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Abstract. Consider a real diagonal deterministic matrix Xn of size n with spectral
measure converging to a compactly supported probability measure. We perturb this
matrix by adding a random finite rank matrix, with delocalized eigenvectors. We show
that the joint law of the extreme eigenvalues of the perturbed model satisfies a large
deviation principle in the scale n, with a good rate function given by a variational
formula.
We tackle both cases when the extreme eigenvalues of Xn converge to the edges of the
support of the limiting measure and when we allow some eigenvalues of Xn, that we call
outliers, to converge out of the bulk.
We can also generalise our results to the case when Xn is random, with law proportional
to e−nTrV (X)dX, for V growing fast enough at infinity and any perturbation of finite
rank.
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1. Introduction

In the last twenty years, many features of the asymptotics of the spectrum of large
random matrices have been understood. For a wide variety of classical models of random
matrices (the canonical examples hereafter will be Wigner matrices [36], or Wishart ma-
trices [31]), it has been shown that the spectral measure converges almost surely. The
extreme eigenvalues converge for most of these models to the boundaries of the limiting
spectral measure (see e.g. [25] or [4]). Fluctuations of the spectral measure and the
extreme eigenvalues of these models could also be studied under a fair generality over
the entries of the matrices; we refer to [32] and [2], or [1] and [5] for reviews. Recently,
even the fluctuations of the eigenvalues inside the bulk could be studied for rather general
entries and were shown to be universal (see e.g. [18] or [34]). Concentration of measure
phenomenon and moderate deviations could also be established in [20, 15, 17].

Yet, the understanding of the large deviations of the spectrum of large random matrices
is still very scarce and exists only in very specific cases. Indeed, the spectrum of a ma-
trix is a very complicated function of the entries, so that usual large deviation theorems,
mainly based on independence, do not apply. Moreover, large deviations rate functions
have to depend on the distribution of the entries and only guessing their definition is still
a widely open question. In the case of Gaussian Wigner matrices, where the joint law of
the eigenvalues is simply given by a Coulomb gas Gibbs measure, things are much easier
and a full large deviation principle for the law of the spectral measure of such matrices
was proved in [9]. This extends to other ensembles distributed according to similar Gibbs
measure, for instance Gaussian Wishart matrices [21]. Similar large deviation results hold
in discrete situations with a Coulomb gas distribution [22]. A large deviation principle
was also established in [26] for the law of the spectral measure of a random matrix given as
the sum of a self-adjoint Gaussian Wigner random matrix and a deterministic self-adjoint
matrix (or as a Gaussian Wishart matrix with non trivial covariance matrix). In this case,
the proof uses stochastic analysis and Dyson’s Brownian motion, as there is no explicit
joint law for the eigenvalues, but again relies heavily on the fact that the random matrix
has Gaussian entries.
The large deviations for the law of the extreme eigenvalues were studied in a slightly more
general setting. Again relying on the explicit joint law of the eigenvalues, a large deviation
principle was derived in [8] for the same Gaussian type models. The large deviations of
extreme eigenvalues of Gaussian Wishart matrices were studied in [35]. In the case where
the Wishart matrix is of the form XX∗ with X a n×r rectangular matrix so that the ratio
r/n of its dimensions goes to zero, large deviations bounds for the extreme eigenvalues
could be derived under more general assumptions on the entries in [23]. Our approaches
allow also to obtain a full large deviation for the spectrum of such Wishart matrices when
r is kept fixed while n goes to infinity (see Section 7).

In this article, we shall be concerned with the effect of finite rank deformations on
the deviations of the extreme eigenvalues of random matrices. In fact, using Weyl’s
interlacing property, it is easy to check that such finite rank perturbations do not change
the deviations of the spectral measure. But it strongly affects the behavior of a few
extreme eigenvalues, not only at the level of deviations but also as far as convergence and
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fluctuations are concerned. In the case of Gaussian Wishart matrices, the asymptotics
of these extreme eigenvalues were established in [7] and a sharp phase transition, known
as the BBP transition, was exhibited. According to the strength of the perturbation,
the extreme eigenvalues converge to the edge of the bulk or away from the bulk. The
fluctuations of these eigenvalues were also shown in [7] to be given either by the Tracy-
Widom distribution in the first case, or by the Gaussian distribution in the second case.
Universality (and non-universality) of the fluctuations in BBP transition was studied for
various models, see e.g. [13, 14, 19, 6].

The goal of this article is to study the large deviations of the extreme eigenvalues
of such finite rank perturbations of large random matrices. In [28], a large deviation
principle for the largest eigenvalue of matrices of the GOE and GUE deformed by a
rank one matrix was obtained by using fine asymptotics of the Itzykson-Zuber-Harich-
Chandra (or spherical) integrals. The large deviations of the extreme eigenvalues of a
Wigner matrix perturbed by a matrix with finite rank greater than one happened to be
much more complicated. One of the outcomes of this paper is to prove such a large
deviation result when the Wigner matrix is Gaussian. In fact, our result will include the
more general case where the non-perturbed matrices are taken in some classical matrix
ensembles, namely the ones with distribution ∝ e−n tr(V (X))dX , for which the deviations
are well known (see Theorem 2.10). We first tackle a closely related question: the large
deviation properties of the largest eigenvalues of a deterministic matrix Xn perturbed by
a finite rank random matrix. We show that the law of these extreme eigenvalues satisfies
a large deviation principle for a fairly general class of random finite rank perturbations.
We can then consider random matrices Xn, independent of the perturbation, by studying
the deviations of the perturbed matrix conditionally to the non-perturbed matrices. Even
though our rate functions are not very explicit in general, in the simple case where Xn = 0,
we can retrieve more explicit formulae (see Section 7). In fact, even in this simple case
of sample covariance matrices with non-Gaussian entries, our large deviation result seems
to be new and improves on [23].

Our approach is based, as in [13, 14, 6], on the characterization of the eigenvalues via
the determinant of a matrix with fixed size : it is an r × r matrix whose entries are the
Stieltjes transforms of the non-deformed matrix evaluated along the random vectors of
the perturbation. We obtain a large deviation principle for the law of this characteristic
polynomial (seen as a continuous function outside of the spectrum of the deterministic
matrix) by classical large deviation techniques. Even though the application which asso-
ciate to a function its zeroes is not continuous for the weak topology, we deduce from the
latter a large deviation principle for the law of the zeroes of this characteristic polynomial,
that is the extreme eigenvalues of the deformed matrix model.

2. Statement of the results

2.1. The models. Let Xn be a real diagonal matrix of size n× n with eigenvalues λn
1 ≥

λn
2 ≥ . . . ≥ λn

n.

We perturb Xn by a random matrix whose rank does not depend on n. More precisely,
let m, r be fixed positive integers and θ1 ≥ θ2 ≥ . . . ≥ θm > 0 > θm+1 ≥ . . . ≥ θr
be fixed, let G = (g1, . . . , gr) be a random vector and (G(k) = (g1(k), . . . , gr(k)))k≥1 be
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independent copies of G. We then define the r vectors with dimension n

Gn
1 := (g1(1), . . . , g1(n))

T , . . . . . . . . . , Gn
r := (gr(1), . . . , gr(n))

T

and study the eigenvalues λ̃n
1 ≥ · · · ≥ λ̃n

n of the deformed matrices

X̃n = Xn +
1

n

r∑

i=1

θiG
n
i G

n
i
∗. (1)

In the sequel, we will refer to the model (1) as the i.i.d. perturbation model.

Alternatively, if we assume moreover that the law of G does not charge any hyper-
plane, then, for n > r, the r vectors Gn

1 , . . . , G
n
r are almost surely linearly independent

and we denote by (Un
i )1≤i≤r the vectors obtained from (Gn

i )1≤i≤r by a Gram-Schmidt
orthonormalisation procedure with respect to the usual scalar product on Cn. We shall

then consider the eigenvalues λ̃n
1 ≥ · · · ≥ λ̃n

n of

X̃n = Xn +
r∑

i=1

θiU
n
i U

n
i
∗ (2)

and refer in the sequel to the model (2) as the orthonormalized perturbation model.

If g1, . . . , gr are r independent standard (real or complex) Gaussian variables, it is well
known that the law of (Un

i )1≤i≤r is the uniform measure on the set of r orthonormal vec-
tors. The model (2) coincides then with the one introduced in [11].

Our goal will be to examine the large deviations for the m largest eigenvalues of the

deformed matrix X̃n, with m the number of positive eigenvalues of the random deforma-
tion.

2.2. The assumptions. Concerning the spectral measure of the full rank deterministic
matrix Xn, we assume the following

Assumption 2.1. The empirical distribution 1
n

∑n
i=1 δλn

i
of Xn converges weakly as n

goes to infinity to a compactly supported probability µ.

Concerning the random vector G, we make the following assumption. It allows to claim
that with probability one, the column vectors Gn

1 , . . . , G
n
r are linearly independent and is

technically needed in the proof of Lemma 11.1. It is also the reason why we say that the
column vectors Gn

1 , . . . , G
n
r or Un

1 , . . . , U
n
r are delocalized with respect to the eigenvectors

of Xn. Indeed, the eigenvectors of Xn are the vectors of the canonical basis, whereas we
know that with probability one, none of the entries of the Gn

i ’s (or of the Un
i ’s) is zero.

The i.i.d. feature of the G(k)’s allows even to assert that all entries of each Gn
i ’s (or of

the Un
i ’s) have the same distribution.

Assumption 2.2. G = (g1, . . . , gr) is a random vector with entries in K = R or C such

that there exists α > 0 with E(eα
∑r

i=1 |gi|2) < ∞. In the orthonormalized perturbation
model, we assume moreover that for any λ ∈ Kr\{0}, P(∑r

i=1 λigi = 0) = 0

The law of G could also depend on n provided it satisfies the above hypothesis uniformly
on n and converges in law as n goes to infinity.
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We consider two distinct kind of assumptions on the extreme eigenvalues of Xn. We
will be first interested in the case when these extreme eigenvalues stick to the bulk (see
Assumption 2.3), and then to the case with outliers, when we allow some eigenvalues
of Xn to take their limit outside the support of the limiting measure µ (see Assumption
2.5).

2.3. The results in the case without outliers. We first consider the case where the
extreme eigenvalues of Xn stick to the bulk.

Assumption 2.3. The largest and smallest eigenvalues of Xn tend respectively to the
upper bound (denoted by b) and the lower bound (denoted by a) of the support of µ.

Our main theorem is the following (see Theorem 6.1 and Theorem 6.4 for precise state-
ments).

Theorem 2.4. Under Assumptions 2.1, 2.2 and 2.3, the law of the m largest eigenvalues

(λ̃n
1 , . . . , λ̃

n
m) ∈ R

m of X̃n satisfies a large deviation principle (LDP) in the scale n with a
good rate function L. In other words, for any K ∈ R+, {L ≤ K} is a compact subset of
Rm, for any closed set F of Rm,

lim sup
n→∞

1

n
log P

(
(λ̃n

1 , . . . , λ̃
n
m) ∈ F

)
≤ − inf

F
L

and for any open set O ⊂ Rm,

lim inf
n→∞

1

n
log P

(
(λ̃n

1 , . . . , λ̃
n
m) ∈ O

)
≥ − inf

O
L.

Moreover, this rate function achieves its minimum value at a unique m-tuple (λ∗
1, . . . , λ

∗
m)

towards which (λ̃n
1 , . . . , λ̃

n
m) converges almost surely.

Theorem 2.4 is true for both the i.i.d. perturbation model and the orthonormalized
perturbation model, but the exact expression of the rate function L is not the same for
both models. As could be expected, the minimum (λ∗

1, . . . , λ
∗
m) only depends on the θi’s,

on the limiting spectral distribution µ of Xn, and on the covariance matrix of the vector
G, this latter dependence coming from the fact that the rate function involves a Laplace
transform of the law of G and its behavior near the extremum will generically be governed
by the second derivatives, that is the covariance.

The rate function L is not explicit in general. However, in the particular case where
Xn = 0, L can be evaluated. It amounts to consider the large deviations of the eigenvalues
of matrices Wn = 1

n
G∗

nΘGn for Gn an n×r matrix, with r fixed and n growing to infinity.
L is very explicit when G is Gaussian but even when the entries are not Gaussian, we can
recover a large deviation principle and refine a bound of [23] about the deviations of the
largest eigenvalue (see Section 7).

2.4. The results in the case with outliers. We now consider the case where some
eigenvalues of Xn escape from the bulk, so that Assumption 2.3 is not fulfilled. We
assume that these eigenvalues, that we call outliers, converge:
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Assumption 2.5. There exist some non negative integers p+, p− such that for any i ≤
p+, λn

i −→
n→+∞

ℓ+i , for any j ≤ p−, λn
n−j+1 −→

n→+∞
ℓ−j , λ

n
p++1 −→

n→+∞
b and λn

n−p− −→
n→+∞

a with

−∞ < ℓ−1 ≤ . . . ≤ ℓ−p− < a ≤ b < ℓ+p+ ≤ . . . ≤ ℓ+1 < ∞, where a and b denote respectively
the lower and upper bounds of the support of the limiting measure µ.

To simplify the notations in the sequel we will use the following conventions : ℓ−p−+1 := a

and ℓ+p++1 := b.

In this framework, we will need to make on G the additional following assumption.

Assumption 2.6. The law of the vector G√
n
satisfies a large deviation principle in the

scale n with a good rate function that we denote by I.

Theorem 2.7. If Assumptions 2.1, 2.2, 2.5 and 2.6 hold, the law of the m + p+ largest

eigenvalues of X̃n satisfies a large deviation principle with a good rate function Lo.

Again, Theorem 2.7 is true for both i.i.d. perturbation model and orthonormalized
perturbation model, but the rate function is not the same for both models. A precise
definition of Lo will be given in Theorem 9.1.

Before going any further, let us discuss Assumption 2.6. On one side, let us give some
natural examples for which the assumtion is fulfilled.

Lemma 2.8. (1) If G = (g1, . . . , gr) are i.i.d standard Gaussian variables, Assump-
tion 2.6 holds with I(v) = 1

2
‖v‖22.

(2) If G is such that for any α > 0, E[eα
∑r

i=1 |gi|2] < ∞, then Assumption 2.6 holds
with I infinite except at 0, where it takes value 0.

Proof. The first result can be seens as a direct consequence of Schilder’s theorem. For
the second, it is enough to notice by Tchebychev’s inequality that for all L, δ > 0,

P

(
max
1≤i≤r

|gi|2 ≥ δn

)
≤ re−Lδn

E(eL
∑r

i=1 |gi|2)

so that taking the large n limit and then L going to infinity yields for any δ > 0

lim sup
n→∞

1

n
logP

(
max
1≤i≤r

|gi/
√
n|2 ≥ δ

)
= −∞

thus proving the claim. �

On the other side, we want to emphasize that in the case with outliers, the individual
LDP stated in Assumption 2.6 will be crucial. To understand more deeply this phenom-
enon, we refer the interested reader to some couterexamples when this assumption is not
fulfilled that are studied in [30, Section 2.3] and a related discussion in the introduction
of [29].
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2.5. Large deviations for the largest eigenvalues of perturbed matrix models.

We apply hereafter the results above to study the large deviations of the law of the ex-
treme eigenvalues of perturbations of randomly chosen matrices Xn distributed according
to the Gibbs measure

dµn
β(X) =

1

Zβ
n

e−nTr(V (X))dβX

with dβX the Lebesgue measure on the set of n × n Hermitian matrices if β = 2 (cor-
responding to G Cr-valued) or n × n symmetric matrices if β = 1 (corresponding to G
Rr-valued).

Let us first recall a few facts about the non-perturbed model. It is well known that if
Xn is distributed according to µn

β, the law of the eigenvalues of Xn is given by

P
n
V,β(dλ1, . . . , dλn) =

1λ1>λ2>···>λn

Zn
V,β

∏

1≤i<j≤n

|λi − λj |βe−n
∑n

i=1 V (λi)
n∏

i=1

dλi.

We will make on the potential V the following assumptions :

Assumption 2.9. i) V is continuous with values in R ∪ {+∞} and

lim inf
|x|→∞

V (x)

β log |x| > 1.

ii) For all integer numbers p, the limit

lim
n→∞

1

n
log

Zn−p
nV/n−p,β

Zn
V,β

exists and is denoted by αp
V,β.

iii) Under Pn
V,β, the largest eigenvalue λ

n
1 converges almost surely to the upper boundary

bV of the support of µV .

Under part i) of the assumption, one can get a large deviation principle in the scale n2

for the law of the spectral measure n−1
∑n

i=1 δλi
under Pn

V,β (see [9]), resulting in particular

with the almost sure convergence of the spectral measure to a probability measure µβ
V . If

we add part ii) and iii), one can derive the large deviations for the extreme eigenvalues of
Xn (see [8], and also [1, Section 2.6.2]1). We give below a slightly more general statement
to consider the deviations of the pth largest eigenvalues (note that the pth smallest can
be considered similarly).

One can notice that these assumptions hold in a wide generality. In particular, they
are satisfied for the law of the GUE (β = 2, V (x) = x2) and the GOE (β = 1,
V (x) = x2/2) as part ii) is verified by Selberg formula whereas part iii) is well known
(see [1, Section 2.1.6]). For the case of Gaussian Wishart matrices, we know (see e.g.
[1, p 190]) that the joint law of the eigenvalues can be written as Pn

Vp,n,β
with Vp,n(x) =

β
4
x− (β[1− p

n
+ 1

n
]− 1

n
) log x on (0,∞). If the ratio p

n
converges to α, one can easily show

1Note that in the published version of [1], part iii) was not mentioned but it appears in the errata
sheet available online : http://www.wisdom.weizmann.ac.il/~zeitouni/cormat.pdf

http://www.wisdom.weizmann.ac.il/~zeitouni/cormat.pdf
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that the law of the largest eigenvalues are exponentially equivalent under Pn
Vp,n,β

and un-

der Pn
V,β, with V (x) = β

4
x−β(1−α) log x on (0,∞), for which the assumptions are satisfied.

Theorem 2.10. Under Assumption 2.9, the law of the p largest eigenvalues (λn
1 > · · · >

λn
p ) of Xn satisfies a large deviation principle in the scale n and with good rate function

given by

Jp(x1, . . . , xp) =





∑p
i=1 JV (xi) + pα1

V,β, if x1 ≥ x2 ≥ · · · ≥ xp,

∞, otherwise,

with JV (x) = V (x)− β
∫
log |x− y|dµV (y).

Remark 2.11. Note that in the case of the GOE and the GUE (see [8]),

JV (x) = β

∫ x

2

√
(y/2)2 − 1dy − α1

V,β, α1
V,β = −β/2.

Let us now go to the perturbed model. An important remark is that, due to the
rotational invariance of the law of Xn, one can in fact consider very general orthonormal
perturbations. We make the following

Assumption 2.12. (Un
1 , . . . , U

n
r ) is a family of orthonormal vectors in (Rn)r (resp.

(Cn)r) if β = 1 (resp. β = 2), either deterministic or independent of Xn.

Indeed, under these assumptions, X̃n has in law the same eigenvalues as
Dn+

∑r
i=1 θi(OnU

n
i )(OnU

n
i )

∗, with Dn a real diagonal matrix with P
n
V,β-distributed eigen-

values and On Haar distributed on the orthogonal (resp. unitary) group of size n if β = 1
(resp. β = 2), independent of {Dn} ∪ {Un

1 , . . . , U
n
r }. Now, from the well know prop-

erties of the Haar measure, if the Un
i ’s satisfy Assumption 2.12, then the OnU

n
i ’s are

column vectors of a Haar distributed matrix. In particular they can be obtained by the
orthonormalization procedure described in the introduction, with G = (g1, . . . , gr) a vec-
tor whose components are i.i.d. Gaussian standard variables (which satisfies in particular
Assumption 2.6).

With these considerations in mind, we can state the large deviation principle for the

extreme eigenvalues of X̃n. We recall that bV is the rightmost point of the support of µV .

Theorem 2.13. With V satisfying Assumption 2.9, we consider the orthonormalized
perturbation model under Assumption 2.12. Then, for any integer k, the law of the k

largest eigenvalues (λ̃n
1 , · · · , λ̃n

k) of X̃n satisfies a large deviation principle in the scale n
and with good rate function given by

J̃k(x1, . . . , xk) = inf
p≥0

inf
ℓ1≥···≥ℓp>bV

{L0
ℓ1,...,ℓp

(x1, . . . , xk) + Jp(ℓ1, . . . , ℓp)},

if x1 ≥ · · · ≥ xk, the function being infinite otherwise.
Here, L0

ℓ1,...,ℓp
is the rate function defined in Theorem 9.1 for the orthonormalized pertur-

bation model built on G = (g1, . . . , gr) i.i.d. standard Gaussian variables and Xn with
limiting spectral measure µV and outliers ℓ1, . . . , ℓp.
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3. Scheme of the proofs

The strategy of the proof will be quite similar in both cases (with or without outliers),
so, for the sake of simplicity, we will outline it in the present section only in the case
without outliers (both the i.i.d. perturbation model and the orthonormalized perturbation
model will be treated simultaneously).

The cornerstone is a nice representation, already crucially used in many papers on

finite rank deformations (see e.g. [11, 3]), of the eigenvalues (λ̃n
1 , . . . , λ̃

n
m) as zeroes of a

fixed deterministic polynomial in the entries of matrices of size r depending only on the
resolvent of Xn and the random vectors (Gn

i )1≤i≤r.

Indeed, if V is the n × r matrix with column vectors
[
Un
1 · · ·Un

r

]
in the orthonormal-

ized perturbation model and
[
Gn

1 · · ·Gn
r

]
in the i.i.d. perturbation model, Θ the matrix

diag(θ1, . . . , θr) and In the identity in n×n matrices, the characteristic polynomial of X̃n

reads

det(zIn−X̃n) = det(zIn−Xn−VΘV ∗) = det(zIn−Xn) det(Ir−V ∗(zIn−Xn)
−1VΘ) (3)

It means that the eigenvalues of X̃n that are not2 eigenvalues of Xn are the zeroes
of det(Ir − V ∗(zIn − Xn)

−1VΘ), which is the determinant of a matrix whose size is
independent of n.

Because of the relation between V and the random vectors Gn
1 , . . . , G

n
r , it is not hard

to check that, if we let, for z /∈ {λn
1 , . . . , λ

n
n}, Kn(z) and Cn be the elements of the set Hr

of r × r Hermitian matrices given, for 1 ≤ i ≤ j ≤ r, by

Kn(z)ij =
1

n

n∑

k=1

gi(k)gj(k)

z − λn
k

(4)

and

Cn
ij =

1

n

n∑

k=1

gi(k)gj(k) , (5)

we have (see Section 4 for details):

Proposition 3.1. In both i.i.d and orthonormalized perturbation models, there exists a
function PΘ,r defined on Hr × Hr which is polynomial in the entries of its arguments and

depends only on the matrix Θ, such that any z /∈ {λn
1 , . . . , λ

n
n} is an eigenvalue of X̃n if

and only if
Hn(z) := PΘ,r(K

n(z), Cn) = 0 .

Of course, the polynomial PΘ,r is different in the i.i.d. perturbation model and the
orthonormalized perturbation model. In the i.i.d. perturbation model, PΘ,r is simpler

and does not depend on C. This proposition characterizes the eigenvalues of X̃n as the
zeroes of the random function Hn, which depends continuously (as a polynomial function)
on the random pair (Kn(·), Cn). The large deviations of these eigenvalues are therefore
inherited from the large deviations of (Kn(·), Cn), which we thus study in detail before
getting into the deviations of the eigenvalues themselves. Because Kn(z) blows up when

2 We show in section 11.2 that the spectra of Xn and X̃n are disjoint in generic situation.
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z approaches λn
1 , which itself converges to b, we study the large deviations of (Kn(z), Cn)

for z away from b. We shall let K be a compact interval in (b,∞), C(K,Hr) and C(K,R)
be the space of continuous functions on K taking values respectively in Hr and in R. We
endow the latter set with the uniform topology. We will then prove that (see Theorem
5.1 for a precise statement and a definition of the rate function I involved)

Proposition 3.2. The law of ((Kn(z))z∈K, Cn) on C(K,Hr)×Hr equipped with the uniform
topology, satisfies a large deviation principle in the scale n and with good rate function I.

By the contraction principle, we therefore deduce

Corollary 3.3. The law of (Hn(z))z∈K on C(K,R) equipped with the uniform topology,
satisfies a large deviation principle in the scale n and with rate function given, for a
continuous function f ∈ C(K,R), by

JK(f) = inf{I(K(·), C) ; (K(·), C) ∈ C(K,Hr)× Hr, PΘ,r(K(z), C)) = f(z) ∀z ∈ K}
with PΘ,r the polynomial function of Proposition 3.1.

Theorem 2.4 is then a consequence of this corollary with, heuristically, L(α) the infi-
mum of J[b,+∞) on the set of functions which vanish exactly at α ∈ R

m. An important
technical issue will come from the fact that the set of functions which vanish exactly at
α has an empty interior, which requires extra care for the large deviation lower bound.

The organisation of the paper will follow the scheme we have just described: in the next
section, we detail the orthonormalization procedure and prove Proposition 3.1. Section 5
and Section 6 will then deal more specifically with the case without outliers. In Section
5, we establish the functional large deviation principles for (Kn(·), Cn) and Hn, whereas
Section 6 is devoted to the proof of our main results in this case, namely the large devi-

ation principle for the largest eigenvalues of X̃n and the almost sure convergence to the
minimisers of the rate function. In Section 7, we will see that the rate function can be
studied further in the special case when Xn = 0. We then turn to the case with outliers
in Sections 8 and 9. Therein, the proofs will be less detailed, but we will insist on the
points that differ from the previous case. The extension to random matrices Xn given by
classical matrix models is presented in Section 10. To make the core of the paper easier
to read, we gather some technical results in Section 11.

4. Characterisation of the eigenvalues of X̃n as zeroes of a function Hn

The goal of this section is to prove Proposition 3.1. As will be seen further, the proof
of this proposition is straightforward in the i.i.d. perturbation model but more involved
in the orthonormalized perturbation model and we first detail the orthonormalization
procedure.

4.1. The Gram-Schmidt orthonormalisation procedure.

We start by detailing the construction of (Un
i )1≤i≤r from (Gn

i )1≤i≤r in the orthonor-
malized perturbation model. The canonical scalar product in Cn will be denoted by
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〈v, w〉 = v∗w =
∑n

k=1 vkwk, and the associated norm by ‖ · ‖2. We also recall that Hr is
the space of r × r either symmetric or Hermitian matrices, according to whether G is a
real (K = R) or complex (K = C) random vector.

Fix 1 ≤ r ≤ n and consider a linearly independent family G1, . . . , Gr of vectors in K
n.

Define their Gram matrix (up to a factor n)

C = [Cij ]
r
i,j=1, with Cij =

1

n
〈Gi, Gj〉.

We then define

q1 = 1 and for i = 2, . . . , r, qi := det[Ckl]
i−1
k,l=1 (6)

and the lower triangular matrix A = [Aij ]1≤j≤i≤r as follows : for all 1 ≤ j < i ≤ r,

Aij =
det[γj

k,l]
i−1
k,l=1

qi
with γj

kl =

{
Ckl, si l 6= j
−Cki, si l = j.

(7)

Note that by linear independence of the Gi’s, none of the qi’s is zero so that the matrix
A is well defined.

Then the vectors W1, . . . ,Wr defined, for i = 1, . . . , r, by

Wi =
i∑

l=1

Ail
Gl√
n

are orthogonal and the Ui’s, defined, for i = 1, . . . , r, by

Ui =
Wi

‖Wi‖2
are orthonormal. They are said to be the Gram-Schmidt orthonormalized vectors from
(G1, . . . , Gr). The following proposition, which can be easily deduced from the definitions
we have just introduced, will be useful in the sequel.

Property 4.1. For each i0 = 1, . . . , r, there is a real function Pi0, defined on Hr, poly-
nomial in the entries of the matrix, not depending on n and nor on the Gi’s, such that

‖qi0Wi0‖22 = Pi0(C).

Moreover, the polynomial function Pi0 is positive on the set of positive definite matrices.

The last assertion of the proposition comes from the fact that any positive definite r×r
Hermitian matrix is the Gram matrix of a linearly independent family of r vectors of Kr

(namely the columns of its square root).

Let now G be a random vector satisfying Assumption 2.2 and (G(k), k ≥ 1) be i.i.d.
copies of G. Let Gn

i = (G(k)i)1≤k≤n for i ∈ {1, . . . , r}. One can easily check that if n > r,
these vectors are almost surely linearly independent, so that we can apply Gram-Schmidt
orthonormalisation to this family of random vectors. We define the r×r matrices Cn, An,
the real number qni and the vectors W n

1 , . . . ,W
n
r , U

n
1 , . . . , U

n
r of Kn as above. As an-

nounced in Section 1, these Un
i ’s are the Gram-Schmidt orthonormalized of the Gn

i ’s we
used to define our model in the introduction.
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4.2. Characterization of the eigenvalues of X̃n: proof of Proposition 3.1.

As explained in Section 3, a crucial observation (see [11, Proposition 5.1]) is that the

eigenvalues of X̃n can be characterized as the zeroes of a polynomial function of matrices
of size r × r. This was stated in Proposition 3.1 which we prove below.

Proof of Proposition 3.1. We first recall (3), that is for z /∈ {λn
1 , . . . , λ

n
n},

det(zIn − X̃n) = det(zIn −Xn − VΘV ∗)

= det(zIn −Xn) det(Θ) det(Θ−1 − V ∗(zIn −Xn)
−1V )

Hence any z /∈ {λn
1 , . . . , λ

n
n} is an eigenvalue of X̃n if and only if

Dn(z) := det(Θ−1 − V ∗(zIn −Xn)
−1V ) = 0.

We denote by G the n × r matrix with column vectors (Gn
i )1≤i≤r, so that Kn(z) =

1
n
G∗(zIn −Xn)

−1G.

In the i.i.d. perturbation model, as V = G, Proposition 3.1 follows immediately with

Hn(z) := det(Θ−1 − V ∗(zIn −Xn)
−1V ),

which is actually a polynomial, depending on Θ, in the entries of Kn(z).

In the orthonormalized perturbation model, the Gram-Schmidt procedure makes things
a bit more involved.

If we denote by D the r × r diagonal matrix given by D = diag(‖W n
1 ‖2, . . . , ‖W n

r ‖2)
and Σ = (An)T , then V is equal to n−1/2GΣD−1 and we deduce that

Dn(z) = det(Θ−1 −D−1Σ∗Kn(z)ΣD
−1).

Now, if we define Q = diag(qn1 , . . . , q
n
r ) (recall (6)), E = DQ, F = ΣQ and Hn(z) :=

det(E∗Θ−1E − F ∗Kn(z)F ) then on one hand, one can check that

Dn(z) = (detE∗E)−1Hn(z),

so that any z /∈ {λn
1 , . . . , λ

n
n} is an eigenvalue of X̃n if and only if it is a zero of Hn.

On the other hand, Hn(z) is obviously a polynomial (depending only on the matrix Θ)
of the entries of Kn(z), E∗Θ−1E and F . Furthermore, E∗Θ−1E is a diagonal matrix
whose i-th entry is given by (E∗Θ−1E)i = θ−1

i ‖qni W n
i ‖22 = θ−1

i Pi(C
n) (by Property 4.1)

and Fij = det[γj
k,l]

i−1
k,l=1 with γj

k,l defined in (7). This concludes the proof. �

5. Large deviations for Hn in the case without outliers

We assume throughout this section that Assumptions 2.1, 2.2 and 2.3 hold.

5.1. Statement of the result.

In the sequel, K will denote any compact interval included in (b,∞), and we denote by
z∗ its upper bound. We equip C(K,Hr)×Hr with the uniform topology which is given by



13

the distance d defined, for (K1, C1), (K2, C2) ∈ C(K,Hr)× Hr by

d((K1, C1), (K2, C2)) = sup
z∈K

‖K1(z)−K2(z)‖2 + ‖C1 − C2‖2,

where ‖M‖2 =
√
Tr(M2) for all M ∈ Hr.

With G = (g1, . . . , gr) satisfying Assumption 2.2, we define Z a matrix in Hr such that,
for i ≤ j, Zij = gigj and Λ given, for any H ∈ Hr by

Λ(H) = logE
(
eTr(HZ)

)
. (8)

The goal of this section is to show the following theorem.

Theorem 5.1. (1) The law of ((Kn(z))z∈K, Cn), viewed as an element of the space
C(K,Hr)× Hr equipped with the uniform topology, satisfies a large deviation prin-
ciple in the scale n and with good rate function I which is infinite if K is not
Lipschitz continuous and otherwise defined, for K ∈ C(K,Hr) and C ∈ Hr, by

I(K(·), C) = sup
P,X,Y

{
Tr

(∫
K ′(z)P (z)dz +K(z∗)X + CY

)
− Γ̃(P, Y,X)

}

where Γ̃(P, Y,X) is given by the formula

Γ̃(P, Y,X) =

∫
Λ

(
−
∫

1

(z − x)2
P (z)dz +

1

z∗ − x
X + Y

)
dµ(x)

and the supremum is taken over piecewise constant functions P with values in Hr

and X, Y in Hr.
(2) The law of (Hn(z))z∈K on C(K,R) equipped with the uniform topology, satisfies a

large deviation principle in the scale n and with rate function given, for a contin-
uous function f ∈ C(K,R), by

JK(f) = inf{I(K(·), C) ; (K(·), C) ∈ C(K,Hr)× Hr, PΘ,r(K(z), C)) = f(z) ∀z ∈ K}
with PΘ,r the polynomial function of Proposition 3.1.

Since the map (K(·), C) 7−→ (PΘ,r(K(z), C))z∈K from C(K,Hr) × Hr to C(K,R), both
equipped with their uniform topology, is continuous and I is a good rate function, the
second part of the theorem is a direct consequence of its first part and the contraction
principle [16, Theorem 4.2.1].

The reminder of the section will be devoted to the proof of the first part of the theorem
and the study of the properties of the rate function I, in particular its minimisers.

5.2. Proof of Theorem 5.1.

The strategy will be to establish a LDP for finite dimensional marginals of the process
((Kn(z))z∈K, Cn) based on [30, Theorem 2.2] (see also [8] and [12]). From that, we will es-
tablish a LDP in the topology of pointwise convergence via the Dawson-Gärtner theorem.
As ((Kn(z))z∈K, Cn) will be shown to be exponentially tight for the uniform topology, the
LDP will also hold in this latter topology.
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5.2.1. Exponential tightness. We start with the exponential tightness, stated in the fol-
lowing lemma. As K is a compact subset of (b,∞) and the largest eigenvalue λn

1 tends
to b, there exists 0 < ε < 1 (depending only on K) such that for n large enough, for any
z ∈ K and 1 ≤ i ≤ n, z − λn

i > ε. We fix hereafter such an ε.

For any L > 0, we define

CK,L :=

{
(K,C) ∈ C(K,Hr)× Hr ; sup

z∈K
‖K(z)‖2 + ‖C‖2 ≤ L, K is

L

2ε
-Lipschitz

}
.

We have

Lemma 5.2.

lim sup
L→∞

lim sup
n→∞

1

n
logP

(
((Kn(z))z∈K, C

n) ∈ Cc
K,L

)
= −∞.

In particular, the law of ((Kn(z))z∈K, Cn) is exponentially tight for the uniform topology
on C(K,Hr)× Hr.

Proof. We claim that{
max
1≤i≤r

Cn
ii ≤

εL

2r

}
⊂ {((Kn(z))z∈K, C

n) ∈ CK,L} .

Indeed, for n large enough,

|Kn(z)ij −Kn(z′)ij | ≤
√

Cn
iiC

n
jj

|z − z′|
ε2

,

whereas since |Cn
ij|2 ≤ Cn

iiC
n
jj, ‖Cn‖2 ≤ rmax1≤i≤r C

n
ii and ‖Kn(z)‖2 ≤ 1

ε
rmax1≤i≤r C

n
ii.

Now, by Assumption 2.2, let α > 0 be such that C := E

(
eα

∑r
i=1 |gi|2

)
< ∞.

P

(
max
1≤i≤r

Cn
ii >

εL

2r

)
≤ rP

(
Cn

11 >
εL

2r

)
(9)

≤ rE
(
eα

∑

k |Gn
1 (k)|2

)
e−nα εL

2r ≤ rCne−nα εL
2r ≤ e−nα εL

4r , (10)

where the last inequality holds for n and L large enough. This gives

lim sup
L→∞

lim sup
n→∞

1

n
logP

(
((Kn(z))z∈K, C

n) ∈ Cc
K,L

)
= −∞.

By the Arzela-Ascoli theorem, CK,L is a compact subset of C(K,Hr)× Hr for any L > 0,
from which we get immediately the second part of the lemma. �

5.2.2. Large deviation principle for finite dimensional marginals. We now study the finite
dimensional marginals of our process. More precisely, we intend to show the following:

Proposition 5.3. Let M be a positive integer and b < z1 < z2 < · · · < zM .
The law of ((Kn(zi))1≤i≤M , Cn) viewed as an element of HM+1

r satisfies a large deviation
principle in the scale n with good rate function Iz1,...,zMM defined, for K1, . . . , KM , C ∈ Hr

by

Iz1,...,zMM (K1, . . . , KM , C) = sup
Ξ1,...,ΞM ,Y ∈Hr

{
Tr

(
M∑

l=1

ΞlKl + Y C

)
− ΓM(Ξ1, . . . ,ΞM , Y )

}
,
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with ΓM(Ξ1, . . . ,ΞM , Y ) defined by the formula

ΓM(Ξ1, . . . ,ΞM , Y ) =

∫
Λ

(
M∑

l=1

1

zl − x
Ξl + Y

)
dµ(x),

Λ being given by (8).

Proof. The proof of the proposition is a direct consequence of Theorem 2.2 of [30].
Indeed, let Z1 be the Hr-valued random variable such that for all 1 ≤ i, j ≤ r,

(Z1)ij = gi(1)gj(1)

and we define f the matrix-valued continuous function with values in R[(M+1)r]×r such
that, if we denote by Ir the identity matrix in Hr,

f(x) =




1
z1−x

Ir
...

1
zM−x

Ir
Ir


 .

Now, if (Zk)1≤k≤n are iid copies of Z1, we denote by

Ln :=
1

n

n∑

k=1

f(λn
k) · Zk =




Kn(z1)
...

Kn(zM )
Cn


 .

A slight problem is that 1
n

∑n
i=1 δλn

i
do not fulfill Assumption A.1 in [30] in the sense that

this assumption requires that for all i, λn
i belongs to the support of the limiting measure

µ. Nevertheless, it is easy to construct (as was done in the proof of Theorem 3.2 in [29]) a
sequence λ̄n

i such that 1
n

∑n
i=1 δλ̄n

i
fulfills Assumption A.1 in [30] and L̄n := 1

n

∑n
k=1 f(λ̄

n
k)

is exponentially equivalent to Ln. Then from Theorem 2.2 of [30], we get that Ln satisfies
an LDP in the scale n with good rate function Iz1,...,zMM . �

5.2.3. Large deviation principle for the law of ((Kn(z))z∈K, Cn). The next step is to es-
tablish a LDP for the law of ((Kn(z))z∈K, Cn) associated with the topology of point-
wise convergence. The following proposition will be a straightforward application of the
Dawson-Gärtner theorem on projective limits.

Proposition 5.4. The law of ((Kn(z))z∈K, Cn) as an element of C(K,Hr)× Hr equipped
with the topology of pointwise convergence satisfies a LDP in the scale n with good rate
function J defined as follows : for K ∈ C(K,Hr) and C ∈ Hr,

J(K,C) = sup
M

sup
z1<···<zM ,zi∈K

Iz1,...,zMM (K(z1), . . . , K(zM), C).

Moreover J equals the rate function I given in Theorem 5.1.(1).

Proof. Let J be the collection of all finite subsets of K ordered by inclusion. For j =
{z1, . . . , z|j|} ∈ J and f a measurable function from K to Hr, pj(f) = (f(z1), . . . , f(z|j|)) ∈
H

|j|
r .

We know from Proposition 5.3 that the law of (pj(K
n), Cn) satisfies a LDP with good
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rate function I
z1,...,z|j|
|j| . Moreover, one can check that the projective limit of the family

H
|j|
r × Hr is HK

r × Hr equipped with the topology of pointwise convergence.
Therefore, the Dawson-Gärtner theorem [16, Theorem 4.6.1] proves the LDP with rate
function J. The identification of J as I is straightforward as by a simple change of
variables, J is the supremum of

J(Ξ,M, z) := Tr

(
M−1∑

l=1

Ξ(zl)(K(zl+1)−K(zl)) +K(zM)Ξ(zM) + CY

)

−
∫

Λ

(
M−1∑

l=1

Ξ(zl)

(
1

zl+1 − x
− 1

zl − x

)
+

Ξ(zM )

zM − x
+ Y

)
dµ(x)

over the choices of Ξ,M, z. We may assume without loss of generality that zM = z∗.
Putting P (z) =

∑M−1
l=1 Ξ(zl)1[zl,zl+1] and X = Ξ(zM ), we identify J and I. Thus the proof

of the proposition is complete. �

To complete the proof of Theorem 5.1(1), we now need to show that the LDP is also
true for the uniform topology. From Proposition 5.4 and Lemma 5.2, and as the topol-
ogy of uniform convergence is finer than the topology of pointwise convergence, we can
apply [16, Corollary 4.2.6] and get that the law of ((Kn(z))z∈K, Cn) as an element of
C(K,Hr) × Hr equipped with the uniform topology satisfies a LDP in the scale n with
good rate function J.

5.3. Properties of the rate function.

To finish the proof of Theorem 5.1(1), the last thing to check is that I(K(·), C) is in-
finite whenever K is not Lipschitz continuous. This is the object of this subsection (see
Lemma 5.5.(6)), together with providing further information on the functions (K,C) with
finite I that will be useful in the sequel.

We will consider the operator norm, given, for H ∈ Hr, by ‖H‖∞ = sup〈u,Hu〉, where
the supremum is taken over vectors u ∈ Cr with norm one. We also use the usual order
on Hermitian matrices, i.e. H1 ≤ H2 if and only if H2 − H1 is positive semi-definite
(respectively H1 < H2 if H2 −H1 is positive definite).
We recall that Λ was defined in (8).

Lemma 5.5. (1) H 7→ Λ(H) is increasing, Λ(−H) ≤ 0 if H ≥ 0.
(2) If we denote by (C∗)ij = E[gigj]. Then, for any H ∈ Hr,

Λ(H) ≥ Tr(HC∗).

If we assume moreover that G satisfies the first part of Assumption 2.2 (existence of
some exponential moments), we have the following properties.

(3) There exists γ > 0 so that

B := sup
H:‖H‖∞≤γ

Λ(H) < ∞ .
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(4) If I(K(·), C) is finite, C ≥ 0 and K(z) ≥ 0, for any z ∈ K. Moreover, for all L,
there exists a finite constant ML so that on {I ≤ L}, we have

sup
z∈K

‖K(z)‖∞ ≤ ML, ‖C‖∞ ≤ ML.

(5) If I(K(·), C) or J(K(·), C) are finite, then z→K(z) is non increasing.
(6) For all L, there exists a finite constant ML so that on {I ≤ L}, we have

and for all z1, z2 ∈ K, ‖K(z2)−K(z1)‖∞ ≤ ML|z1 − z2| .
In particular, K ′ exists almost surely and is bounded by ML.

If we assume now that G satisfies both parts of Assumption 2.2 (the law of G does not
put mass on hyperplanes), we then have the following additionnal properties.

(7) For all non null positive semi-definite H ∈ Hr,

lim
t→+∞

Λ(−tH) = −∞. (11)

(8) If I(K(·), C) is finite, then C > 0 and K(z) > 0 for any z ∈ K. Moreover, for
almost any z ∈ K and for any non zero vector e, there is no interval with non-
empty interior on which the function 〈e,K ′(.)e〉 vanishes everywhere.

Proof.

(1) The first point is just based on the fact that almost surely, Tr(HZ) ≥ 0 if H ≥ 0.
(2) The second point follows from Jensen’s inequality.
(3) The third point is due to the fact that Tr(HZ) ≤ ‖H‖∞

∑r
i=1 |gi|2 so that by

Hölder’s inequality,

Λ(H) ≤ logE[e‖H‖∞
∑r

i=1 |gi|2 ] ≤ 1

r

r∑

i=1

logE[e‖H‖∞r|gi|2]

which is finite by Assumption 2.2 if ‖H‖∞r ≤ α.

(4) To prove the fourth point let (C,K) ∈ {I ≤ L}. We first show that C ≥ 0. We
take P,X ≡ 0 to get

sup
Y ∈Hr

{Tr(CY )− Λ(Y )} ≤ I(K,C) ≤ L .

Suppose now that there exists some vector u ∈ Cr such that 〈u, Cu〉 = α < 0,
and define, for any t > 0, Yt = −t uu∗. Then Λ(Yt) ≤ 0 by the first point and
Tr(CYt) = −αt so that for all t > 0,

−αt ≤ Tr(CYt)− Λ(Yt) ≤ L.

Letting t going to infinity gives a contradiction. The same proof holds for K(z) by
taking P (z) = −1z≥z0X and X = −t uu∗ if 〈u,K(z0)u〉 = α < 0. We finally bound
K and C. With γ and B introduced in the third point, we define Y = ±γuu∗ and
take P,X ≡ 0. We get

γ|〈u, Cu〉| ≤ B + L

for all vector u with norm one, that is ‖C‖∞ ≤ γ−1(L+B). Similar considerations
hold for the bound over ‖K(z)‖∞.
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(5) We next prove that z→K(z) is non increasing when the entropy is finite. Let us
prove that for any z1, z2 ∈ K such that z1 < z2, K(z2) ≤ K(z1) (dividing by z2−z1
will then give the fact that K ′ is negative semi-definite where it is defined). So let
us fix z1, z2 ∈ K such that z1 < z2. Let us fix u ∈ Cr\{0}. For all real number
t ≥ 0, we have, for Pt(z) := t1[z1,z2](z)uu

∗ and X = Y = 0,

I(K(·), C) ≥ tu∗(K(z2)−K(z1))u− Γ(Pt, 0, 0).

Note that

Γ(Pt, 0, 0) =

∫
Λ

(
−t

∫ z2

z1

dz

(z − x)2
u∗u

)
dµ(x) ≤ 0

by (1) of this lemma. Thus for all t > 0,

I(K(·), C) ≥ tu∗(K(z2)−K(z1))u.

It follows that u∗(K(z2) − K(z1))u is non positive by letting t going to infinity,
which completes the proof of this point.

(6) Take P = −(z2−z1)
−11[z1,z2]uu

∗, Y = −uu∗maxx∈supp(µ)

∫
(z−x)−2(z2−z1)

−11[z1,z2](z)dz

and X = 0 to get, since then Γ̃(P, Y,X) ≤ 0 by the first point,

〈u,−Tr((K(z2)−K(z1))(z2 − z1)
−1)u〉 ≤ L+ rε−2‖C‖∞

where we used that Y is bounded by ε−2. This provides the expected bound by
the fourth point.

(7) Consider η > 0 and a non vanishing orthogonal projector p ∈ Hr such thatH ≥ ηp.
For all t > 0, we have

0 ≤ E[e−tTr(HZ)] ≤ E[e−tη Tr(pZ)] = E[e−tη Tr(pGG∗)] = E[e−tηG∗pG].

Since, by dominated convergence,

lim
t→+∞

E[e−tηG∗pG] = P{G∗pG = 0} = P{G ∈ ker p} = 0

(where we used Assumption 2.2 in the last equality), we have

lim
t→+∞

Λ(−tH) = lim
t→+∞

logE[e−tTr(HZ)] = −∞.

(8) We already proved that K is non increasing and almost surely differentiable, so
that K ′ ≤ 0 almost surely. Moreover, if u is a fixed vector and 〈u,K ′(·)u〉 vanishes
on an interval [z1, z2] with z1 < z2, taking Pt = t1[z1,z2](z)uu

∗, and X = Y = 0,
yields

I(K(·), C) ≥ −
∫

Λ

(
−t

∫ z2

z1

dz

(z − x)2
uu∗
)
dµ(x)

which goes to infinity as t goes to infinity by the previous consideration. Thus, this
is not possible. As we have already seen that K(a) ≥ 0 for all a ∈ K, we see that
K(a′) > 0 for a′ < a unless there exists e so that 〈e, (a − a′)−1(K(a) −K(a′))e〉
vanishes, which is impossible by the above.

�
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5.4. Study of the minimisers of I.

We characterise the minima of I as follows :

Lemma 5.6. For any compact set K of (b,∞), the unique minimizer of I on C(K,Hr)×Hr

is the pair (K∗, C∗) given, for 1 ≤ i, j ≤ r, by

(K∗(z))ij =

∫
(C∗)ij
z − λ

dµ(λ), for z ∈ K and (C∗)ij = E[gigj].

Proof. I vanishes at its minimisers (as a good rate function) and therefore a minimizer
(K,C) satisfies for all P,X, Y ,

Tr

(∫
K ′(z)P (z)dz +K(z∗)X + CY

)
≤ Γ(P,X, Y ) . (12)

Now, for any fixed (P,X, Y ), there exists ε0 > 0 such that for any 0 < ε < ε0, for any x
in the support of µ we have

ε

∥∥∥∥−
∫

1

(z − x)2
P (z)dz +

1

z∗ − x
X + Y

∥∥∥∥
∞

< α,

with α given by Assumption 2.2. Therefore, there exists a constant L such that for any
x in the support of µ

∣∣∣∣E
(
e
εTr

(

−
∫

1
(z−x)2

P (z)dz+ 1
z∗−x

X+Y
)

Z
)

−E

(
1 + εTr

((
−
∫

1

(z − x)2
P (z)dz +

1

z∗ − x
X + Y

)
Z

))∣∣∣∣ ≤ ε2L,

so that

Γ(εP, εX, εY ) = εTr

(∫
(K∗)′(z)P (z)dz +K∗(z∗)X + C∗Y

)
+O(ε2).

As a consequence, for any minimizer (K,C),we find after replacing (P,X, Y ) by ε(P,X, Y ),
using (12) and letting ε going to zero, that

Tr

(∫
K ′(z)P (z)dz +K(z∗)X + CY

)
≤ Tr

(∫
(K∗)′(z)P (z)dz +K∗(z∗)X + C∗Y

)
.

Changing (P,X, Y ) in −(P,X, Y ) gives the equality. This implies that

C = C∗, K ′ = (K∗)′ a.s. and K(z∗) = K∗(z∗)

and therefore (K,C) = (K∗, C∗). �

6. Large deviations for the largest eigenvalues in the case without

outliers

We again assume throughout this section that Assumptions 2.1, 2.2 and 2.3 hold.
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6.1. Statement of the main result.

For any ε > 0, we define the compact set Kε := [b + ε, ε−1]. Let s := sign (
∏r

i=1 θi) =
(−1)r−m.
For x ∈ R, we set Rp

↓(x) = {(α1, . . . , αp) ∈ Rp/α1 ≥ . . . ≥ αp ≥ x}.
We also denote by ω(g) := supx 6=y

|g(x)−g(y)|
|x−y| ∈ [0,∞] the Lipschitz constant of a function

g. For any ε, γ > 0, and α ∈ R
p
↓(b+ ε), we put

Sε
α,γ :=

{
f ∈ C(Kε,R) : ∃g ∈ C(Kε,R) with γ ≤ g ≤ 1

γ
, ω(g) ≤ 1

γ

and f(z) = s.g(z)

p∏

i=1

(z − αi)

}

Note that in the latter product, the αi’s appear with multiplicity. Sε
∅,γ will denote the set

of functions as above but with no zeroes on Kε. We have the following theorem.

Theorem 6.1. Under Assumptions 2.1, 2.2 and 2.3, the law of the m largest eigenvalues

(λ̃n
1 , . . . , λ̃

n
m) of X̃n satisfies a large deviation principle in Rm in the scale n and with good

rate function L, defined as follows. For α = (α1, . . . , αm) ∈ Rm, we take αm+1 = b and

L(α) :=





limε↓0 inf∪γ>0Sε
(α1,...,αm−k),γ

JKε if α ∈ Rm
↓ (b), αm−k+1 = b and αm−k > b

for some k ∈ {0, . . . , m− 1},
limε↓0 inf∪γ>0Sε

∅,γ
JKε if α1 = α2 = · · ·αm = b

+∞ otherwise.

Remark 6.2. The function L is well defined. Indeed, one can easily notice that for all
α ∈ R

m
↓ (b) such that for some k ∈ {0, . . . , m}, αm−k+1 = b and αm−k > b, the map

ε 7−→ inf{JKε(f) ; f ∈ ∪γ>0S
ε
(α1,...,αm−k),γ

}
is increasing, so that its limits as ε decreases to zero exists.

Remark 6.3. Note that JKε(f) is infinite if f has more than r zeroes greater than b.
Indeed, by definition, if JKε(f) is finite,

f(z) = PΘ,r(K(z), C) = c det(A−K(z))

with a non-vanishing constant c and a self-adjoint matrix A with eigenvalues (θ−1
1 , . . . , θ−1

r )
and a function K with values in the set of r × r positive self-adjoint matrices so that
K ′ ≤ 0 by Lemma 5.5. We may assume without loss of generality that f vanishes at a
point x > b, since otherwise we are done, so that there exists a non zero e ∈ Cr so that
K(x)e = Ae. There is at most one x at which K(x)e = Ae; otherwise, 〈e,K ′(·)e〉 would
vanish on a non trivial interval which is impossible by (7) of Lemma 5.5. Moreover,
if we let P be the orthogonal projection onto the orthocomplement of e, the function
H(z) = det((1 − P )(A − K(z))(1 − P )) det(PAP − PK(z)P ) vanishes at x and at the
zeroes of det(PAP − PK(z)P ). But PAP and PK(z)P have the same properties as A
and K(z) except they have one dimension less. Thus, we can proceed by induction and
see that f can vanish at at most r points.

The minimisers are described by the following result.
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Theorem 6.4. If we define on (b,∞)

H(z) = PΘ,r(K
∗(z), C∗)

where (K∗, C∗) are given in Lemma 5.6 and PΘ,r is defined in Proposition 3.1, there exists
k ∈ {0, . . . , m} such that H has m− k zeroes (λ∗

1, . . . , λ
∗
m−k) (counted with multiplicity).

The unique point of Rm on which L vanishes is (λ∗
1, . . . , λ

∗
m−k, b, . . . , b) and consequently

(λ̃n
1 , . . . , λ̃

n
m) converges almost surely to this point as n grows to infinity.

Remark 6.5. In the case when (g1, . . . , gr) are independent centered variables with vari-
ance one, one can check that C∗ = Ir, K

∗(z) =
∫

1
z−x

dµ(x).Ir and

H(z) =

r∏

i=1

(
1

θi
−
∫

1

z − x
dµ(x)

)

so that we recover [11, Theorem 2.1] or [10, Theorem 1.3].

6.2. Preliminary remarks and strategy of the proof.

Let us first notice that at most m eigenvalues of X̃n can deviate from the bulk since by
Weyl’s interlacing inequalities (see e.g. [27, Section 4.3])

λ̃n
m+1 ≤ λn

1 ,

which converges to b as n goes to infinity.

Secondly, let us state the following lemma.

Lemma 6.6. The law of the sequence (λ̃n
1 , . . . , λ̃

n
m) of the m largest eigenvalues of X̃n is

exponentially tight in the scale n.

Proof. Let us define Rn := X̃n − Xn and denote by ‖Rn‖∞ the operator norm of the
perturbation matrix Rn. Note that for all k,

λn
k − ‖Rn‖∞ ≤ λ̃n

k ≤ λn
k + ‖Rn‖∞.

Since for any fixed k, the non random sequence λn
k converges to b as n tends to infinity,

it suffices to prove that

lim sup
L→∞

lim sup
n→∞

1

n
log P(‖Rn‖∞ ≥ L) = −∞. (13)

For the orthonormalized perturbation model, since ‖Rn‖∞ = max{θ1,−θr}, (13) is clear.
In the i.i.d. perturbation model, we have, for θ := max1≤i≤r |θi|,

‖Rn‖∞ = sup
‖v‖2=1

|〈v, Rnv〉| ≤
1

n

r∑

i=1

θ‖Gn
i ‖22 =

θ

n

n∑

k=1

r∑

i=1

|gi(k)|2.

It implies, by Tchebychev’s inequality, that

P (‖Rn‖∞ ≥ L) ≤ e−
nαL
θ E

[
exp

(
α

n∑

k=1

r∑

i=1

|gi(k)|2
)]

= e−
nαL
θ E

[
exp

(
α

r∑

i=1

|gi(1)|2
)]n

which allows to conclude by Assumption 2.2. �
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As the law of (λ̃n
1 , . . . , λ̃

n
m) is exponentially tight, the proof of Theorem 6.1 reduces to

establishing a weak LDP. In virtue of [16, Theorem 4.1.11] (see also [1, Corollary D.6]),
this weak LDP (and the fact that L is a rate function) will be a direct consequence of
Equation (18) and Lemma 6.9 below. The fact that L is a good rate function is then
implied by exponential tightness [16, Lemma 1.2.18].

6.3. The structure of Hn.

From Proposition 3.1, we know that the λ̃n
i ’s are essentially the zeroes of Hn. However,

Hn could a priori have other zeroes than these eigenvalues or take arbitrary small values.
To control this point, we need to understand better the structure of Hn. Let

Cε
k,γ :=

{
f ∈ C(Kε,R) : ∃p polynomial of degree k with k roots in Kε

and dominant coefficient 1, g ∈ C(Kε,R) with γ ≤ g ≤ 1

γ
, ω(g) ≤ 1

γ
and f(z) = s.g(z)p(z)

}

and

Cε
γ =

⋃

0≤k≤m

Cε
k,γ.

We intend to show the following fact

Lemma 6.7. For any ε > 0 small enough, there exists a positive integer n0(ε), L(ε) > 0
and a sequence of random functions (gn) such that for any z ∈ Kε and n ≥ n0(ε),

Hn(z) =





s
∏r

i=1 ‖qni W n
i ‖22 gn(z)

∏m
i=1(z − λ̃n

i ) in the orthonormalized perturbation model,

s gn(z)
∏m

i=1(z − λ̃n
i ) in the i.i.d. perturbation model,

with

s = (−1)r−m, L(ε) ≤ gn ≤ 1

L(ε)
and ω(gn) ≤

1

L(ε)
. (14)

In particular, for any ε > 0,

lim sup
γ↓0

lim sup
n→∞

1

n
logP

((
m∏

i=1

(z − λ̃n
i )

−1Hn(z)

)

z∈Kε

∈ (Cε
0,γ)

c

)
= −∞. (15)

and

lim sup
γ↓0

lim sup
n→∞

1

n
logP

(
Hn ∈ (Cε

γ)
c
)
= −∞. (16)

Proof. Let us define the random sequence

cn :=





s
∏r

i=1 ‖qni W n
i ‖22 in the orthonormalized perturbation model,

s in the i.i.d. perturbation model.
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Going back to the proof of Proposition 3.1, one can easily see that, for any z /∈ {λn
1 , . . . , λ

n
n},

Hn(z) = cn

r∏

i=1

θ−1
i det(zIn −Xn)

−1 det

(
zIn −Xn −

r∑

i=1

θiU
n
i (U

n
i )

∗

)
.

We can rewrite the above as Hn(z) = cngn(z)
∏m

i=1(z − λ̃n
i ) with

gn(z) :=
r∏

i=1

|θi|−1 1∏m
i=1(z − λn

i )

n∏

i=m+1

(
1 +

λn
i − λ̃n

i

z − λn
i

)

Now, for ε > 0 fixed, we shall bound gn and its Lipschitz constant on Kε.

As Kε is compact and the λn
i belong to a fixed compact, for ε > 0 small enough, for

any i and z ∈ Kε we have z − λn
i ≤ 2

ε
and |λn

i | ≤ 2
ε
so that

0 ≤
n∑

i=m+1

(λn
i−m − λn

i ) =

m∑

i=1

λn
i −

n∑

i=n−m

λn
i ≤ 2m

2

ε
. (17)

We choose n0(ε) such that for n ≥ n0(ε) and any i and z ∈ Kε we have ε
2
≤ z − λn

i so
that as z − λn

i ≤ 2
ε
,

0 ≤ λn
i−m − λn

i

z − λn
i

= 1− z − λn
i−m

z − λn
i

≤ 1− ε2

4
.

Now, using Weyl’s interlacing properties, we have for any i ≥ m+ 1,

λ̃n
i ≤ λn

i−m, so that λn
i − λ̃n

i ≥ −(λn
i−m − λn

i ).

For 0 ≤ x ≤ 1− ε2

4
, log(1− x) ≥ − 4

ε2
x, so that we finally get by (17),

gn(z) ≥
r∏

i=1

|θi|−1
(ε
2

)m
e

4
ε2

∑n
i=m+1

λni −λ̃ni
z−λn

i ≥
r∏

i=1

|θi|−1
(ε
2

)m
e−2m( 4

ε2
)
2

.

By very similar arguments (using log(1 + x) ≤ x for x ≥ 0), one can also check that for
any n ≥ n0(ε),

gn(z) ≤
r∏

i=1

|θi|−1

(
2

ε

)m

e
4
ε2

2m.

The proof of the uniform equicontinuity of gn on Kε is left to the reader as the arguments
are very similar since z→(z − λn

i )
−1 is uniformly continuous on Kε for n large enough.

To prove (16) and (15), it is therefore sufficient to prove that, with probability greater
than 1 − e−cn for somme c > 0, we have that cn and c−1

n are bounded which is a direct

consequence of Lemma 11.1, and that, λ̃1
n ≤ ε−1 for small ε, which is proved in Lemma

6.6. �

The main application of the previous Lemma will be the following continuity properties
of the zeroes of functions in Cε

γ.

Lemma 6.8. Let ε > 0 be fixed, γ > 0 small enough, and k ∈ N be fixed. Let α0
1 ≥ · · · ≥

α0
k ∈ Kε and f0(z) = h0(z)

∏k
i=1(z − α0

i ) ∈ Cε
k,γ, be given. Then, for all δ > 0 there exists
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δ′ > 0 so that
{
f ∈ Cε

γ : sup
x∈Kε

|f(x)− f0(x)| < δ′
}

⊂
{
z 7→ h(z)

m∏

i=1

(z − αi) : h ∈ Cε
0,γ , max

1≤i≤k
|αi − α0

i | ≤ δ,max
i>k

αi ≤ b+ 2ε

}

Proof. This amounts to show that if fn ∈ Cε
γ is a sequence converging (for the uniform

topology on Kε) to f ∈ Cε
k,γ, m − k zeroes of the functions fn will be below b + 2ε and

the others will converge to the zeroes of f . Indeed, if we take a sequence fn ∈ Cε
γ, we

can always denote it fn(z) = hn(z)
∏m

i=1(z − αn
i ) (with possibly some αn

i ∈ (b + ε/4, b+
3ε/4) if fn ∈ Cε

k,γ with k < m), as this amounts at the worst to change h and take γ
smaller. Then, the crucial point is that hn is tight by Arzela-Ascoli theorem so that we
can consider a converging subsequence. As the αn

i belong to [b, 1/ε], we can also consider

converging subsequences. Thus, fn converges along subsequences to a function f̃ with
f̃(z) = h(z)

∏m
i=1(z − αi) on Kε with αi ∈ [b, 1/ε]. But then we must have f = f̃ which

allows in particular to identify k limit points with the zeroes of f , the others being below
b+ 2ε. �

6.4. Core of the proof.

First, from what we said in the preliminary remarks and the fact that the λ̃n
i are

decreasing, we obviously have that if α /∈ Rm
↓ (b), one has

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
⋂

1≤i≤m

{|λ̃n
i − αi| ≤ δ}

)

= lim inf
δ↓0

lim inf
n→∞

1

n
log P

(
⋂

1≤i≤m

{|λ̃n
i − αi| < δ}

)
= −∞. (18)

The weak LDP will then be a direct consequence of the following lemma, with k the
numbers of eigenvalues going to b,

Lemma 6.9. Let α ∈ Rm
↓ and k between 0 and m such that αm−k+1 = . . . = αm = b and

αm−k > b if k < m. We have

lim
ε↓0

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ ε}

)

= lim
ε↓0

lim inf
δ↓0

lim inf
n→∞

1

n
logP

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ ε}

)
= −L(α),

with the obvious convention that
⋂

m−k+1≤i≤m{λ̃n
i ≤ b+ ε} = Ω if k = 0.

Proof. Let δ and ε be positive small enough constants so that αm−k−δ ≥ b+2ε. In particu-

lar, ∩m−k
i=1 [αi−δ, αi+δ] ⊂ Kε. On the set

⋂
1≤i≤m−k{|λ̃n

i −αi| ≤ δ}⋂m−k+1≤i≤m{λ̃n
i ≤ b+ε},
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for all i ≤ m−k, λ̃n
i is in Kε. On the other hand, for n large enough, {λn

1 , . . . , λ
n
n}∩Kε = ∅.

Therefore, λ̃n
i /∈ {λn

1 , . . . , λ
n
n} for i ∈ {1, . . . , m− k} and, by Proposition 3.1, is a zero of

Hn.

Let us next prove the large deviation upper bound and fix α1 ≥ α2 ≥ · · · ≥ αm−k > b.
A function f ∈ Cε

γ,k which vanishes within a distance δ of (αi)1≤i≤m−k with δ < αm−k − b
belongs to the set

Bε
α,γ,δ :=

{
f ∈ C(Kε,R) : ∃g ∈ C(Kε,R) with

1

γ
≤ g ≤ γ, ω(g) ≤ 1

γ

and f(z) = s.g(z)

m−k∏

i=1

(z − βi) with ∀i ≤ m− k, βi ∈ [αi − δ, αi + δ]

}
(19)

Moreover, writing Hn(z) = hn(z)
∏m

i=1(z − λ̃n
i ) by Lemma 6.7, clearly Hn belongs to

Bε
α,γ,δ as soon as for some ε′ < ε and γ′ · (ε′)m > γ, hn ∈ Cε′

0,γ′ and
⋂

1≤i≤m−k{|λ̃n
i − αi| ≤

δ}⋂m−k+1≤i≤m{λ̃n
i ≤ b+ ε− ε′} holds. As a consequence, we can write

P

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ ε− ε′}

)

≤ P
(
Hn ∈ Bε

α,γ,δ

)
+ P

(
hn ∈ (Cε′

0,γ′)c
)
.

Then, by [16, Lemma 1.2.15],

lim sup
n→∞

1

n
log P

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ ε− ε′}

)

≤ max

{
lim sup
n→∞

1

n
log P

(
Hn ∈ Bε

α,γ,δ

)
; lim sup

n→∞

1

n
log P

(
hn ∈ (Cε′

0,γ′)c
)}

,(20)

Moreover, Bε
α,γ,δ is a closed subset of C(Kε,R). Indeed, if we take a converging sequence

fn(z) = sgn(z)
∏m−k

i=1 (z − βn
i ), since the βn

i , n ≥ 0 belongs to compacts and the gn, n ≥ 0
are tight by Ascoli-Arzela’s theorem, we can always assume up to extraction that gn and
βn
i , 1 ≤ i ≤ m− k converge so that the limit of fn belongs to Bε

α,γ,δ.

Since JKε is a good rate function, (Bε
α,γ,δ)δ>0 is a nested family and ∩δ>0B

ε
α,γ,δ =

Sε
(α1,...,αm−k),γ

, Theorem 5.1 gives with [16, Lemma 4.1.6] that

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
Hn ∈ Bε

α,γ,δ

)
≤ − inf

Sε
(α1,...,αm−k),γ

JKε. (21)

Taking γ′ = γ′
0 small enough, (15) and (20) give for γ/(ε′)m < γ′

0,

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ ε− ε′}

)

≤ − inf
Sε
(α1,...,αm−k),γ

JKε ≤ − inf
∪γ>0Sε

(α1,...,αm−k),γ

JKε.
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We can finally take γ = 0 (nothing depends on it anymore), ε − ε′ going to zero, as the
left hand side obviously decreases as ε − ε′ decreases to 0 and, as we already mentioned
it in Remark 6.2, the right hand side increases as ε decreases to 0.

We turn to the lower bound, which is a bit more delicate. Let us again consider δ and ε
small enough so that ∩m−k

i=1 [αi− δ, αi+ δ] ⊂ Kε. As JKε is a good rate function and Sε
α,γ is

closed, for all γ > 0, the infimum infSε
(α1,...,αm−k),γ

JKε is achieved, say at fk,ε
γ . To complete

the proof, we need the following lemma, based on the structure of Hn and whose proof is
a direct application of Lemma 6.8.

Lemma 6.10. Let ε, γ be fixed and small enough. There exists δ0 such that for any δ ≤ δ0,
there exists δ′ > 0 such that for any n,

{
Hn ∈ Cε

γ

}
∩
{
sup
x∈Kε

|Hn(x)− fk,ε
γ (x)| < δ′

}
⊂

⋂

1≤i≤m−k

{|λ̃n
i −αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+2ε}.

To prove the lower bound in Theorem 5.1, we may assume without loss of generality
that

J := lim
ε↓0

inf
∪γ>0Sε

(α1,...,αm−k),γ

JKε < ∞.

Let η > 0 be fixed. As

inf
∪γ>0Sε

(α1,...,αm−k),γ

JKε = inf
γ>0

inf
Sε
(α1,...,αm−k),γ

JKε = inf
γ>0

JKε(f
k,ε
γ ),

we can choose ε, γ small enough so that JKε(f
k,ε
γ ) ≤ J + η. By (16), there exists L(γ, ε)

going to infinity as γ, ε go to zero so that for n large enough,

P
(
Hn ∈ (Cε

γ)
c
)
≤ e−nL(ε,γ).

We choose γ, ε small enough so that L(ε, γ) > J + 2η.

Lemma 6.10 implies, that for δ ≤ δ0, for δ
′ small enough, η > 0, for n large enough,

P

(
⋂

1≤i≤m−k

{|λ̃n
i − αi| ≤ δ}

⋂

m−k+1≤i≤m

{λ̃n
i ≤ b+ 2ε}

)

≥ P

(
sup
z∈Kε

|Hn(z)− fk,ε
γ (z)| < δ′

)
− P

(
Hn ∈ (Cε

γ)
c
)
≥ 1

2
e−n(J+2η)

the last inequality following from Theorem 5.1.(2). As η can be chosen as small as we
want, we conclude by taking first n going to infinity, and then δ, ε, η to zero.

�

6.5. Identification of the minimizers.

We prove Theorem 6.4, which is straightforward. Since L is a good rate function, it
vanishes at its minimizers (λ∗

1, . . . , λ
∗
m) ∈ Rm

↓ (b). Putting λ∗
0 = b+ 1, we know that there

exists 0 ≤ k ≤ m such that λ∗
m−k > b and λ∗

m−k+1 = b. From the definition of L, for any n
large enough such that b+ 1

n
< λ∗

m−k, we can find a function fn defined on K 1
n
vanishing
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at (λ∗
1, . . . , λ

∗
m−k) such that JK 1

n

(fn) ≤ 1
n
. From the definition of JK and the fourth and

sixth point of Lemma 5.5, all the functions fn are in a compact set of C((b,∞),R) so that
we can find a function f vanishing at (λ∗

1, . . . , λ
∗
m−k) so that JKε(f) = 0 for all ε > 0.

But the latter also implies that f(z) = PΘ,r(K(z), C) with (K,C) minimising I, that is
(K,C) = (K∗, C∗) by Lemma 5.6.

7. Large deviations for the eigenvalues of Wishart matrices

In this section, we study the i.i.d. perturbation model when Xn = 0. More precisely,
we consider G = (g1, . . . , gr) satisfying Assumption 2.2, n × r matrices Gn whose rows
are i.i.d. copies of G, a diagonal matrix Θ = diag(θ1, . . . , θr) and we study the large
deviations of Wishart matrices Wn = 1

n
GnΘG∗

n. This matrix has zero as an eiganvalue
with muliplicity at least n − r and we refer in the whole section to the r eigenvalues of
Wn that can be non-zero as “the eigenvalues of Wn”. The large deviations for the largest
and smallest such eigenvalues were already studied in [23] in the case when Θ = (1, . . . , 1)
and the gi’s are i.i.d.

Proposition 7.1. Assume that G satisfies Assumption 2.2. Let Θ = diag(θ1, θ2, . . . , θr)
be a diagonal matrix with positive entries. Then, the law of the eigenvalues of Wn satisfies
a large deviation principle in the scale n with rate function which is infinite unless α1 ≥
· · · ≥ αr ≥ 0 and in this case given by

L(α1, . . . , αr) = inf{J(C) : (α1, . . . , αr) are the eigenvalues of Θ− 1
2CΘ− 1

2},
with

J(C) = sup
Y ∈Hr

{Tr(CY )− logE[e〈G,Y G〉]} .

Note that the previous proposition could also have been deduced directly from Cramér’s
theorem and the contraction principle.

The Gaussian case allows an exact computation, given by the following

Corollary 7.2. Assume that G = (g1, . . . , gr) is a Gaussian vector with positive def-
inite covariance matrix R. Let Θ = diag(θ1, . . . , θr) be a diagonal matrix with positive
entries. We denote by 0 < r1(Θ) ≤ r2(Θ) ≤ . . . ≤ rr(Θ) the eigenvalues of the matrix
Θ−1/2R−1Θ−1/2 in increasing order.
Then, the law of the eigenvalues of Wn satisfies a large deviation principle in the scale n
with rate function which is infinite unless α1 ≥ α2 ≥ . . . ≥ αr > 0 and otherwise given by

L(α1, . . . , αr) =
1

2

r∑

i=1

(αiri(Θ)− 1− log(αiri(Θ))) .

In the particular case when the entries are i.i.d. standard normal, the above rate function
can be rewritten

L(α1, . . . , αr) =
1

2

r∑

i=1

(
αi

θi
− 1− log

αi

θi

)
.

Now, by a straightforward use of the contraction principle, we can derive some results
about the deviations of the largest eigenvalue. This problem was addressed in particular
in [23]. The following corollary holds for the Gaussian case.
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Corollary 7.3. Under the assumptions of Corollary 7.2, the law of the largest eigenvalue
satisfies a LDP with good rate function

Lmax(x) =

{
1
2
(xr1(Θ)− 1− log(xr1(Θ))) if x ≥ 1

r1(Θ)
,

1
2

∑j
i=1(xri(Θ)− 1− log(xri(Θ))) if 1

rj+1(Θ)
< x ≤ 1

rj(Θ)
,

with the convention that rr+1(Θ) = ∞.

In particular, in the i.i.d. standard case when Θ = diag(1, . . . , 1), we have

Lmax(x) =

{
1
2
(x− 1)− 1

2
log x if x ≥ 1,

r
2
(x− 1)− r

2
log x if x ∈ (0, 1),

and this allows to retrieve [23, Corollary 2.1] (note that a direct proof based on the for-
mula for the joint law of the eigenvalues is then also available). This is in agreement with
the fact that as r goes to infinity, we expect the deviations below one to be impossible in
this scale.

In the general case, we have

Corollary 7.4. Under the assumptions of Proposition 7.1, the law of the largest eigen-
value of Wn satisfies a large deviation principle in the scale n with a rate function Lmax(α)
which satisfies, for any α ∈ R,

Lmax(α) = inf{L(α1, . . . , αr) : maxαi = α}
≥ inf

‖x‖2=1
sup
t∈R

{tα− logE[et|〈G,Θ
1
2 x〉|2 ]} =: Ir,Θ(α)

From there, one can easily improve the upper bound on the probability of deviations
of the largest eigenvalue of [23, Theorem 2.1] :

Corollary 7.5. Assume that G satisfies Assumption 2.2 and that the gi’s are i.i.d. with
mean 0 and variance 1. Let Θ = diag(θ1, θ2, . . . , θr) be a diagonal matrix with positive
entries, with θ1 ≥ θ2 ≥ . . . ≥ θr. Then we have that, for α ≥ θ1,

lim
n→∞

1

n
logP(λmax ≥ α) = −Ir,Θ(α).

Note that when α ≥ θ1, Ir,Θ(α) = inf [α,∞) Lmax and in particular Ir,Θ is not necessarily
lower semicontinuous. We refer to [23] for more properties of Ir,Θ, related results and
conjectures.

Proof of Proposition 7.1. In the case where Xn = 0, we can apply Theorem 6.1 with
PΘ,r(K(z), C) = det(z −Θ

1
2CΘ

1
2 ) and I(C) = J(C). Hence, for α1 ≥ α2 ≥ · · · ≥ αr > 0,

L(α) is the infimum of J over the nonnegative Hermitian matrices C such that Θ
1
2CΘ

1
2

has spectrum (α1, . . . , αr). �

Proof of Corollary 7.2. In this case, logE[e〈G,Y G〉] equals log det[(R−1 − 2Y )−
1
2 )R− 1

2 ]
if R−1 − 2Y > 0, and is infinite otherwise. A classical saddle point analysis shows that
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the supremum in J is taken at

Cij =
E[gigje

〈G,Y G〉]

E[e〈G,Y G〉]
= ((R−1 − 2Y )−1)ij

which yields

J(C) =
1

2
Tr(CR−1 − I)− 1

2
log det(CR−1).

We finally take the infimum over C so that Θ
1
2CΘ

1
2 =

∑r
i=1 αieie

∗
i for some orthonormal

basis (ONB) (ei)1≤i≤r. This gives

L(α) = inf
(ei)ONB

{
1

2

r∑

i=1

αi〈ei,Θ−1/2R−1Θ−1/2ei〉
}

− 1

2

r∑

i=1

logαi −
r

2
− 1

2

∑
log ri(Θ)

=
1

2

r∑

i=1

αiri(Θ)− 1

2

r∑

i=1

log(αiri(Θ))− r

2
.

�

Proof of Corollary 7.4. We only need to take, in the definition of J(C), Y = tvv∗ if
C has eigenvector v for its largest eigenvalue to get a lower bound on J(C), and thus on
L. �

Proof of Corollary 7.5. The inequality in Corollary 7.4 gives the upper bound and the
lower bound is obtained by the same proof as in [23], that is by noticing that

P(λmax ≥ α) = P

(
sup

‖x‖2=1

〈x,Wnx〉 ≥ α

)
≥ sup

‖x‖2=1

P(〈x,Wnx〉 ≥ α)

and that for fixed x, 〈x,Wnx〉 = n−1
∑n

j=1(〈x,Θ
1
2Gj

n〉)2 is a sum of i.i.d. random variables

so that Cramer’s theorem apply. By arguments as in [23], one can also check that Ir,Θ is
increasing on [θ1,∞), which concludes the proof. �

8. Large deviations for Hn in the presence of outliers

We now go to the proof of the LDP in the presence of outliers, that will be stated in
details in Theorem 9.1. The proof follows the same lines as in the case without outliers
and starts therefore with the study of the deviations of Hn.

Let Ko :=
⋃p0

i=1[ai, bi] a compact subset of (b,∞) \ {ℓ+1 , . . . , ℓ+p+}. We equip again

C(Ko,Hr)×Hr with the uniform topology. Hereafter, we denote by ℓi = ℓ+i for 1 ≤ i ≤ p+

and ℓi = ℓ−p++p−−i+1 for p+ + 1 ≤ i ≤ p+ + p−.
We recall that Kn(z) and Cn were defined in (4) and (5) respectively.

Theorem 8.1. We assume that Assumptions 2.1, 2.2, 2.5 and 2.6 hold.

(1) The law of ((Kn(z))z∈Ko , Cn), viewed as an element of the space C(Ko,Hr) × Hr

endowed with the uniform topology, satisfies a large deviation principle in the scale
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n with rate function Io. For K ∈ C(Ko,Hr) and C ∈ Hr, I
o(K(·), C) is infinite if

z → K(z) is not uniformly Lipschitz on Ko. Otherwise, it is given by

Io(K(·), C) = inf



Γ∗(K0(·), C0) +

p++p−∑

i=1

I(Z)(Li)



 ,

where the infimum is taken over the familiesK0(·) ∈ C(Ko,Hr), C0, L1, . . . , Lp++p− ∈
Hr satisfying the condition

K0(·) +
p++p−∑

i=1

1

· − ℓi
Li = K(·) and C0 +

p++p−∑

i=1

Li = C (22)

and with

Γ∗(K(·), C) = sup
P,X,Y

{
Tr

(∫
K ′(z)P (z)dz +

p0∑

i=1

K(bi)Xi + CY

)

−
∫

Λ

(
−
∫

1

(z − x)2
P (z)dz +

p0∑

i=1

1

bi − x
Xi + Y

)
dµ(x)

}
,

the supremum being taken over piecewise constant P with values in Hr, X =
(X1, . . . , Xp0) ∈ (Hr)

p0 and Y ∈ Hr.
(2) The law of (Hn(z))z∈Ko on C(Ko,R) equipped with the uniform topology, satisfies

a large deviation principle in the scale n with rate function given, for a function
f ∈ C(Ko,R), by

Jo
Ko(f) = inf{Io(K(·), C) ; (K(·), C) ∈ C(Ko,Hr)× Hr, PΘ,r(K(z), C) = f(z) ∀z ∈ Ko}.

Note that the function Γ∗ is well defined because if K is uniformly Lipschitz on Ko,
then so is any K0 satisfying the compatibility condition (22), so that K ′

0 almost surely
exists.

Under the second assertion of Assumption 2.6, we have the following straightforward
application of the contraction principle.

Lemma 8.2. Let Z1 be the Hr-valued random variable such that for 1 ≤ i ≤ j ≤ r,
(Z1)ij = gi(1)gj(1). Under Assumption 2.6, Z1

n
also satisfies a large deviation principle

in the scale n with a good rate function I(Z)(M) = inf{I(v) : vivj = Mij , 1 ≤ i, j ≤ r}.

The proof of Theorem 8.1 follows the same lines as that of Theorem 5.1, except that
the LDP for finite dimensional marginals for our process is described by Theorem 3.2 of
[29] instead of Theorem 2.2 of [30]. It is based on the large deviations for Kn and Cn that
can be, up to a re-indexation, shown to be exponentially equivalent to

Kn(z)ij =
1

n

n∑

k=p++p−+1

1

z − λn
k

gi(k)gj(k) +

p++p−∑

k=1

1

z − ℓk

gi(k)gj(k)

n

which satisfy a LDP by independence of the gi(k), and large deviations of each parts
by Proposition 5.3 and Lemma 8.2. The corresponding rate function will be denoted
by (Iz1,...,zMM )o. To define this new rate function, we first extend in an obvious way the
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definition of Iz1,...,zMM for zi’s in Ko. Then one can define, for K1, . . . , KM , C ∈ Hr, and
z1, . . . , zM ∈ Ko,

(Iz1,...,zMM )o(K1, . . . , KM , C) = inf



Iz1,...,zMM (K0,1, . . . , K0,M , C) +

p++p−∑

i=1

I(Z)(Li)



 ,

where the infimum is taken over families

(C,K0,1, . . . , K0,M , L1, . . . , Lp++p−) ∈ (Hr)
1+M+p++p−

under the condition that for all 1 ≤ j ≤ M,

K0,j +

p++p−∑

i=1

1

zj − ℓi
Li = Kj and C0 +

p++p−∑

i=1

Li = C.

By Dawson-Gärtner Theorem, we deduce that ((Kn(z))z∈Ko , Cn) satisfies a LDP for the
topology of pointwise convergence with good rate function

Jo(K,C) = sup
M

sup
z1<...<zM ,zj∈Ko

(Iz1,...,zMM )o(K(z1), . . . , K(zM), C).

Since exponential tightness is clear, this LDP can be reinforced into the uniform topology.
We then have to check that Io = Jo.

From the definition of Io, the first thing to check is that on the event {Jo(K(·), C) < ∞},
K is Lipschitz continuous on Ko. The proof is similar to that of Lemma 5.5 as, once the
Li are given, K is Lipschitz on Ko as soon as K0 is.

We now suppose that K is Lipschitz continuous on Ko and we want to identify the two
rate functions. By mimicking3 the proof at the end of Section 5.2, one can easily show
that for K is Lipschitz continuous on Ko,

sup
M

sup
z1,...,zM

Iz1,...,zMM (K(z1), . . . , K(zM)) = Γ∗(K,C). (23)

Now, in order to achieve this identification, we have to check that we can switch the
supremum over M and the zi’s and the infimum over the admissible simultaneous decom-
positions of K and C. It is clear that,

Jo(K,C) ≤ Γ∗(K0(·), C0) +

p++p−∑

i=1

I(Z)(Li)

for any admissible choice of Li, and therefore Jo ≤ Io after optimisation. We now need
the converse inequality. By definition of Jo, if it is finite, then for any positive integer p,
there exists M(p) and z1, . . . , zM(p) such that

Jo(K,C) ≥ (I
z1,...,zM(p)

M(p) )o(K(z1), . . . , K(zM(p)), C)− 1

p
.

3We just have to be careful in the rewriting to put one border term for each interval involved in Ko.
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Now for each z1, . . . , zM(p) we choose an admissible decomposition (according to (22)) of
K so that

Jo(K,C) ≥ I
z1,...,zM(p)

M(p) (K
M(p)
0 (z1), . . . , K

M(p)
0 (zM(p)), C) +

p++p−∑

i=1

I(Z)(L
M(p)
i )− 2

p
.

Moreover, for each M and choices of z1 < · · · < zM ,

Iz1,...,zMM (K(z1), . . . , K(zM)) = Γ∗(Kz1,...,zM
M , C)

with Kz1,...,zM
M (z) =

∑M
i=1 1[zi,zi+1]K(z).

By definition, since I(Z) and Γ∗ are good rate functions and as for all i, I(Z)(L
M(p)
i ) and

Γ∗(KM(p)
0 (z1), . . . , K

M(p)
0 (zM(p)), C) are uniformly bounded, it implies that the arguments

are tight and we can take a converging subsequence. Let K0 and Li be limits along a
subsequence, we get

Jo(K,C) ≥ Γ∗(K0(·), C) +

p++p−∑

i=1

I(Z)(Li)− 1

p

which insures that Jo(K,C) ≥ Io(K,C). This completes the proof of Theorem 8.1.

9. Large deviations principle for the largest eigenvalues in the case

with outliers

We now state the main theorem of this section, namely an analogue of Theorem 6.1.
For any ε, ρ small enough, we define the compact sets

Ko
ε,ρ := [b+ ε, ε−1] \

p+⋃

i=1

(ℓ+i − ρ, ℓ+i + ρ)

and Ko
ε := [b + ε, ε−1]. We also define the set {ℓ} := {ℓ+1 , . . . , ℓ+p+, b}, and for z /∈ {ℓ},

R(z) :=
∏p+

i=1
1

z−ℓ+i
. We recall that s is the sign of the product

∏r
i=1 θi.

For any ε, ρ, γ > 0, and α ∈ R
p
↓(b+ ε), we put

Sε,ρ,o
α,γ :=

{
f ∈ C(Ko

ε,ρ,R) : ∃g ∈ C(Ko
ε,ρ,R) with γ ≤ g ≤ 1

γ
, ω(g) ≤ 1

γ

and f(z) = s.R(z).g(z)

p∏

i=1

(z − αi)

}
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We also denote by

Cε,ρ,o
k,γ :=

{
f ∈ C(Ko

ε,ρ,R) : ∃p polynomial of degree m+ p+ − k with m+ p+ − k roots in Ko
ε

and dominant coefficient 1, g ∈ C(Ko
ε,ρ,R) with γ ≤ g ≤ 1

γ
, ω(g) ≤ 1

γ

and f(z) = s.g(z).R(z).p(z)}
and

Cε,ρ,o
γ =

⋃

0≤k≤m+p+

Cε,ρ,o
k,γ .

Then the main statement of this section is the following.

Theorem 9.1. Under Assumptions 2.1, 2.2, 2.5 and 2.6, the law of the m + p+ largest

eigenvalues (λ̃n
1 , . . . , λ̃

n
m+p+) of X̃n satisfies a large deviation principle in Rm+p+ with good

rate function Lo. For α = (α1, . . . , αm+p+) ∈ Rm+p+ , we take αm+p++1 = b and Lo is
defined as follows :

Lo(α) =





limε↓0 limρ↓0 inf∪γ>0S
ε,ρ,o

(α1,...,αm+p+−k
),γ

Jo
Ko

ε,ρ
if α ∈ R

m+p+

↓ (b), αm+p+−k+1 = b,

αm+p+−k > b for a k ∈ {0, . . . , m},

∞ otherwise.

Even though the rate function Lo is not very explicit, we show below that it must be
infinite if Horn’s inequalities are violated.

Remark 9.2. Recall that the eigenvalues (λ̃n
i )1≤i≤n of the sum of two Hermitian matrices

with eigenvalues (λn
i )1≤i≤n and θ := (θ1, . . . , θr, 0, . . . , 0) satisfy Horn’s inequalities and are

characterised by the fact that they satisfy such inequalities (see [33] for details). Assume

that λ̃ := (λ̃1, . . . , λ̃m+p+) is at distance of the bulk and of the outliers which is bounded

below. We claim that the rate function Lo(λ̃) is infinite if (λ̃, ℓ, θ) do not satisfy the Horn

inequalities. Indeed, if Lo(λ̃) is finite, (λ̃1, . . . , λ̃m+p+) are zeroes of a function f which
can be written

f(z) = PΘ,r(K(z), C).

with Io(K(·), C) finite. It implies that there exists sequences λn ∈ Rn, gj(·) ∈ Cn so that
λn satisfies Assumptions 2.1, 2.5 and 2.6 and

Kn(z) =
1

n

n∑

i=1

gi(k)gj(k)

z − λn
k

, Cn =
1

n

n∑

i=1

gi(k)gj(k)

converge to K(z) (uniformly away from the bulk and the outliers) and C respectively. By
definition, there exists a constant c such that

PΘ,r(K
n(z), Cn)

n∏

i=1

(z − λn
i ) = c det

(
z − diag(λn)−

r∑

i=1

θiuiu
∗
i

)

with ui = gi in the i.i.d. perturbation model and ui the Gram-Schmidt orthonormalization
of the vectors gi in the orthonormalized perturbation model. Hence, the function fn(z) =

PΘ,r(K
n(z), Cn) vanishes at the eigenvalues (λ̃n) of the sum of the two Hermitian matrices

diag(λn) and
∑r

i=1 θiuiu
∗
i (note that we can assume without loss of generality that its zeroes
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are different from λn by Lemma 11.2). Therefore, (λn, λ̃n, θ) satisfy Horn’s inequalities

by [33]. Since the (λ̃n) are bounded, they are relatively compact and we see that the limit

points (λ̃1, . . . , λ̃m+p+) of (λ̃
n
1 , . . . , λ̃

n
m+p+) which stay away from the bulk and the outliers

are the zeroes of f . By passing to the limit in Horn’s inequalities, we thus deduce that

if the vector (λ̃1, . . . , λ̃m+p+) has finite Lo-entropy, and is away from the bulk and the

outliers, (λ̃, ℓ, θ) satisfies Horn’s inequalities. It would be interesting to have a direct proof
of this fact.

9.1. Proof of Theorem 9.1.

We now prove Theorem 9.1, following roughly the same lines as for Theorem 6.1.

As in the proof of Theorem 6.1, the crucial point is to use Proposition 3.1. In the
sticking case, if z ∈ Kε, for n large enough, the condition that z should not belong to
the set of eigenvalues of Xn was very easy to check. Here, we need to make sure that
the eigenvalues are not exactly equal to the outliers to use our strategy. We show the
following

Lemma 9.3. Assume that the eigenvalues λn
1 , . . . , λ

n
n of Xn are pairwise distinct and that

Assumptions 2.1 and 2.5 hold, then Xn and X̃n have no eigenvalue in common for almost
all G.

The proof of this lemma is postponed to Appendix 11.2. We shall therefore give the
proof of the Theorem when the eigenvalues of Xn are distinct. This is however sufficient
to get the LDP without this hypothesis due to the following Lemma.

Lemma 9.4. Let Xn satisfy Assumptions 2.1 and 2.5. Then, there exists a sequence X̄n

of matrices with pairwise distinct eigenvalues satisfying Assumptions 2.1 and 2.5 such

that, if we define ˜̄Xn be the perturbation of X̄n by the i.i.d. or the orthonormalized
vectors constructed on the law µn = µ ∗ γn of G + ε(n)A with A r independent standard

nornal variables and ε(n) going to zero with n fast enough, then, with (˜̄λn
i )i≤m the extreme

eigenvalues of ˜̄Xn,

lim sup
n→∞

1

n
logP

(
max
1≤i≤m

|λ̃n
i − ˜̄λn

i | ≥
1

n

)
= −∞.

Proof. We take X̄n to be the matrix with the same eigenvectors as Xn and the same
eigenvalues except for those which are sticked together which we separate by an arbitrary
small weight wn ≤ 1/n, much smaller than the minimal distance between two distinct
eigenvalues of Xn, so that the eigenvalues of X̄n are distinct and the operator norm of
Xn− X̄n is bounded above by wn. It is straightforward to verify Assumptions 2.1 and 2.5
for X̄n. Now, if we add the same perturbation to Xn and X̄n respectively, their eigenvalues
will differ at most by wn almost surely. Then adding a Gaussian vector of variance ε(n)2

to G will not change the eigenvalues by more than
√
ε(n) with probability greater than

1 − e−ε(n)−1n as the empirical covariance matrix of this additional term is bounded by
C
√

ε(n) with such a probability. We conclude by choosing ε(n) such that
√
ε(n) < 1/n.

�
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Lemma 9.4 means in particular the random variables (˜̄λn
i )i≤m and (λ̃n

i )i≤m are expo-
nentially equivalent and [16, Theorem 4.2.13] asserts that a large deviations principle for

the extreme eigenvalues (˜̄λn
i )i≤m of ˜̄Xn entails the large deviations principle for the law

of (λ̃n
i )i≤m with the same rate function. Therefore, the proof of Theorem 2.5 can be done

for the eigenvalues of ˜̄Xn, the main advantage being that, from Lemma 9.3 above, we get

that X̄n and ˜̄Xn have almost surely no eigenvalue in common and we can proceed as in
the case without outliers.

From now on, we assume that Xn satisfies Assumptions 2.1 and 2.5 and has pairwise
distinct eigenvalues and that G satisfies Assumptions 2.2 and 2.6 and that its law is ab-
solutely continuous with respect to Lebesgue measure.

We first focus our attention to the function Hn restricted to Ko
ε,ρ and show the coun-

terpart of Lemma 6.7, that is

Lemma 9.5. Let ε, ρ be fixed. There exists a positive integer n0(ε, ρ) and L(ε) > 0 such
that for any n ≥ n0(ε, ρ), for any z ∈ Ko

ε,ρ,

Hn(z) =





s
∏r

i=1 ‖qni W n
i ‖22 gn(z)R(z)

∏m
i=1(z − λ̃n

i ) in the orth. perturb. model,

s gn(z)R(z)
∏m

i=1(z − λ̃n
i ) in the i.i.d. perturb. model,

(24)
with L(ε) ≤ gn ≤ 1

L(ε)
and ω(gn) ≤ 1

L(ε)
.

In particular, for any ε > 0 and ρ > 0 small enough,

lim sup
γ↓0

lim sup
n→∞

1

n
logP



(

m∏

i=1

(z − λ̃n
i )

−1Hn(z)

)

z∈Ko
ε,ρ

∈ (Cε,ρ,o
γ )c


 = −∞.

Proof. In this case,

gn(z) :=
r∏

i=1

|θi|−1

p+∏

i=1

(
1 +

λn
i − ℓ+i
z − λn

i

) m+p+∏

i=p++1

1

z − λn
i

n∏

i=m+p++1

(
1 +

λn
i − λ̃n

i

z − λn
i

)
.

The proof is exactly the same as in the sticking case once we have noticed that, from

Assumption 2.5, there exists n0(ε, ρ) such that for n ≥ n0(ε, ρ),
∏p+

i=1

(
1− λn

i −ℓ+i
λn
i −z

)
≥ 1

2p+
,

so that

gn(z) ≥
r∏

i=1

|θi|−1

(
1

2

)p+ (ε
2

)m
e−2m( 4

ε2
)
2

.

Note that we could similarly show that for n ≥ n0(ε, ρ),

gn(z) ≤ L(ε) :=

(
3

2

)p+ (
2

ε

)m

e
8m
ε2 . (25)

The uniform equicontinuity is also shown very similarly. �
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As in the sticking case, we have the analogue of Lemma 6.9, with Lo instead of L.
To state more precisely the lemma, we introduce the following notation: we denote by

Gk(α, δ, ε, ρ) the set of ntuples (λ̃n
1 ≥ · · · ≥ λ̃n

n) such that for all i ≤ m+ p+ − k,

|λ̃n
i − αi| ≤ δ if αi /∈ {ℓ} and |λ̃n

i − αi| ≤ ρ if αi ∈ {ℓ}
and for all m+ p+ − k + 1 ≤ i ≤ m+ p+,

λ̃n
i ≤ b+ ε.

Because of Lemma 9.5, Hn belong to the set of functions f(z) = h(z)
∏m

i=1(z − αi)R(z)
with a bounded positive constant h on Ko

ε,ρ with values in [γ, γ−1] with overwhelming
probability. But on this set also the zeroes αi are continuous function of the functions f
and therefore we can proceed exactly as in the case without outliers.

Lemma 9.6. Let α ∈ Rm
↓ and k between 0 and m such that αm+p+−k+1 = . . . = αm+p++1 =

b and αm+p+−k > b. We have

lim
ε↓0

lim
ρ↓0

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
(λ̃n

1 , . . . , λ̃
n
n) ∈ Gk(α, δ, ε, ρ)

)

= lim
ε↓0

lim
ρ↓0

lim inf
δ↓0

lim inf
n→∞

1

n
logP

(
(λ̃n

1 , . . . , λ̃
n
n) ∈ Gk(α, δ, ε, ρ)

)
= −Lo(α),

with the obvious convention that
⋂

m+p+−k+1≤i≤m+p+{λ̃n
i ≤ b+ ε} = Ω if k = 0.

The proof is similar to the case without outliers.

10. Application to Xn random, following some classical matrix

distribution

This section is devoted to the proofs of the results stated in Section 2.5.

10.1. Proof of Theorem 2.10.

Theorem 2.10 is a slight extension of [1, Theorem 2.6.6] and the proof will therefore follow
the same lines. We introduce the notations φ(µ, x) = −V (x) + β

∫
log |x− y|dµ(y) (for x

greater or equal the right edge of the support of µ) and µ̂n = 1
n−p

∑n
i=p+1 δλn

i
. Then

P
n
V,β(dλ1, . . . , dλn) =

Zn−p
nV/(n−p),β

Zn
V,β

en
∑p

i=1 φ(µ̂
n,λi)+β

∑

1≤i<j≤p log |λi−λj |dPn−p
nV/(n−p),β(λp+1, . . . , λn)dλ1 · · ·dλp.

By [1, Lemma 2.6.7], if parts i) and ii) of Assumption 2.9 hold, the law Pn
V,β is expo-

nentially tight so that it is enough to estimate the probability of a small ball around
x = (x1 ≥ x2 ≥ · · · ≥ xp) (with xp ≥ bV ), namely events of the form B(x, δ) :=
{max1≤i≤p |λi − xi| ≤ δ,max |λi| ≤ M}.

As in [8], a crucial observation is the fact that µ̂n converges to µV much faster than ex-
ponentially under Pn−p

nV/(n−p),β (its LDP is indeed in the scale n2). We can therefore replace

φ(µ̂n, λi) by φ(µV , xi), whereas the ratio of partition functions converges by hypothesis.
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To be more precise, let us first sketch the proof of the upper bound. Note that there
exists a constant ΦM such that on B(x, δ), φ is bounded above by ΦM so that

P
n
V,β(B(x, δ)) ≤

Zn−p
nV/(n−p),β

Zn
V,β

eβp(p−1)/2 log(x1−bV )(enpΦMP
n−p
nV/(n−p),β(µ̂

n ∈ Bε(µV )
c)

+(2M)pen
∑p

i=1 max|y−xi|≤δ maxµ∈Bε(µV ) φ(µ,y))

with Bε(µV ) a small ball with radius ε around µV for a distance compatible with the
weak topology. As n−2 log Pn−p

nV/(n−p),β(µ̂
n ∈ Bε(µV )

c) is bounded above by a negative real

number for all δ > 0 by the LDP for the law of µ̂n, the first term is negligible as n
goes to infinity. Using the fact that (µ, x)→φ(µ, x) is upper continuous, we obtain the
upper bound by first letting n go to infinity, then letting δ decrease to zero and finally
letting ε go to zero. Notice again that in the proof of this upper bound, we use part i) of
Assumption 2.9 to get the LDP for µ̂n and ii) to control the ratio of the partition functions.

The lower bound is similar to the proof in [1, p. 84], which corresponds to p = 1. We
proceed by induction on p and we can therefore assume that p is the smallest integer such
that xp > bV . There exists xδ

i , 1 ≤ i ≤ p, whose small neighbourhood are included in the
δ neighbourhood of xi, 1 ≤ i ≤ p, and which are distinct, so that for ε small enough

P
n
V,β(max

1≤i≤p
|λi − xi| < δ) ≥ P

n
V,β(max

1≤i≤p
|λi − xδ

i | < ε, λi < xp − δ − ε, ∀i > p)

≥
Zn−p

nV/(n−p),β

Zn
V,β

exp

(
(n−p) inf

|yi − xδ
i | < ε

µ ∈ B[−M,xp−δ−ε](µV , ε)

φ(yi, µ)

)
P
n−p
nV/(n−p)(µ̂

n ∈ B[−M,xp−δ−ε](µV , ε)),

with B[−M,xp−δ−ε](µV , ε)) the set of probability measures in Bε(µV ) with support in
[−M,xp − δ − ε]. When the xi’s are distinct and away from bV , their logarithmic in-
teraction is negligible; moreover, part iii) of Assumption 2.9 allows to claim that the last
term in the lower bound above converges to one. We therefore get

lim inf
n→∞

1

n
logPn

V,β(max
1≤i≤p

|λi − xi| < δ) ≥ −
p∑

i=1

JV (x
δ
i )− αp

V,β

Now, JV is continuous away from the support of µV so that we can conclude by letting δ
going to zero.
Then to get the correct expression of the rate function, we just have to check that αp

V,β =

pα1
V,β, which is easy and left to the reader. �

10.2. Proof of Theorem 2.13.

As explained in Section 2.5, we have to study X̃n, when Xn is diagonal with eigenvalues
having Pn

V,β as their joint law and the Ui’s obtained by orthonormalisation procedure from
G = (g1, . . . , gr) i.i.d. standard Gaussian.
The proof will consist in first fixing the possible deviations of the extreme eigenvalues
of Xn (hence providing outliers) and then, being given these outliers, computing the

deviations of the eigenvalues of X̃n. The main point of course is that with exponentially
large probability, only a finite number of eigenvalues of Xn can deviate.
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• More precisely, we observe that, by Theorem 2.10, for all p ∈ N∗, the probability that
λn
p is greater than bV + δ is less than e−npε(δ) for ε(δ) = inf(bV +δ,+∞) JV . The only point

to check is that inf(bV +δ,+∞) JV > 0, which is a consequence of part iii) of Assumption 2.9.

• The deviations of the eigenvalues of Xn are controlled by Theorem 2.10 : there exists
ε(η, ℓ) > 0 so that for n large enough, for ε ≤ ε(η, ℓ)

− Jp(ℓ1, . . . , ℓp)− η ≤ 1

n
logP

(
max
1≤i≤p

|λn
i − ℓi| ≤ ε, λn

p+1 ≤ bV + ε

)
≤ −Jp(ℓ1, . . . , ℓp) + η.

(26)

For all (ℓ1, . . . , ℓp) and η > 0, we define the set

Vη(ℓ1, . . . , ℓp) = {(λ1, . . . , λn) ∈ R
n ; max1≤i≤p |λi − ℓi| < ε(η, ℓ), λp+1 < bV + ε(η, ℓ)} .

• Now, knowing the deviations of the eigenvalues of Xn, one can treat them as outliers
and deal with the eigenvalues of the perturbed model. We have that, for any (ℓ1, . . . , ℓp) ∈
(bV ,+∞)p and any η > 0, there exists ε(η, ℓ), δ(η, ℓ) > 0 so that for n large enough, for
ε < ε(η, ℓ), δ < δ(η, ℓ),

−L0
ℓ1,...,ℓp(x1, . . . , xk)−η ≤ 1

n
logP

(
max
1≤i≤k

|λ̃n
i − xi| ≤ δ

∣∣∣∣
max1≤i≤p |λn

i − ℓi| ≤ ε,

λn
p+1 ≤ bV + ε

)
(27)

≤ −L0
ℓ1,...,ℓp

(x1, . . . , xk) + η

These inequalities are a consequence of Theorem 9.1. Indeed, let Xn be a matrix such that
the event {max1≤i≤p |λn

i − ℓi| ≤ ǫ} holds. Let X ′
n be a real diagonal matrix with same

eigenvalues of Xn except its k largest eigenvalues are equal to the outliers (ℓ1, . . . , ℓp).

Then we have ‖Xn − X ′
n‖∞ ≤ ǫ, so that, with obvious notations, ‖X̃n − X̃n

′‖∞ ≤ ǫ, so

that the ordered eigenvalues of X̃n and X̃n

′
differ at most by ǫ. Thus, up to change δ into

δ ± ε, Theorem 9.1 gives (27).

• We have now all the ingredients to prove the LDP. It is clear that since the largest

eigenvalues of Xn are exponentially tight, so are the eigenvalues of X̃n, and therefore
it is enough to prove a weak large deviation principle. We let K(L) be such that the

probability that λn
1 or λ̃n

1 is greater than K(L) is smaller than e−nL.

• To prove the upper bound we can write, for any p ≥ k, any η > 0, δ > 0,

P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ δ

)
≤ P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ δ, λn

p+1 ≤ bV + δ

)
+ e−npε(δ) (28)

We fix η > 0. As [bV , K(L)]p is compact, from its infinite open covering ∪Vη(ℓ1, . . . , ℓp), one
can always extract a finite covering ∪1≤s≤M(η)Vη(ℓ

s
1, . . . , ℓ

s
p).We then take δ = min δ(η, ℓs) >

0. Thus, we get by the LDP estimate (26)
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P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ 2δ

)
≤ e−nL + e−npε(δ) +

M(η)∑

s=1

P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ 2δ ∩ V (ℓs1, . . . , ℓ

s
p)

)

≤ e−nL + e−npε(δ) +

M(η)∑

s=1

e
−nL0

ℓs1,...,ℓ
s
p
(x1,...,xk)−nJp(ℓs1,...,ℓ

s
p)+nη

≤ M(η)e
−nmin1≤s≤M(η)(L

0
ℓs1,...,ℓ

s
p
(x1,...,xk)+Jp(ℓs1,...,ℓ

s
p)−η)

+ e−nL + e−npε(δ)

≤ 3M(η)e−nmin{L,pε(δ),J̃k(x1,...,xk)}

which gives the announced bound by taking first the limit as n goes to infinity, then L, p
to infinity and finally δ and η to zero.

• The lower bound is easier as we simply write

P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ 2δ

)
≥ P

(
max
1≤i≤k

|λ̃n
i − xi| ≤ 2δ ∩ V (ℓs1, . . . , ℓ

s
p)

)

and use the large deviation theorems. �

11. Appendix

11.1. Proof of a technical lemma.

With the notations of Section 4.1, we have the following result

Lemma 11.1. Under Assumption 2.2, for any 1 ≤ i0 ≤ r, we have

lim
δ↓0

lim sup
n→∞

1

n
log P

(
‖qni0W n

i0
‖22 /∈

[
δ,
1

δ

])
= −∞.

Proof. To simplify the notations, we shall assume that i0 = r.

Recall that the Gn
i ’s were constructed from a family (G(k) = (g1(k), . . . , gr(k))k≥1 of

independent copies of G, via the formula Gn
i := (gi(1), . . . , gi(n))

T . For 1 ≤ k, we consider
the random r × r Hermitian matrix

Zk = G(k)∗G(k) = [gi(k)gj(k)]1≤i,j≤r and Ln =
1

n

n∑

k=1

Zk.

By Cramér’s Theorem [16], we have that the law of Ln satisfies a LDP with convex
good rate function

I(L)(y) = sup
λ∈Hr

{〈λ, y〉 − Λ(λ)},

where Λ(λ) = logE(e〈λ,Z1〉) is exactly the function defined in Equation (8).

Note that since for all n, Ln is almost surely a positive semi-definite matrix, by closed-
ness of the set of such matrices, the domain of I is contained in the set of positive
semi-definite matrices.
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Let Pr be the real polynomial function on Hr introduced in Proposition 4.1: we have
‖qnrW n

r ‖22 = Pr(L
n). Therefore, if, for any δ > 0, we introduce the closed set Eδ := {y ∈

Hr ; Pr(y) ≤ δ}, we have

lim sup
n→∞

1

n
log P(‖qnrW n

r ‖22 ≤ δ) ≤ − inf
y∈Eδ

I(L)(y).

Let us assume that
M := lim

δ↓0
inf
y∈Eδ

I(L)(y) < ∞.

Since I(L) is a good rate function, there exists a compact setK such that infy∈Kc I(L)(y) >
M , so that for all δ > 0, infy∈Eδ I

(L)(y) = infy∈Eδ∩K I(L)(y). Moreover the infimum on Eδ
is reached : let, for all n ≥ 0, yn be an element of K such that I(L)(yn) = infy∈E 1

n

I(L)(y).

There exists a subsequence ϕ(n) such that yϕ(n) converges, as n goes to infinity to some y0.
By continuity of Pr, Pr(y0) = limn→∞ Pr(yϕ(n)) = 0. It follows, by the last part of Propo-

sition 4.1, that y0 is not positive definite. However, since I
(L) is lower semicontinuous, we

have I(L)(y0) ≤ M < ∞, which implies that y0 is a positive semi-definite matrix. Let p
be the orthogonal projection onto ker y0. Note that p 6= 0 and that 〈p, y0〉 = Tr(y0p) = 0.

I(L)(y0) = sup
λ∈Hr

{〈λ, y0〉 − Λ(λ)}

≥ sup
t>0

{〈−tp, y0〉 − Λ(−tp)}

= sup
t>0

−Λ(−tp)

= +∞ by (11),

which yields a contradiction (as we already proved that I(L)(y0) ≤ M).

Similarly, as I(L) is a good rate function, it has compact level sets and therefore has to
be large on the set {y : Pr(y) ≥ 1/δ}. Hence,

lim sup
δ↓0

lim sup
n→∞

1

n
log P(‖qnrW n

r ‖22 ≥ δ−1) = −∞

which completes the proof of the lemma. �

11.2. On the eigenvalues of the deformed matrix.

The goal of this section is to prove Lemma 9.3. In fact, we will prove the slightly more
general

Lemma 11.2. Let K be either R or C. Let us fix some positive integers n, r such that
n > r, a self adjoint n× n real matrix X with eigenvalues λ1, . . . , λn and some non null
real numbers θ1, . . . , θr. We make the following hypothesis:

(H) λ1, . . . , λn are pairwise distinct and there are pairwise distinct indices i1, . . . , ir−1 ∈
{1, . . . , n} such that {λi1 + θ1, . . . , λir−1 + θr−1} ∩ {λ1, . . . , λn} = ∅.

Let us define, for g = [g1, . . . , gr] ∈ Kn×r ,

X̃g := X + θ1u1u
∗
1 + · · ·+ θruru

∗
r,
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where (u1, . . . , ur) is either the orthonormalized family deduced from the columns of g by
the Gram-Schmidt process or 1√

n
(g1, . . . , gr).

Then the Lebesgue measure of the set of the g’s such that X̃g and X have at least one
eigenvalue in common is null.

Now, Lemma 9.3 will be easy to deduce from the above. Indeed, one can check that for
n large enough, Xn satisfies hypothesis (H). We know that its eigenvalues λn

1 , . . . , λ
n
n are

distinct. Moreover, let η be such that η < 1
2
min1≤i≤r |θi| and η < 1

3
mini 6=j |ℓi − ℓj|. From

Assumption 2.5, there exists n large enough so that Xn has at most p+ eigenvalues greater
than b+ η, at most p− eigenvalues smaller than a− η, more than 2r(p+ + 1) eigenvalues
in the interval (b− η, b+ η) and more than 2r(p− + 1) eigenvalues in (a− η, a+ η).
Let us assume that θ1 > 0. Then one can find an eigenvalue λi1 among the p+ +1 greater
ones in (b− η, b+ η) such that λi1 + θ1 do not belong to {λn

1 , . . . , λ
n
n}. We then forget the

p+ + 1 greater eigenvalues and look at the p+ + 1 following ones. Among them, one can
find an eigenvalue λi2 such that λi2 + θ2 do not belong to {λn

1 , . . . , λ
n
n}. and so on. For

the negative θi’s, we consider the p− + 1 smallest eigenvalues in (a− η, a+ η).

We now prove Lemma 11.2.

Proof. The idea of the proof is the following. We shall first prove (in Step I) that the

set of g’s such that X̃g and X have at least one eigenvalue in common is, up to a set of
null Lebesgue measure, the set of zeroes of a polynomial function. Since it can easily be
proved, by induction on the number of variables, that the set of zeroes of any non null
polynomial in several real variables has null Lebesgue measure, proving (in Step II) that
this function is not identically null will then imply that the set of such g’s has vanishing
Lebesgue measure.

Let β be either 1 or 2 according to whether K is R or C.

Step I. Let us first treat the case where (u1, . . . , ur) =
1√
n
(g1, . . . , gr). Let us define P

to be the polynomial of βnr real variables which maps [g1, . . . , gr] ∈ Kn×r to the resultant

of the characteristic polynomials of X and X̃g. The set of g’s in Kn×r such that X and

X̃g have an eigenvalue in common is exactly the set of g’s such that P (g) = 0 : Step I is
achieved in the case where (u1, . . . , ur) =

1√
n
(g1, . . . , gr).

Let us now treat the case where (u1, . . . , ur) is the orthonormalized family deduced
from the columns of g by the Gram-Schmidt process. In this case, the resultant of

the characteristic polynomials of X and of X̃g is not anymore a polynomial function
of the real coordinates of g, so we shall use the following trick. It can easily be noticed,
through a careful look at the Gram-Schmidt process, that for all k ∈ {1, . . . , r}, for all
i, j ∈ {1, . . . , n}, there are two polynomial functions of Dk, Nk,i,j of βnr real variables

such that the i, j-th entry of uku
∗
k is

Nk,i,j(g)

Dk(g)
and that Dk(g) is positive for any g ∈ Kn×r

which columns are linearly independent. Let us define the polynomial function of βnr
real variables

D(g) :=
r∏

k=1

Dk(g).
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For any g such that D(g) > 0 (which is the case for any g ∈ Kn×r which columns are

linearly independent), X and X̃g have no eigenvalue in common if and only if D(g)X and

D(g)X̃g have no eigenvalue in common. Now, the advantage of having replaced X and X̃g

by D(g)X and D(g)X̃g is that the entries of D(g)X and D(g)X̃g are polynomial functions
of g. Hence if one defines P (g) to be the resultant of the characteristic polynomials of

D(g)X and D(g)X̃g, P (g) is a polynomial function of the βnr real coordinates of g and,
up to the set (with zero Lebesgue measure) of g’s in Kn×r which columns are linearly

independent, the set of g’s in Kn×r such that X and X̃g have an eigenvalue in common is
exactly the set of g’s such that P (g) = 0 : Step I is achieved in the second case.

Step II. Let us now prove that in both cases, the polynomial function g 7−→ P (g) is
not identically null. To treat both cases together, it suffices to prove that there exists

g = [g1, . . . , gr] ∈ K
n×r with orthonormalized columns such that X̃g and X have no

eigenvalue in common. One can suppose that i1 = 1, . . . , ir−1 = r− 1, that λr < · · · < λn

and that

X =



λ1

. . .

λn


 .

We shall choose the r − 1 first columns g1, . . . , gr−1 of g to be the r − 1 first elements of
the canonical basis and gr with null r − 1 first coordinates and unit norm. With such a
choice of g, we have

X̃g =




λ1

. . .
λr−1

λr

. . .

λn




+




θ1
. . .

θr−1

θrgrg
∗
r



.

Let us suppose that θr > 0. It was shown in [24, Section 3.2] that as gr runs through the
set of unit norm vectors of Kn×1 with null r− 1 first coordinates, the ordered eigenvalues

of the n−(r−1)×n−(r−1) lower right block of X̃g describe the set of families µr, . . . , µn

of real numbers which sum up to λr + · · ·+ λn + θr and such that

λr ≤ µr ≤ λr+1 ≤ · · · ≤ λn ≤ µn.

One can easily find such a family µr, . . . , µn such that

{µr, . . . , µn} ∩ {λ1, . . . , λn} = ∅,
which concludes the proof, by hypothesis (H). �
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