 − 1 −
√

MY (a2)

ε
dist(x, ∂Ω), if dist(x, ∂Ω) < ε

√

MY (a2), otherwise
.

Note that, for a suitable C0, we have wε ∈ HC0
ε . A straightforward computation yields Gε[wε] ≤

C

ε
.

Consequently, we obtain

Eε(uε) ≤ Eε(wε) ≤
|Ω|
4ε2

(MY (a4) −MY (a2)2) + o(ε−2).

This estimate combined with (56) implies that |uε| →
√

MY (a2) strongly in L2(Ω).
Using the second part of Corollary 1, we obtain that ϕε → ϕ∗ in H1(Ω) where ϕ∗ is the harmonic

extension of ϕ0.
The proof of Theorem 4 is complete.
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