Large deviations of the extreme eigenvalues of random deformations of matrices - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2012

Large deviations of the extreme eigenvalues of random deformations of matrices

Résumé

Consider a real diagonal deterministic matrix $X_n$ of size $n$ with spectral measure converging to a compactly supported probability measure. We perturb this matrix by adding a random finite rank matrix, with delocalized eigenvectors. We show that the joint law of the extreme eigenvalues of the perturbed model satisfies a large deviation principle in the scale $n$, with a good rate function given by a variational formula. We tackle both cases when the extreme eigenvalues of $X_n$ converge to the edges of the support of the limiting measure and when we allow some eigenvalues of $X_n$, that we call outliers, to converge out of the bulk. We can also generalise our results to the case when $X_n$ is random, with law proportional to $e^{- n Trace V(X)}\ud X,$ for $V$ growing fast enough at infinity and any perturbation of finite rank.
Fichier principal
Vignette du fichier
PGDDrevised180611.pdf (505.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00505502 , version 1 (23-07-2010)
hal-00505502 , version 2 (31-08-2010)
hal-00505502 , version 3 (01-11-2010)
hal-00505502 , version 4 (18-06-2011)

Identifiants

Citer

Florent Benaych-Georges, Alice Guionnet, Mylène Maïda. Large deviations of the extreme eigenvalues of random deformations of matrices. Probability Theory and Related Fields, 2012. ⟨hal-00505502v4⟩
294 Consultations
248 Téléchargements

Altmetric

Partager

More