Large deviations of the extreme eigenvalues of random deformations of matrices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Large deviations of the extreme eigenvalues of random deformations of matrices

Résumé

Consider a real diagonal deterministic matrix $X_n$ of size $n$ with spectral measure converging to a compactly supported probability measure. We perturb this matrix by adding a random finite rank matrix of a certain form, with delocalized eigenvectors. We show that the joint law of the extreme eigenvalues of the perturbed model satisfies a large deviation principle, in the scale n with a good rate function given by a variational formula. We tackle both cases when the extreme eigenvalues of X_n converge to the edges of the support of the limiting measure and when we allow some eigenvalues of X_n, that we call outliers, to converge out of the bulk. We can also generalise our results to the case when X_n is random, with law proportional to e^{- Trace V(X)}d X, for V growing fast enough at infinity and any perturbation of finite rank with orthonormal eigenvectors.
Fichier principal
Vignette du fichier
PGD27.08.2010.pdf (516.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00505502 , version 1 (23-07-2010)
hal-00505502 , version 2 (31-08-2010)
hal-00505502 , version 3 (01-11-2010)
hal-00505502 , version 4 (18-06-2011)

Identifiants

Citer

Florent Benaych-Georges, Alice Guionnet, Mylène Maïda. Large deviations of the extreme eigenvalues of random deformations of matrices. 2010. ⟨hal-00505502v2⟩
294 Consultations
248 Téléchargements

Altmetric

Partager

More