Embedding mapping class groups of orientable surfaces with one boundary component - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Embedding mapping class groups of orientable surfaces with one boundary component

Résumé

We denote by $S_{g,b,p}$ an orientable surface of genus $g$ with $b$ boundary components and $p$ punctures. We construct homomorphisms from the mapping class groups of $S_{g,1,p}$ to the mapping class groups of $S_{g',1,(b-1)}$, where $b\geq 1$. These homomorphisms are constructed from branched or unbranched covers of $S_{g,1,0}$ with some properties. Our main result is that these homomorphisms are injective. For unbranched covers, this construction was introduced by McCarthy and Ivanov~\cite{IM}. They proved that the homomorphisms are injective. A particular cases of our embeddings is a theorem of Birman and Hilden that embeds the braid group on $p$ strands into the mapping class group of $S_{(p-2)/2,2,0}$ if $p$ is even, or into the mapping class group of $S_{(p-1)/2,1,0}$ if $p$ is odd. We give a short proof of another result of Birman and Hilden \cite{BH} for surfaces with one boundary component.
Fichier principal
Vignette du fichier
punts_finits.pdf (266.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00490852 , version 1 (09-06-2010)
hal-00490852 , version 2 (19-01-2011)
hal-00490852 , version 3 (18-07-2012)

Identifiants

  • HAL Id : hal-00490852 , version 3

Citer

Lluis Bacardit. Embedding mapping class groups of orientable surfaces with one boundary component. 2012. ⟨hal-00490852v3⟩
108 Consultations
93 Téléchargements

Partager

More