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. They proved that the homomorphisms are injective. A particular cases of our embeddings is a theorem of Birman and Hilden that embeds the braid group on p strands into the mapping class group of S (p-2)/2,2,0 if p is even, or into the mapping class group of S (p-1)/2,1,0 if p is odd. We give a short proof of another result of Birman and Hilden [4] for surfaces with one boundary component.

Main results

We fix non-negative integers g, p and a positive integer b. We denote by S g,b,p an orientable surface of genus g with b boundary components and p punctures.

Our main theorem is the following. Theorem 1.1. Suppose (g, p) = (0, 2). Let κ : S g ′ ,b,0 → S g,1,0 be a finite index regular cover with p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 . Suppose every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . Let κ ′ : S g ′ ,b,q → S g,1,p be the corresponding unbranched cover. Let h be a homeomorphism of S g,1,p which fixes the boundary component pointwise. Suppose h lifts to S g ′ ,b,q . Let ĥ be the lift of h which fixes the b-th boundary component pointwise. Let f be the extension of ĥ to S g ′ ,b,0 . If the restriction of f to S g ′ ,1,(b-1) ⊆ S g ′ ,b,0 is isotopic to the identity relative to the boundary component of S g ′ ,1,(b-1) , then h is isotopic to the identity relative to the boundary component of S g,1,p .

Let M g,b,p be the mapping class group of S g,b,p relative to the boundary components. That is, M g,b,p is the group of homeomorphisms of S g,b,p which fix the boundary components pointwise modulo isotopy relative to the boundary components of S g,b,p . Since b ≥ 1, we are restricting ourselves to orientation-preserving homeomorphims of S g,b,p .

The following result is immediate from Theorem 1.1.

Corollary 1.2. Suppose (g, p) = (0, 2). Let κ : S g ′ ,b,0 → S g,1,0 be a finite index regular cover with p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 . Suppose every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . Let κ ′ : S g ′ ,b,q → S g,1,p be the corresponding unbranched cover. If every homeomorphism of S g,1,p which fixes the boundary component pointwise lifts to a homeomorphism of S g ′ ,b,q , then M g,1,p embeds in M g ′ ,1,(b-1) .

In the literature there are results about embeddings of mapping class groups constructed from branched covers. Let κ : S g ′ ,b,0 → S g,c,0 be a branched cover with p branching points in S g,c,0 which lift to q branching points in S g ′ ,b,0 . Birman and Hilden [START_REF] Birman | On isotopies of homeomorphisms of Riemann surfaces[END_REF] have results about these covers if (g, c) = (0, 1) or c = 0. For (g, c) = (0, 1), Birman and Hilden [4, Theorem 5] consider the hyperelliptic covers of the disc κ : S (p-2)/2,2,0 → S 0,1,0 if p ≥ 4 is even, and κ : S (p-1)/2,1,0 → S 0,1,0 if p ≥ 3 is odd. Birman and Hilden prove that there are embeddings M 0,1,p ֒→ M (p-2)/2,2,0 for p ≥ 4 even, and M 0,1,p ֒→ M (p-1)/2,1,0 for p ≥ 3 odd. See Farb and Margalit [START_REF] Farb | A primer book on mapping class groups[END_REF]Section 9.4] for a short proof of these embeddings. We will recover these embeddings in Example 3.1. We see Corollary 1.2 as a generalization of these embeddings. For c = 0, Birman and Hilden prove [4, Theorem 2]. From Theorem 1.1 we can prove the following analog of [START_REF] Birman | On isotopies of homeomorphisms of Riemann surfaces[END_REF]Theorem 2] for surfaces with one boundary component. Notice that we do not need the hypothesis that the group of deck transformations (or covering transformations) is solvable.

Theorem 1.3. Suppose (g, p) = (0, 2). Let κ : S g ′ ,b,0 → S g,1,0 be a finite index regular cover with p branching points in S g,1,0 . Suppose every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . Let f be a homeomorphism of S g ′ ,b,0 which fixes the b-th boundary component pointwise and preserves the fibers of κ : S g ′ ,b,0 → S g,1,0 . Then f induces a homeomorphism f of S g,1,0 such that κ f = f κ. If f is isotopic to the identity relative to the b-th boundary component, then f is isotopic to the identity relative to the boundary.

Proof. It is a general fact that if f preserves the fibers of κ : S g ′ ,b,0 → S g,1,0 , then f induces a homeomorphism f of S g,1,0 such that κ f = f κ. In particular, f sends branching points to branching points.

Let κ ′ : S g ′ ,b,q → S g,1,p be the corresponding unbranched cover. Since f sends branching points to branching points, f restricts to a homeomorphism h of S g,1,p . Let ĥ be the lift of h which fixes the b-th boundary component of S g ′ ,b,q pointwise. Notice ĥ extends to a homeomorphism of S g ′ ,b,0 . This extension of ĥ coincides with f . If f is isotopic to the identity relative to the b-th boundary component, then the restriction of f to S g ′ ,1,(b-1) ⊆ S g ′ ,b,0 is isotopic to the identity relative to the boundary component of S g ′ ,1,(b-1) . Then, by Theorem 1.1, h is isotopic to the identity relative to the boundary component of S g,1,p . This isotopy extends to an isotopy relative to the boundary component of S g,1,0 from f to the identity.

In the literature there are results about embeddings of mapping class groups constructed from unbranched covers. Let κ ′ : S g ′ ,0,m → S g,0,1 be a degree m unbranched cover. Ivanov and McCarthy [START_REF] Ivanov | On injective homomorphisms between Teichmüller modular groups[END_REF] construct embeddings if g ≥ 2 and the cover κ ′ : S g ′ ,0,m → S g,0,1 is characteristic. The condition that the cover κ ′ : S g ′ ,0,m → S g,0,1 is characteristic ensures that every homeomorphism f of S g,0,1 lifts to a homeomorphism of S g ′ ,0,m . Then, there is a distinguished lift of f by distinguishing one of the m punctures of S g ′ ,0,m . This gives a homomorphism M g,0,1 → M g ′ ,0,m . To see that this homomorphism is injective, the fundamental group of S g ′ ,0,m , denoted π 1 (S g ′ ,0,m ), is identified via the cover κ ′ : S g ′ ,0,m → S g,0,1 with an index m (characteristic) subgroup of π 1 (S g,0,1 ). Then, the proof is completed by using some properties of π 1 (S g,0,1 ). The strategy to prove Theorem 1.1 is very close to this point of view: Theorem 1.1 is for surfaces with one boundary component as Ivanov and McCarthy construction is for once punctured surfaces. We can see Corollary 1.2 as a generalization of Ivanov and McCarthy embeddings in the sense that we allow a finite set of branching points. The technical difficulty of a branched cover κ : S g ′ ,b,0 → S g,1,0 is that π 1 (S g ′ ,b,0 ) cannot be identified via the cover with a subgroup of π 1 (S g,1,0 ).

Aramayona, Leininger and Souto [START_REF] Aramayona | Injections of mapping class groups[END_REF] construct embeddings M g ′ ,0,0 ֒→ M g,0,0 from unbranched covers κ ′ : S g ′ ,0,0 → S g,0,0 which satisfy some algebraic properties. These embeddings M g ′ ,0,0 ֒→ M g,0,0 follow the construction of Ivanov and McCarthy. Using the algebraic properties of the cover κ ′ : S g ′ ,0,0 → S g,0,0 , they manage to avoid the presence of punctures. Aramayona and Souto [START_REF] Aramayona | Homomorphism between mapping class groups[END_REF] prove that every non-trivial homomorphism M g,c,p → M g ′ ,b,q , where g ≥ 6, g ′ ≤ 2g -1 and q ≥ 1 if g ′ = 2g -1, is induced by a geometric embedding S g,c,p ֒→ S g ′ ,b,q , that is, a composition of forgetting punctures, deleting boundary components and subsurfaces embeddings. Corollary 1.2 does not fit in this situation since, in general, g ′ will be bigger than 2g -1. Example 3.2.(a) shows that the embeddings of Corollary 1.2 are not simple.

The algebraic analog

In this section we translate into algebra Theorem 1.1 and Corollary 1.2. We prove the algebraic analog of Theorem 1.1. Instead of dealing with S g,b,p and homeomorphisms of S g,b,p which fix the boundary components pointwise, we will deal with the fundamental group of S g,b,p , denoted π 1 (S g,b,p ). Since b ≥ 1, we choose the base point of π 1 (S g,b,p ) in the b-th boundary component. In this way, a homeomorphism of S g,b,p which fixes the boundary components pointwise induces an automorphism of π 1 (S g,b,p ). Notation 2.1. Let G be a group and let g, h be elements of G.

We denote by g the inverse of g. We write g h for the conjugate of g by h, that is, g h = hgh. We denote by [g] the conjugacy class of G, that is, [g] = {g a | a ∈ G}. We write [g, h] for the element ghgh of G. Let g 1 , g 2 , . . . , g k be elements of G. We write Π k i=1 g i for the element g 1 g 2 • • • g k of G. We denote by Aut(G) the automorphism group of G and by Out(G) the group of outer automorphisms of G. Given φ ∈ Aut(G), we write g φ for the image of g by φ.

Notation 2.2. Let F g,b,p be the rank 2g+(b-1)+p free group with generating set {x i , y i } 1≤i≤g ∪ {z l } 1≤l≤(b-1) ∪ {t k } 1≤k≤p . We identify F g,b,p with π 1 (S g,b,p , * ), the fundamental group of S g,b,p based at a point * in the b-th boundary component. In addition, for every 1 ≤ l ≤ (b -1), z l represents a loop around the l-th boundary component; for every 1 ≤ k ≤ p, t k represents a loop around the k-th puncture, and (Π g i=1 [x i , y i ]Π b-1 l=1 z l Π p k=1 t k ) -1 represents a loop around the b-th boundary component.

Let f be a homeomorphim of S g,b,p which fixes the boundary components pointwise. Then f induces an automorphism f * of F g,b,p which fixes the set of conjugacy classes of t 1 , t 2 , . . . , t p . Since f fixes the boundary components of S g,b,p pointwise, we see that f * fixes (Π g i=1 [x i , y i ]Π b-1 l=1 z l Π p k=1 t k ) -1 and the conjugacy class of z l , for all 1 ≤ l ≤ b -1. Two isotopic homeomorphisms of S g,b,p induce the same automorphism of F g,b,p . Recall we consider isotopies relative to the boundary components. Notice the Dehn twist with respect a loop around a boundary component is isotopic to the identity, but it is not isotopic to the identity relative to the boundary. To capture this fact, we associate to f an automorphism of F g,b,p * e 1 , e 2 , . . . , e (b-1) | which maps F g,b,p to itself and respects the following sets (2.2.1)

(i) {Π g i=1 [x i , y i ]Π b-1 l=1 z l Π p k=1 t k }, (ii) {z e 1 1 }, {z e 2 2 }, . . . , {z e (b-1) (b-1) }, (iii) {[ t k ]} 1≤k≤p .
Recall z l represents a loop around the l-th boundary component which is based at a point in the b-boundary component. For every 1 ≤ l ≤ (b -1), we view e l as an arc from the base point in the b-th boundary component to a chosen point in the l-th boundary component. We view e l z l e l = z e l l as a loop around the l-boundary component and based at the chosen point in the l-boundary component. Since the homeomorphism f fixes the l-boundary component pointwise, the automorphism f * fixes z e l l . For example, the Dehn twist with respect to the loop represented by z e l l gives the following automorphism of F g,b,p * e 1 , e 2 , . . . , e (b-1) |

e l → z l e l , a → a, a ∈ {x i , y i } 1≤i≤g ∪ {t k } 1≤k≤p ∪ {z l } 1≤l≤b ∪ {e l ′ } 1≤l ′ ≤b, l ′ =l .
Definition 2.3. We denote by AM g,b,p the subgroup of Aut(F g,b,p * e 1 , e 2 , . . . , e b-1 | ) consisting of all the automorphisms of F g,b,p * e 1 , e 2 , . . . , e (b-1) | which map F g,b,p to itself and respect the sets of (2.2.1).

We call AM g,b,p the algebraic mapping class group of S g,b,p , an orientable surface of genus g with b boundary components and p punctures.

The mapping class group of S g,b,p , denoted M g,b,p , is defined as the group of homeomorphisms of S g,b,p modulo isotopy relative to the boundary components. The above discussion shows that there exists a map M g,b,p → AM g,b,p . By Dehn-Nielsen-Baer Theorem for surfaces with boundary, M g,b,p ≃ AM g,b,p , see [START_REF] Dicks | Algebraic mapping-class groups of orientable surfaces with boundaries[END_REF]Theorem 9.6] and [START_REF] Farb | A primer book on mapping class groups[END_REF]Chapter Eight]. See [START_REF] Dicks | Algebraic mapping-class groups of orientable surfaces with boundaries[END_REF] for a background on algebraic mapping class groups, with some changes of notation.

For (g, b) = (0, 1) and p ≥ 1, AM 0,1,p is isomorphic to the p-string braid group. We have AM 0,1,p = σ 1 , σ 2 , . . . , σ p-1 , where for all 1 ≤ i ≤ (p -1), σ i ∈ Aut(F 0,1,p ) is defined by (2.3.1) Notice that if p = 0, then N d = 1 and F g,1,p (d) = F g,1,p . Definition 2.5. Let AM g,1,p (d) denote the group of all automorphisms of F g,1,p (d) that respect the sets

F i :=    t i → t i+1 , t i+1 → t t i+1 i , t k → t k , for all 1 ≤ k ≤ p, k = i, i + 1. Let d ∈ Z,
{Π g i=1 [x i , y i ]Π p k=1 τ k }, {[τ k ]} 1≤k≤p . Since the sets {Π g i=1 [x i , y i ]Π p k=1 t k }, {[ t k ]} 1≤k≤p are respected by elements of AM g,1,p , the natural homomorphism F g,1,p → F g,1,p (d) induces a natural homo- morphism ψ : AM g,1,p → AM g,1,p (d) .
Notice that if p = 0, then F g,1,p = F g,1,p (d) and ψ is the identity.

Theorem 2.6. The homomorphism ψ :

AM g,1,p → AM g,1,p (d) is injective.
We prove Theorem 2.6 in Section 4.

For the rest of this section we consider a regular cover κ : S g ′ ,b,0 → S g,1,0 of index m with p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 such that every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . We denote by κ ′ : S g ′ ,b,q → S g,1,p the corresponding unbranched cover. Recall that F g,1,p is the fundamental group of S g,1,p with base point * in the boundary component and F g ′ ,b,q is the fundamental group of S g ′ ,b,q with base point * a lift of * in the b-th boundary component. We identify

F g ′ ,b,q with κ ′ * (F g ′ ,b,q ). Hence, F g ′ ,b,q is a normal subgroup of F g,1,p of index m. In Remark 2.7 we define a basis {x i , ŷi } 1≤i≤g ′ ∪ {ẑ l } 1≤l≤(b-1) ∪ { tk } 1≤k≤p of F g ′ ,b,q .
From this basis, we deduce two technical results: Lemma 2.8 and Proposition 2.10. In Remark 2.11 we discuss the embeddings S g ′ ,b,q ֒→ S g ′ ,1,(b-1)+q and S g ′ ,1,(b-1)+q ֒→ S g ′ ,1,(b-1) in terms of fundamental groups and the basis {x i , ŷi } 1≤i≤g ′ ∪ {ẑ l } 1≤l≤(b-1) ∪ { tk } 1≤k≤p . Finally, we state and prove the algebraic analog of Theorem 1.1 and we state the algebraic analog of Corollary 1.2.

Remark 2.7. We set G := F g,1,p /F g ′ ,b,q the group of deck transformations of the unbranched cover κ ′ : S g ′ ,b,q → S g,1,p .

Let ̺ be the image of

Π g i=1 [x i , y i ]Π p k=1 t k by the natural homomorphism F g,1,p → F g,1,p /F g ′ ,b,q = G. Let c be the order of ̺ in G. Since ̺ c = 1 in G, we see that (Π g i=1 [x i , y i ]Π p k=1 t k ) c ∈ F g ′ ,b,q . Notice that (Π g i=1 [x i , y i ]Π p k=1 t k ) -c represents a loop around the b-th boundary component. We take a basis {x i , ŷi } 1≤i≤g ′ ∪ {ẑ l } 1≤l≤(b-1) ∪ { tk } 1≤k≤q of F g ′ ,b,q such that Π g ′ i=1 [x i , ŷi ]Π b-1 l=1 ẑl Π q k=1 tk = (Π g i=1 [x i , y i ]Π p k=1 t k ) c . Recall G has cardinality m. The subgroup ̺ ≤ G has index b = m/c. For every 1 ≤ l ≤ b -1, we take w l ∈ F g,1,p -F g ′ ,b,q such that ẑl = w l (Π g i=1 [x i , y i ]Π p k=1 t k ) -c w l .
Let ρ l be the image of w l by the natural homomorphism

F g,1,p → F g,1,p /F g ′ ,b,q = G. Then G = ̺ ρ 1 ∪ ̺ ρ 2 • • •∪ ̺ ρ (b-1) ∪ ̺ .
That is, the boundary components of S g ′ ,b,p are image by deck transformations of the b-th boundary component.

For every 1 ≤ k ≤ p, let ̺ k be the image of t k by the natural homomorphism

F g,1,p → F g,1,p /F g ′ ,b,q = G. Let d k be the order of ̺ k in G. Since t k corresponds to a branching point, we see t k / ∈ F g ′ ,b,q and d k ≥ 2. Since ̺ d k k = 1 in G = F g,1,p /F g ′ ,b,q , we see that t d k k ∈ F g ′ ,b,q . Notice that t d k k represents a loop around a lift of the k-th puncture of S g,1,p . The subgroup ̺ k has index m/d k in G. Since all the branching point of S g,1,0 lift to the same number of points in S g ′ ,b,0 , m/d 1 = m/d k for all 2 ≤ k ≤ p. Hence, d 1 = d k for all 2 ≤ k ≤ p. Let d = d 1 . We have G = ̺ k ρ 1,k ∪ ̺ k ρ 2,k ∪• • •∪ ̺ k ρ m/d,k , where ρ j,k = u j,k F g ′ ,b,q ∈ G = F g,1,p /F g ′ ,b,q for all 1 ≤ j ≤ m/d. Notice that (t d k ) u 1,k , (t d k ) u 2,k , . . . , (t d k ) u m/d,k represent loops around the m/d lifts of the k-th puncture. We choose u 1,k , u 2,k , . . . , u m/d,k ∈ F g,1,p such that {(t d k ) u 1,k , (t d k ) u 2,k , . . . , (t d k ) u m/d,k } ⊆ { t1 , t2 , . . . , tq }. Then (2.7.1) { t1 , t2 , . . . , tq } = p k=1 {(t d k ) u 1,k , (t d k ) u 2,k , . . . , (t d k ) u m/d,k }. Recall N d is the normal closure of t d 1 , t d 2 , . . . , t d p in F g,1,p . Lemma 2.8. With the above notation, N d is equal to the normal closure of t1 , t2 , • • • , tq in F g ′ ,b,q . Proof. By (2.7.1), the normal closure of t1 , t2 , • • • , tq in F g ′ ,b,q is a subgroup of N d . Let 1 ≤ k ≤ p and w ∈ F g,1,p . By (2.7.1), it is enough to prove (t d k ) w = (t d k ) u j,k v for some 1 ≤ j ≤ (m/d) and v ∈ F g ′ ,b,q . Recall G = F g,1,p /F g ′ ,b,q , ̺ k = t k F g ′ ,b,q ∈ G and G = ̺ k ρ 1,k ∪ ̺ k ρ 2,k ∪• • •∪ ̺ k ρ m/d,k , where ρ j,k = u j,k F g ′ ,b,q ∈ G for all 1 ≤ j ≤ (m/d). Let 1 ≤ j ≤ (m/d) such that wF g ′ ,b,q ∈ ̺ k ρ j,k . Let 1 ≤ r ≤ d such that wF g ′ ,b,q = ̺ r k ρ j,k = t r k u j,k F g ′ ,b,q . Then w = t r k u j,k v, for some v ∈ F g ′ ,b,q and (t d k ) w = (t d k ) t r k u j,k v = (t d k ) u j,k v . Recall F g,1,p /N d = F g,1,p (d)
, and for every 1 ≤ k ≤ p, we denote by τ k the image of t k by the natural homomorphism F g,1,p → F g,1,p (d) .

Notation 2.9. Let H ≤ F g,1,p be a normal subgroup of finite index such that

N d ≤ H. Notice H/N d ≤ F g,1,p (d) . We set AM g,1,p (H) = {φ ∈ AM g,1,p | H φ = H}, and AM g,1,p (d) (H/N d ) = { φ ∈ AM g,1,p (d) | (H/N d ) φ = H/N d }. Proposition 2.10. Suppose (g, p, d) = (0, 2, 2). Let H ≤ F g,1,p be a normal subgroup of finite index such that N d ≤ H. Let ψ : AM g,1,p → AM g,1,p (d) be as in Definition 2.5 and φ ∈ AM g,1,p (H). Then ψ(φ) ∈ AM g,1,p (d) (H/N d ). If ψ(φ)| H/N d = 1, then φ = 1. Proof. Since N d and H are φ-invariant, we see H/N d is ψ(φ)-invariant. Since ψ(φ) ∈ AM g,1,p (d) , we have ψ(φ) ∈ AM g,1,p (H/N d )
Since H has finite index in F g,1,p , there exists r ∈ Z, r ≥ 1, such that

(Π g i=1 [x i , y i ]Π p k=1 t k ) r ∈ H. Fix 1 ≤ k ≤ p. Since H is normal in F g,1,p , we see t k (Π g i=1 [x i , y i ]Π p k ′ =1 t k ′ ) r t k ∈ H. If ψ(φ)| H/N d = 1, in F g,1,p (d) , τ k (Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ ) r τ k =(τ k (Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ ) r τ k ) ψ(φ) =τ ψ(φ) k (Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ ) r τ ψ(φ) k . Then, in F g,1,p (d) , τ ψ(φ) k τ k commutes with (Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ ) r . Recall F g,1,p (d) = F g,1,p /N d . Hence, F g,1,p (d) ≃ F g,1,0 * τ 1 , τ 2 , . . . , τ p | τ d 1 , τ d 2 , . . . , τ d p . Hence, τ ψ(φ) k τ k ∈ Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ , and, 
(2.10.1)

τ ψ(φ) k = (Π g i=1 [x i , y i ]Π p k ′ =1 τ k ′ ) r ′ τ k , for some r ′ ∈ Z. Recall [τ ψ(φ) k ] = [τ j ],
for some 1 ≤ j ≤ p. If (g, p) = (0, 1), and if (g, p, d) = (0, 2, 2), then (2.10.1) implies r ′ = 0 and τ

ψ(φ) k = τ k . Fix a ∈ {x i , y i } 1≤i≤g . Since H has finite index in F g,1,p , there exists s ∈ Z, s ≥ 1, such that a s ∈ H. If ψ(φ)| H/N d = 1, then (a s ) ψ(φ) = a s , and, a ψ(φ) = a. Since F g,1,p (d) ≃ F g,1,0 * τ 1 , τ 2 , . . . , τ p | τ d 1 , τ d 2 , . . . , τ d p , a ψ(φ) = a for all a ∈ {x i , y i } 1≤i≤g , and, τ ψ(φ) k = τ k for all 1 ≤ k ≤ p; we see ψ(φ) = 1. By Theorem 2.6, φ = 1. Remark 2.11. Let φ ∈ AM g,1,p . Suppose F g ′ ,b,q is φ-invariant. Then φ induces an automorphisms of F g ′ ,b,q by restriction. In F g,1,p we have (i) Π g ′ i=1 [x i , ŷi ]Π (b-1) l=1 ẑl Π q k=1 tk = (Π g i=1 [x i , y i ]Π p k=1 t k ) c ; (ii) ẑl is conjugate to (Π g i=1 [x i , y i ]Π p k=1 t k ) -c , for all 1 ≤ l ≤ (b -1); (iii) tk is conjugate to t d j , 1 ≤ j ≤ p, for all 1 ≤ k ≤ q.
If we identify F g ′ ,b,q with F g ′ ,1,(b-1)+q by identifying ẑl with tl , for all 1 ≤ l ≤ (b -1), and tk with t(b-1)+k , for all 1 ≤ k ≤ q; then the restriction of φ to F g ′ ,1,(b-1)+q lies inside AM g ′ ,1,(b-1)+q . Let h be the homeomorphism of S g,1,p which fixes the boundary component pointwise and h * = φ. Since F g ′ ,b,q is φ-invariant, h lifts to a homeomorphism ĥ of S g ′ ,b,q which fixes the b-th boundary component pointwise. Since ĥ may not fix the first (b -1) boundary components pointwise, ĥ does not represent an element of M g ′ ,b,q , but it represents an element of M g ′ ,1,(b-1)+q , that is, we have to convert the first (b -1) boundary components into punctures. If ĥ fixes the boundary components pointwise, we can conserve the first (b -1) boundary components. Algebraically, if we want to have an element of AM g ′ ,b,q , we have to define the image of ê1 , ê2 , . . . , ê(b-1) . Since F g ′ ,b,q is φ-invariant, we see φ induces an automorphism of G = F g,1,p /F g ′ ,b,q . If φ induces the identity of G, we can define an element of AM g ′ ,b,q from φ.

Recall 1,(b-1) by identifying ẑl with tl for all 1 ≤ l ≤ (b -1). Hence, F g ′ ,1,(b-1) = F g ′ ,b,q /N d . Since F g ′ ,b,q is φ-invariant, by Proposition 2.10, there exists the restriction

N d is the normal closure in F g,1,p of t d 1 , t d 2 , . . . , t d p . By Lemma 2.8, N d is the normal closure in F g ′ ,b,q of t1 , t2 , • • • , tq . Hence, F g ′ ,b,0 = F g ′ ,b,q /N d . We identify F g ′ ,b,0 with F g ′ ,
ψ(φ)| F g ′ ,1,(b-1) : F g ′ ,1,(b-1) → F g ′ ,1,(b-1)
. Recall ĥ is a homeomorphism of S g ′ ,b,q . Since h * = φ, we have ĥ * = φ| F g ′ ,b,q . Notice ĥ extends to a homeomorphism f of S g ′ ,b,0 . Notice f restricts to a homeomorphism of

S g ′ ,1,(b-1) ⊆ S g ′ ,b,0 . Since ĥ * = φ| F g ′ ,b,q and F g ′ ,1,(b-1) = F g ′ ,b,q /N d , the restriction of f to S g ′ ,1,(b-1) ⊆ S g ′ ,b,0 induces the automorphism ψ(φ)| F g ′ ,1,(b-1) .
We, now, can state and prove the algebraic analog of Theorem 1.1.

Theorem 2.12. Suppose (g, p) = (0, 2). Let κ : S g ′ ,b,0 → S g,1,0 be a finite index regular cover with p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 . Suppose every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . Let κ ′ : S g ′ ,b,q → S g,1,p be the corresponding unbranched cover. Let ψ : AM g,1,p → AM g,1,p (d) be as in Definition 2.5 and φ ∈ AM g,1,p . Suppose

F g ′ ,b,q is φ-invariant. If ψ(φ)| F g ′ ,1,(b-1) = 1, then φ = 1. Proof. Since F g,1,p (d) = F g,1,p /N d , the natural homomorphism F g,1,p → F g,1,p (d) restricts to the natural homomorphism F g ′ ,b,q → F g ′ ,1,(b-1) . Since ψ : AM g,1,p → AM g,1,p (d) is given by the natural homomorphism F g,1,p → F g,1,p (d) , we see ψ(φ) : F g,1,p (d) → F g,1,p (d) completes the following com- mutative square F g,1,p φ -→ F g,1,p ↓ ↓ F g,1,p (d) ψ(φ) -→ F g,1,p (d)
where the vertical arrows are the natural homomorphisms. Notice

ψ(φ)| F g ′ ,1,(b-1) : F g ′ ,1,(b-1) → F g ′ ,1
,(b-1) completes the following commutative square

F g ′ ,b,q φ| F g ′ ,b,q -→ F g ′ ,b,q ↓ ↓ F g ′ ,1,(b-1) ψ(φ)| F g ′ ,1,(b-1) -→ F g ′ ,1,(b-1)
where the vertical arrows are the natural homomorphisms. By Proposition 2.10,

if ψ(φ)| F g ′ ,1,(b-1) = 1, then φ = 1.
We state the algebraic analog of Corollary 1.2.

Corollary 2.13. Suppose (g, p) = (0, 2). Let κ : S g ′ ,b,0 → S g,1,0 be a finite index regular cover with p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 . Suppose every branching point of S g,1,0 lifts to the same number of points in S g ′ ,b,0 . Let κ ′ : S g ′ ,b,q → S g,1,p be the corresponding unbranched cover. If F g ′ ,b,q is AM g,1,p -invariant, then AM g,1,p embeds in AM g ′ ,1,(b-1) . In fact, the embedding is given by φ

→ ψ(φ)| F g ′ ,1,(b-1)
, where ψ : AM g,1,p → AM g,1,p (d) is as in Definition 2.5.

Examples

We fix g, p such that (g, p) = (0, 2). Let Ŝ be the universal cover of S g,1,p . The fundamental group of S g,1,p , denoted F g,1,p , acts on Ŝ. Let H be a subgroup of F g,1,p of index m. Suppose H is AM g,1,p -invariant. The quotient space Ŝ/H is an orientable surface, denoted S g ′ ,b,q . We identify the fundamental group of S g ′ ,b,q , denoted F g ′ ,b,q , with H. The cover Ŝ → S g,1,p induces a cover S g ′ ,b,q → S g,1,p with group of deck transformation G := F g,1,p /F g ′ ,b,q . If t k / ∈ F g ′ ,b,q for all 1 ≤ k ≤ p, then the corresponding cover S g ′ ,b,0 → S g,1,0 has p branching points in S g,1,0 which lift to q points in S g ′ ,b,0 . Since H is AM g,1,p -invariant, it can be seen that every branching point of S g,1,p lifts to the same number of points in S g ′ ,b,0 . By Corollary 2.13, we have an embedding AM g,1,p ֒→ AM g ′ ,1,(b-1) . By choosing an appropriated basis of H/N d , we can compute elements in the image of this embedding from elements of AM g,1,p .

Example 3.1 is Birman and Hilden [START_REF] Birman | On isotopies of homeomorphisms of Riemann surfaces[END_REF]. In Example 3.2.(a), we give a basis of F g ′ ,1,(b-1) and compute elements in the image of AM g,1,p ֒→ AM g ′ ,1,(b-1) .

Example 3.1. Let H be the kernel of the homomorphism 

F 0,1,p → γ | γ 2 such that t k → γ for all 1 ≤ k ≤ p. It
≤ k ≤ p, notice that ̺ k = t k H has order 2 in G := F 0,1,p /H ≃ γ | γ 2 .
Hence, ̺ k has index 1 in G and the k-th puncture in S g,1,p lifts to one puncture in S g ′ ,b,q . Thus, q = p.

(a). If p is odd, then Π p k=1 t k / ∈ H and ̺ = Π p k=1 t k H has order 2 in G. Hence, ̺ has index 1 in G and b = 1. Since F g ′ ,b,q has rank 2g ′ + b -1 + q and H has rank 2p -1, we have 2g ′ + 1 -1 + p = 2p -1 and g ′ = (p -1)/2. Hence, AM 0,1,p ֒→ AM (p-1)/2,1,0 , if p is odd. See [3, 9.2 Example] for a basis of F (p-1)/2,1,0 . (b). If p is even, then Π p k=1 t k ∈ H and ̺ = Π p k=1 t k H has order 1 in G. Hence, ̺ has index 2 in G and we have b = 2. Since F g ′ ,b,q has rank 2g ′ + b -1 + q and H has rank 2p -1, we have 2g ′ + 2 -1 + p = 2p -1 and g ′ = (p -2)/2. Hence, AM 0,1,p ֒→ AM (p-2)/2,1,1 , if p is even. See [3, 9.3 Example] for a basis of F (p-2)/2,1,1 .

Example 3.2. Let F 3 := a 1 , a 2 , a 3 | . Let H be the kernel of the homomorphism

F 3 → γ 1 | γ 2 1 × γ 2 | γ 2 2 × γ 3 | γ 2 3 such that a k → γ k for all 1 ≤ k ≤ 3.
It is standard to see that H is a free group of rank 17. It can be shown that H is a characteristic subgroup of F 3 .

(a). We identify F 0,1,3 with F 3 by putting t k ↔ a k for all 1 ≤ k ≤ 3. Notice that

̺ = t 1 t 2 t 3 H has order 2 in G := F 0,1,3 /H ≃ γ 1 | γ 2 1 × γ 2 | γ 2 2 × γ 3 | γ 2 3 .
Hence, ̺ has index 4 in G and b = 4. On the other hand, for all 1 ≤ k ≤ 3, ̺ k = t k H has order 2 in G. Hence, for all 1 ≤ k ≤ 3, ̺ k has index 4 in G and the k-th puncture in S 0,1,3 lifts to 4 punctures in S g ′ ,b,q . Thus, q = 12. Since F g ′ ,b,q has rank 2g ′ + b -1 + q and H has rank 17, we have 2g ′ +4-1+12 = 17 and g

′ = 1. Hence, AM 0,1,3 ֒→ AM 1,1,3 . It is well-known that AM 0,1,3 = σ 1 , σ 2 | σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 ,
where

σ 1 :=    t 1 → t 2 , t 2 → t t 2 1 , t 3 → t 3 , σ 2 :=    t 1 → t 1 , t 2 → t 3 , t 3 → t t 3 2 .
Let N 2 be the normal closure of t 2 1 , t 2 2 , t 2 3 in F 0,1,3 . Then F 0,1,3

/N 2 = F 0,1,3 (2) = τ 1 , τ 2 , τ 3 | τ 2 1 , τ 2 2 , τ 2 
3 and H/N 2 ≃ F 1,1,3 . We take the following basis of H/N

2 : x = τ 2 τ 3 τ 1 τ 3 τ 2 τ 1 , ŷ = τ 1 τ 2 τ 1 τ 2 , t1 = (τ 3 τ 2 τ 1 τ 3 τ 2 τ 1 ) τ 3 , t2 = (τ 3 τ 2 τ 1 τ 3 τ 2 τ 1 ) τ 3 τ 1 τ 3 , t3 = (τ 3 τ 2 τ 1 τ 3 τ 2 τ 1 ) τ 1 τ 3 . Then [x, ŷ] t1 t2 t3 = (τ 1 τ 2 τ 3 ) 2 and σ1 :=              x → ŷ-1 xŷ t1 t2 t-1 1 ŷ-1 , ŷ → ŷ, t1 → t1 , t2 → t3 , t3 → tt -1 1 ŷ-1 x-1 ŷ-1 xŷ t1 t2 t3 2 , σ2 :=              x → x, ŷ → xŷẑ 1 t2 , t1 → t3 , t2 → tt -1 1 ŷ-1 xŷ t1 t2 t3 2 , t3 → tŷ -1 xŷ t1 t2 t3 1 . (b). We identify F 1,1,1 with F 3 by putting x ↔ a 1 , y ↔ a 2 and t ↔ a 3 . Notice that ̺ = [x, y]tH has order 2 in G := F 1,1,1 /H ≃ γ 1 | γ 2 1 × γ 2 | γ 2 2 × γ 3 | γ 2
3 . Hence, ̺ has index 4 in G and b = 4. On the other hand, ̺ 1 = tH has order 2 in G. Hence, ̺ 1 has index 4 in G and the puncture in S 1,1,1 lifts to 4 punctures in S g ′ ,b,q . Thus, q = 4. Since F g ′ ,b,q has rank 2g ′ + b -1 + q and H has rank 17, we have 2g ′ + 4 -1 + 4 = 17 and g ′ = 5. Hence, AM 1,1,1 ֒→ AM 5,1,3 .

4 Proof of Theorem 2.6 Definition 4.1. An element of F g,1,p is said to be t-squarefree if, in its reduced expression, no two consecutive terms in {t k , t k } 1≤k≤p are equal; for example: x 1 x 1 t 2 t 3 is t-squarefree; x 1 t 2 t 2 y 1 is non-t-squarefree.

To prove Theorem 2.6 we need the following theorem (compare with [3, 7.6 Corollary]). Theorem 4.2. For every φ ∈ AM g,1,p , the elements of

{x φ i , y φ i } 1≤i≤g ∪ {t φ k } 1≤k≤p are t-squarefree.
Proof. (of Theorem 2.6) If p = 0, then ψ : AM g,1,p → AM g,1,p (d) is the identity and nothing needs to be said.

Suppose

p ≥ 1. Recall F g,1,p (d) ≃ F g,1,0 * τ 1 , τ 2 , . . . , τ p | τ d 1 , τ d 2 , . . . , τ d p . Let a ∈ {x i , y i } 1≤i≤g ∪ {t k } 1≤k≤p . If φ is an element of the kernel of ψ : AM g,1,p → AM g,1,p (d) , then ψ(φ) is the identity of Aut(F g,1,p (d) )
. Hence, a φ and a have the same image by the natural homomorphism F g,1,p → F g,1,p (d) . On the other hand, by Theorem 4.2, a φ is t-squarefree. Hence, a φ has the same normal form in F g,1,p as in F g,1,p (d) . Thus, a φ = a.

The rest of the paper is dedicated to prove Theorem 4.2. Notice Theorem 4.2 is trivial for p = 0. We will suppose p ≥ 1. To prove Theorem 4.2 we will use ends of F g,1,p , that is, reduced right-infinite words of F g,1,p . We will recall that there is an action of Aut(F g,1,p ) on the set of ends of F g,1,p . In particular, there is an action of AM g,1,p ≤ Aut(F g,1,p ) on the set of ends of F g,1,p .

The strategy to prove Theorem 4.2 is the following. We define a subset A of the set of ends of F g,1,p such that: (a) A is AM g,1,p -invariant, (b) every non-t-squarefree end of F g,1,p (see Definition 7.1) lies in A, (c) for (g, p) = (0, 1), (0, 2) and a ∈ {t p } ∪ {x i , y i , x i , y i } 1≤i≤g , the end of F g,1,p a(Π g i=1 [x i , y i ]Π p k=1 t k ) ∞ does not lie in A. From (a) and (c) we see that for (g, p) = (0, 1), (0, 2) the set A does not intersect the AM g,1,p -orbit of a(Π g i=1 [x i , y i ]Π p k=1 t k ) ∞ , where a ∈ {t p } ∪ {x i , y i , x i , y i } 1≤i≤g . Then, by (b), for (g, p) = (0, 1), (0, 2) the elements of the AM g,1,p -orbit of a(Π g i=1 [x i , y i ]Π p k=1 t k ) ∞ are t-squarefree. From this fact, and an easy analysis in the special cases (g, p) = (0, 1), (0, 2), we prove Theorem 4.2.

The subset A is defined via a linear ordering of the set of ends of F g,1,p . To prove (a) above we need the fact that this ordering is respected by the AM g,1,p -action. To prove (b) and (c) above, we have to check same inequalities with respect to this ordering.

In Section 5 and Section 6 we define the ordering of the set of ends of F g,1,p and we show that this ordering is respected by the AM g,1,p -action. In Section 7 we prove (a), (b) and (c) above.

McCool's Groupoid

For the rest of the paper we suppose p ≥ 1.

In this section we define McCool's groupoid via Whitehead's graphs, we remark that AM g,1,p is a subgroup of McCool's groupoid and we recall that McCool's groupoid is generated by Nielsen elements. These facts will be useful to see that the ordering that we will define on the set of ends of F g,1,p is respected by the AM g,1,p -action.

Let n := 2g + p, and, let F n be the free group on X, where X is a set with n elements.

Notation 5.1. Let w ∈ F n . In this section we will denote by [w] the cyclic word of w. Definitions 5.2. Let T be a set of words and cyclic words of F n . Suppose the elements of T are reduced and cyclically reduced, respectively. We define the Whitehead graph of T as the graph with vertex set X ∪ X, and, one edge from a ∈ X ∪ X to b ∈ X ∪ X for every subword ab which appears in w or [u], where w and [u] are elements of T . We say that a is the initial vertex and b is the terminal vertex of the edges corresponding to the subword ab. Repetitions have to be considered. For example, since the subword ab appears twice in abab, the Whitehead graph of {abab} has 2 edges from a to b (and one edge from b to a). A word Π k i=1 a i produces k -1 edges in the Whitehead graph. A cyclic word [Π k i=1 a i ] produces k edges in the Whitehead graph. For example, the Whitehead graph of {a} does not have any edge and the Whitehead graph of {[a]} has one edge from a to a.

We say that T is a surface word set if the Whitehead graph of T is an oriented segment, that is, the Whitehead graph of T is connected with exactly 2n -1 edges, every vertex but one is the initial vertex of exactly one edge, and, every vertex but one is the terminal vertex of exactly one edge.

Example 5.3. Let F 4 := a, b, c, d | . (i). Let T := {adcb, [ db], [ca]}. The Whitehead graph of T is a → c → b → d → c → a → d → b.
Hence, T is a surface word set.

(ii). Let

T := {adcb, db, [ca]}. The Whitehead graph of T is a → c → b d → c → a → d → b.
Hence, T is not a surface word set.

(iii). Let

T := {adcb, dc, [ db], [ca]}. The Whitehead graph of T is a → c → b → d ⇉ c → a → d → b.
Hence, T is not a surface word set.

We illustrate the following remarks with examples in F 4 = a, b, c, d | .

Remarks 5.4. Let T be a surface word set.

(i) The Whitehead graph of T defines a sequence (a k ) 1≤k≤2n which lists the element of X ∪ X such that for all 1 ≤ k ≤ (2n -1), the Whitehead graph of T has exactly one edge with initial vertex a k and terminal vertex a k+1 , equivalently, a k a k+1 is a subword that appears exactly once in T . We say that (a k ) 1≤k≤2n is the associated sequence of T .

In Example 5.3(i), the associated sequence of T is (a, c, b

(ii) We can recover T from the associated sequence of T . The process to recover T from its associated sequence is the inverse process to construct the Whitehead graph. We give two examples below. From this process, it is easy to see that T has exactly one word, and, all other elements of T are cyclic words.

In (iii) Let p be the cardinality of T minus one. We say that T is a (g, p)-surface word set, where g = (n -p)/2. By induction on n, it can be seen that n ≥ p and n -p is even. Hence, g is a non-negative integer.

Definition 5.5. Let φ ∈ Aut(F n ).
We say that φ is a type-1 Nielsen automorphism if φ restricts to a permutation of X ∪ X.

We say that φ is a type-2 Nielsen automorphism if there exist a, b ∈ X ∪ X such that a = b, b and φ := a → ab, c → c for all c ∈ X, c = a ±1 . We denote φ by (a → ab) or (a → ba). Definition 5.6. Let G g,p be the groupoid with objects (g, p)-surface word sets, and, given T 1 , T 2 two (g, p)-surface word sets

Hom(T 1 , T 2 ) := {φ ∈ Aut(F n ) | T φ 1 = T 2 },
where

T φ 1 := {w φ , [u φ ] | w, [u] ∈ T 1 }.
Here, w φ is reduced and [u φ ] is cyclically reduced. Hence, [v] = [u φ ] means that v and u φ are conjugate.

We say that (T 1 , T 2 , φ) ∈ Hom(T 1 , T 2 ) is a type-1 Nielsen element of G g,p if φ is a type-1 Nielsen automorphism. Similarly, for type-2 Nielsen automorphisms. We say that (T 1 , T 2 , φ) ∈ Hom(T 1 , T 2 ) is a Nielsen element if it is either a type-1 Nielsen or a type-2 Nielsen.

We illustrate the following remarks with examples in F 4 = a, b, c, d | .

Remark 5.7. Let (T 1 , T 2 , φ) be a Nielsen of G g,p .

(i) If (T 1 , T 2 , φ) is a type-1 Nielsen, then the associated sequence of T 2 is obtained from the associated sequence of T 1 by applying the permutation φ to every element of the sequence.

In F 4 , let T 1 = {ad bc, [ ab], [ cd]}. Notice the associated sequence of T 1 is (a, b, c, d, b, a, d, c). If φ : = (a → b, b → c, c → a, d → d), then the associated sequence of T 2 = T φ 1 = {bdc a, [bc], [ad]} is (b, c, a, d, c, b, d, a). (ii) Suppose (T 1 , T 2 , φ) is a type-2 Nielsen. Then φ = (a i → ba i ) for some 1 ≤ i ≤ 2n, b ∈ X ∪ X such that a i = b, b.
Since in the Whitehead graph of T 2 there are exactly 2n -1 edges, there exists w ∈ T 1 or [u] ∈ T 1 such that applying φ to w or [u] produces a cancellation. If the cancellation appears from the subword a i-1 a i , then b = a i-1 . If the cancellation appears from the subword a i a i+1 , then b = a i+1 . Hence, either φ = (a i → a i-1 a i ) for some 2 ≤ i ≤ 2n, a i = a i-1 ; or φ = (a i → a i a i+1 ) for some 1 ≤ i ≤ (2n -1), a i = a i+1 . In the former case the associated sequence of T 2 is obtained from the associated sequence of T 1 by moving a i from immediately after a i-1 to immediately before a i-1 . In the later case the associated sequence of T 2 is obtained from the associated sequence of T 1 by moving a i from immediately before a i+1 to immediately after a i+1 .

In Remark 5.9. AM g,1,p = Hom(T, T ), where T is the standard (g, p)-surface word set of F g,1,p . Theorem 5.10 (McCool [START_REF] Mccool | Generating the mapping class group (an algebraic approach)[END_REF], [START_REF] Dicks | Automorphism subgroups of finite index in algebraic mapping class groups[END_REF]). G g,p is generated by Nielsen elements.

Ends of free group

In this section we define, for every (g, p)-surface word set, an ordering of the set of ends of F n , where n = 2g + p. In particular, we define an ordering for the standard (g, p)-surface word set, called the ordering of the set of ends of F g,1,p . There is an action of AM g,1,p on the set of ends of F g,1,p . We show that the ordering of the set of ends of F g,1,p is respected by the AM g,1,p -action. We use shadows of the set of ends of F n and results of Section 5.

Recall n := 2g + p and F n is the free group on X, where X is a set with n elements. Notation 6.1. Let Π k i=1 a i be the normal form for w ∈ F n . Then we say that w has length k, denoted |w| = k . The set of elements of F n whose normal forms have Π k i=1 a i as an initial subword is denoted (w⋆); and, the set of elements of F n whose normal forms have Π k i=1 a i as a terminal subword is denoted (⋆w). The elements of (w⋆) are said to begin with w, and the elements of (⋆w) are said to end with w.

Definition 6.2. An end of F n is a right-infinite word Π k≥1 a k = a 1 a 2 • • • where a k ∈ X ∪ X and a k+1 = a k for every k ≥ 1.
We denote the set of ends of F n by ∂F n .

For each w ∈ F n , we define the shadow of w in ∂F n to be (w◭

) := {Π k≥1 a k ∈ ∂F n | Π |w| k=1 a k = w}.
Thus, for example, (1◭) = ∂F n . Definition 6.3. Let T be a surface word set. We now give ∂F n an ordering, < T , with respect to T as follows. Let (a k ) 1≤k≤2n be the associated sequence of T . Recall (a k ) 1≤k≤2n is a listing of the elements of X ∪ X . For each w ∈ F n , we assign an ordering, < T , to a partition of (w◭) into 2n or 2n -1 subsets, depending as w = 1 or w = 1, as follows. We set

(a 1 ◭) < T (a 2 ◭) < T (a 3 ◭) < T • • • < T (a 2n-1 ◭) < T (a 2n ◭).
If 1 ≤ i ≤ n and w ∈ (⋆a i ), then we set

(wa i+1 ◭) < T (wa i+2 ◭) < T (wa i+3 ◭) < T • • • • • • < T (wa 2n-1 ◭) < T (wa 2n ◭) < T (wa 1 ◭) < T (wa 2 ◭) < T (wa 3 ◭) < T • • • • • • < T (wa i-2 ◭) < T (wa i-1 ◭).
Hence, for each w ∈ F n , we have an ordering < T of a partition of (w◭) into 2n or 2n - c,d,b,a,d,c). In (∂F 4 , < T ), the smallest element is (ad bc) ∞ , and, the largest element is (cbda) ∞ . Notation 6.5. We denote by < the ordering of ∂F g,1,p with respect to the standard (g, p)-surface word set of F g,1,p . Review 6.6. Let Ŝ be the universal cover of S g,1,p . Suppose S has negative Euler characteristic, that is, 2g + p ≥ 2. Then Ŝ can be identified with a convex region of the hyperbolic plane H 2 . Let ∂ Ŝ be the boundary of Ŝ. Then ∂ Ŝ is a union of geodesic segments of the hyperbolic plane H 2 . The union of ∂ Ŝ and the set of geodesic rays of Ŝ, denoted ∂ Ŝ-, can be identified with the boundary of a disc, that is, R ∪ {∞}. Let * be the point in ∂ Ŝ corresponding to ∞ by this identification. By work of Nielsen-Thurston [START_REF] Cooper | Automorphisms of free groups have finitely generated fixed point sets[END_REF], [START_REF] Short | Orderings of mapping class groups after Thurston[END_REF], there is an action of M g,1,p on ∂ Ŝ ∪ ∂ Ŝwhich fixes * ∈ ∂ Ŝ ∪ ∂ Ŝ-. This action is defined as follows. There is a bijection between point of ∂ Ŝ and geodesic segments of Ŝ with starting point * and endpoint in ∂ Ŝ. There is a bijection between geodesic rays of Ŝ and infinite geodesic segments of Ŝ starting at * . Let γ be such a (finite or infinite) geodesic segment. Let γ be the projection of γ in S. Let [f ] ∈ M g,1,p . We can suppose that f is an isometry of S. Then, f (γ) is a geodesic segment. Define [f ] • γ as the lift of f (γ) with starting point * . Notice this lift defines a point of ∂ Ŝ ∪ ∂ Ŝand * ∈ ∂ Ŝ is fixed by this action. Hence, there exists an action of M g,1,p on R. By [START_REF] Short | Orderings of mapping class groups after Thurston[END_REF] or [START_REF] Dehornoy | Why are braids orderable?, volume 14 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF]Chapter 7], this action respects the usual ordering of R. Corollary 6.8 gives the analog statement for AM g,1,p and ∂F g,1,p .

Let φ ∈ Aut(F n ). It is proved in [START_REF] Cooper | Automorphisms of free groups have finitely generated fixed point sets[END_REF] that (Π k≥1 a k ) φ = lim k→∞ (Π k i=1 a i ) φ defines a map ∂F n → ∂F n , which we still denote by φ. Proposition 6.7. Let T 1 , T 2 be surface word sets of F n and (T 1 , T 2 , φ) ∈ Hom(T 1 , T 2 ). Then φ : (∂F n , ≤ T 1 ) → (∂F n , ≤ T 2 ) respects the orderings. Proof. By Theorem 5.10, we can restrict ourselves to the case where (T 1 , T 2 , φ) is a Nielsen. By Remark 5.7(i), the result is clear if (T 1 , T 2 , φ) is a type-1 Nielsen. Hence, we suppose (T 1 , T 2 , φ) is a type-2 Nielsen.

Let (a k ) 1≤k≤2n be the associated sequence of T 1 . Then either φ = (a i → a i-1 a i ) for some 2 ≤ i ≤ 2n, a i = a i-1 ; or, φ = (a i → a i a i+1 ) for some 1

≤ i ≤ (2n -1), a i = a i+1 . Suppose φ = (a i → a i-1 a i ) for some 2 ≤ i ≤ 2n, a i = a i-1 .
The following correspondence by the action of (a i → a i-1 a i ) is clear.

(a i → a i-1 a i ) (⋆ a i a i-1 ) -→ (⋆ a i ), (⋆ a i-1 ) -(⋆ a i a i-1 ) -→ (⋆ a i-1 ), (⋆ a i ) -→ (⋆ a i ), (⋆ a k ) -→ (⋆ a k ), a k = a ±1 i-1 , a ±1 i , (⋆ a i-1 ) -→ (⋆ a i-1 ) -(⋆a i a i-1 ), (⋆ a i ) -→ (⋆ a i a i-1 ).
The following correspondence by the action of (a i → a i-1 a i ) is clear.

(a i → a i-1 a i ) (a i-1 ◭) -→ (a i-1 ◭) -(a i-1 a i ◭), (a i ◭) -→ (a i-1 a i ◭), (a k ◭) -→ (a k ◭), a k = a ±1 i-1 , a ±1 i , (a i-1 a i ◭) -→ (a i ◭), (a i-1 ◭) -(a i-1 a i ◭) -→ (a i-1 ◭), (a i ◭) -→ (a i ◭).
From the first row of the first table and the second table we deduce the following table.

(a i → a i-1 a i ) (⋆ a i a i-1 )(a i-1 ◭) -→ (⋆ a i )[(a i-1 ◭) -(a i-1 a i ◭)], (⋆ a i a i-1 )(a i ◭) -→ (⋆ a i )(a i-1 a i ◭), (⋆ a i a i-1 )(a k ◭) -→ (⋆ a i )(a k ◭), a k = a ±1 i-1 , a ±1 i , (⋆ a i a i-1 )(a i ◭) -→ (⋆ a i )(a i ◭).
Notice the cases (⋆a i a i-1 )(a i-1 a i ◭) and (⋆a i a i-1 )[(a i-1 ◭) -(a i-1 a i ◭)] do not have to be considered since they are not in reduced form.

Let e, f ∈ ∂F n such that e = (wa i a i-1 )e ′ , f = (wa i a i-1 )f ′ and the first letter of e ′ is different from the first letter of f ′ . Let 1 ≤ j ≤ 2n such that a j = a i-1 . By the third table, e (a i →a i-1 a i ) = (ua i )e ′′ , f (a i →a i-1 a i ) = (ua i )f ′′ in reduced form. Let (b k ) 1≤k≤2n be the associated sequence of T 2 . Recall (b k ) 1≤k≤2n is obtained from (a k ) 1≤k≤2n by moving a i from immediately after a i-1 to immediately before a j = a i-1 . There are two cases according to j < i -1 or i -1 < j.

If j < i -1, then (b k ) 1≤k≤(j-1) = (a k ) 1≤k≤(j-1) , (b j ) = (a i ), (b k ) (j+1)≤k≤i = (a k ) j≤k≤(i-1) , (b k ) (i+1)≤k≤2n = (a k ) (i+1)≤k≤2n .

The partition with respect to (a k ) 1≤k≤2n of (a j ◭) = (a i-1 ◭) is (a j+1 ◭), (a j+2 ◭), . . . , (a i-1 ◭), (a i ◭), (a i+1 ◭), . . . , (a 2n ◭), (a 1 ◭), (a 2 ◭), . . . , (a j-1 ◭). The partition with respect to (b k ) 1≤k≤2n of (a i ◭) is (a j ◭), (a j+1 ◭), . . . , (a i-1 ◭), (a i+1 ◭), (a i+2 ◭), . . . , (a 2n ◭), (a 1 ◭), (a 2 ◭), . . . , (a j-1 ◭). By the third table, (a i → a i-1 a i ) (wa i a i-1 )(a j+1 ◭) -→ (ua i )(a j+1 ◭), (wa i a i-1 )(a j+2 ◭) -→ (ua i )(a j+2 ◭), . . . (wa i a i-1 )(a i-2 ◭) -→ (ua i )(a i-2 ◭), (wa i a i-1 )(a i-1 ◭) -→ (ua i )[(a i-1 ◭) -(a i-1 a i ◭)], (wa i a i-1 )(a i ◭)

-→ (ua i )(a i-1 a i ◭), (wa i a i-1 )(a i+1 ◭) -→ (ua i )(a i+1 ◭), . . . (wa i a i-1 )(a 2n ◭) -→ (ua i )(a 2n ◭), (wa i a i-1 )(a 1 ◭) -→ (ua i )(a 1 ◭), (wa i a i-1 )(a 2 ◭) -→ (ua i )(a 2 ◭), . . . (wa i a i-1 )(a j-1 ◭) -→ (ua i )(a j-1 ◭).

Since a j = a i-1 , the first column is ordered with respect to T 1 . On the other hand, a j = a i-1 implies that the partition of (ua i )(a i-1 ◭) with respect to T 2 ends with (ua i )(a i-1 a i ◭). Then, the second column of this table is ordered with respect to T 2 . Hence, if (wa i a i-1 )e ′ < T 1 (wa i a i-1 )f ′ then (ua i )e ′′ < T 2 (ua i )f ′′ .

If i -1 < j, then (b k ) 1≤k≤(i-1) = (a k ) 1≤k≤(i-1) , (b k ) i≤k≤(j-2) = (a k ) (i+1)≤k≤(j-1) , (b j-1 ) = (a i ), (b k ) j≤k≤2n = (a k ) j≤k≤2n .

The partition with respect to (a k ) 1≤k≤2n of (a j ◭) = (a i-1 ◭) is (a j+1 ◭), (a j+2 ◭), . . . , (a 2n ◭),(a 1 ◭), (a 2 ◭), . . . , (a i-1 ◭), (a i ◭), (a i+1 ◭), . . . , (a j-1 ◭).

The partition with respect to (b k ) 1≤k≤2n of (a i ◭) is (a j ◭), (a j+1 ◭), . . . , (a 2n ◭), (a 1 ◭), (a 2 ◭), . . . , (a i-1 ◭), (a i+1 ◭), (a i+2 ◭), . . . , (a j-1 ◭). By the third table, (a i → a i-1 a i ) (wa i a i-1 )(a j+1 ◭) -→ (ua i )(a j+1 ◭), (wa i a i-1 )(a j+2 ◭) -→ (ua i )(a j+2 ◭), . . . (wa i a i-1 )(a 2n ◭) -→ (ua i )(a 2n ◭), (wa i a i-1 )(a 1 ◭) -→ (ua i )(a 1 ◭), (wa i a i-1 )(a 2 ◭) -→ (ua i )(a 2 ◭), . . . (wa i a i-1 )(a i-2 ◭) -→ (ua i )(a i-2 ◭), (wa i a i-1 )(a i-1 ◭) -→ (ua i )[(a i-1 ◭) -(a i-1 a i ◭)], (wa i a i-1 )(a i ◭)

-→ (ua i )(a i-1 a i ◭), (wa i a i-1 )(a i+1 ◭) -→ (ua i )(a i+1 ◭), . . . (wa i a i-1 )(a j-1 ◭) -→ (ua i )(a j-1 ◭).

Since a j = a i-1 , the first column is ordered with respect to T 1 . On the other hand, a j = a i-1 implies that the partition of (ua i )(a i-1 ◭) with respect to T 2 ends with (ua i )(a i-1 a i ◭). Then, the second column of this table is ordered with respect to T 2 . Hence, if (wa i a i-1 )e ′ < T 1 (wa i a i-1 )f ′ then (ua i )e ′′ < T 2 (ua i )f ′′ .

For every row of the first table, there is a case which needs to be considered. Similarly, in all these cases, it can be shown that if e < T 1 f, then e (a i →a i-1 a i ) < T 2 f (a i →a i-1 a i ) .

The case φ = (a i → a i a i+1 ) for some 1 ≤ i ≤ (2n -1), a i = a i+1 , is similar.

Since AM g,1,p is the subgroup of McCool's groupoid based at the standard (g, p)-surface word set, see Remark 5.9, we have the following. Corollary 6.8. The AM g,1,p acts on (∂F g,1,p , ≤) respecting the ordering.

t-squarefreeness

In this section we define a subset A of ∂F g,1,p such that A is AM g,1,p -invariant, every non-t-squarefree end of F g,1,p (see Definition 7.1) lies in A and for (g, p) = (0, 1), (0, 2) the end a(Π g i=1 [x i , y i ]Π p k=1 t k ) ∞ , where a ∈ {t p } ∪ {x i , y i , x i , y i } 1≤i≤g , does not lie in A. From these, and studying the special cases (g, p) = (0, 1), (0, 2), we complete the proof of Theorem 4.2. We use the ordering of ∂F g,1,p and results of Section 6.

Recall 2g + p = n and F g,1,p is the free group on {x i , y i } 1≤i≤g ∪ {t k } 1≤k≤p .

The following definition extends Definition 4.1 to F g,1,p ∪ ∂F g,1,p .

F 4 ,

 4 from the sequence (a, b, c, d, a, b, c, d) we have the surface word set {abcd abcd}, and, from the sequence (a, b, c, d, d, c, b, a) we have the surface word set {a, [ba], [cb ], [dc], [ d ]}.

F 4 ,

 4 let T 1 = {abcd abcd}. Notice the associated sequence of T 1 is (a, b, c, d, a, b, c, d). If φ : = (b → ab), then the associated sequence of T 2 = T φ 1 is (a, c, d, b, a, b, c, d). In fact (abcd abcd) (b →ab) = ab acdbcd. If φ := (a → ab), then the associated sequence of T 2 = T φ 1 is (b, c, d, a, b, a, c, d). In fact (abcd abcd) (a →ab) = babcd a cd.

Remark

  

Remark 6 . 4 .

 64 1 subsets. If Π k≥1 b k and Π k≥1 c k are two different ends, then there exists j ∈ Z, j ≥ 0, such that Π j k=1 b k = Π j k=1 c k and b j+1 = c j+1 . Let w = Π j k=1 b k = Π j k=1 c k in F n . Then Π k≥1 b k and Π k≥1 c k lie in (w◭), but lie in different elements of the partition of (w◭) into 2n or 2n -1 subsets. We then order Π k≥1 b k and Π k≥1 c k using the ordering of the elements of the partition of (w◭) that they belong to. This completes the definition of the ordering < T of ∂F n . Let w be the non-cyclic element of T . In (∂F n , < T ), the smallest element is w ∞ and the largest element is w ∞ . For example, in F 4 = a, b, c, d | we take the surface word set T = {ad bc, [ab], [cd]}. The associated sequence of T is (a, b,

  d ≥ 2. (d) the group F g,1,p /N d . For every 1 ≤ k ≤ p, we denote by τ k the image of t k by the natural homomorphism F g,1,p → F g,1,p (d) .

	Notation 2.4. Let N d be the normal closure of t d 1 , t d 2 , . . . , t d p in F g,1,p . We denote
	by F g,1,p

  is standard to see that H is a free group of rank 2p -1 with basis t 2 1 , t 1 t 2 , t 1 t 3 , . . . , t 1 t p , t 1 t 2 , t 1 t 3 , . . . , t 1 t p . It is easy to see that H is invariant by the generators of AM 0,1,p given in (2.3.1). For 1

  5.8. It is easy to see that{Π g i=1 [x i , y i ]Π p k=1 t k , [ t 1 ], [ t 2 ], . . . , [ t p ]} is a (g, p)-surface word set of F g,1,p . Its associated sequence is (x 1 , y 1 , x 1 , y 1 , x 2 ,y 2 , x 2 , y 2 , . . . , x g , y g , x g , y g , t 1 , t 1 , t 2 , t 2 , . . . , t p , t p ). We say that {Π g i=1 [x i , y i ]Π p k=1 t k , [ t 1 ], [ t 2 ], . . . , [ t p ]} is the standard (g, p)-surface word set of F g,1,p .

Acknowledgments

The author is grateful to Warren Dicks and Luis Paris for many interesting conversations.

The research was funded by Conseil Régional de Bourgogne and the MIC (Spain) through Project MTM2008-01550.

Definition 7.1. An element of F g,1,p ∪ ∂F g,1,p is said to be t-squarefree if, in its reduced expression, no two consecutive terms in {t k , t k } 1≤k≤p are equal. Notation 7.2. Recall that if G is a group and g 1 , g 2 , . . . , g k ∈ G, then Π k i=1 g i = g 1 g 2 • • • g k . We use the notation Π i=k 1 g i = g k g k-1 • • • g 1 . In the standard surface word set, we denote

From Remark 6.4, the smallest element of (∂F g,1,p , <) is z ∞ 1 and the largest element of (∂F g,1,p , <) is z ∞ 1 . We denote by min(∂F g,1,p ) = z ∞ 1 and max(∂F g,1,p ) = z ∞ 1 these facts.

Given two ends e, f ∈ ∂F g,1,p , we write [e, f] := {g ∈ ∂F g,1,p | e ≤ g ≤ f}.

Definition 7.3. For every 1 ≤ k ≤ p, let 

By definition, φ fixes

In particular A k 0 contains all non-t k 0 -squarefree ends of F g,1,p and A contains all non-t-squarefree ends of F g,1,p .

Proof. Recall < is the ordering with respect to the sequence

), and we have

, and, moreover,

, and, moreover,

. Suppose (g, p) = (0, 1), (0, 2). Then one of the followings holds in (∂F g,1,p , ≤):

.

Proof. Recall < is the ordering with respect to the sequence

By Lemma 7.5,

Thus, (i) holds.

Case 2. w / ∈ (t p ⋆) ∪ {1}. Since (t p ◭) > (wt k 0 ◭), we see

Thus, (i) holds.

Case 3. w ∈ (t p t p ⋆). Since (t p x 1 ◭) ∪ (t p t 1 ◭) > (wt k 0 ◭), we see

Thus, (i) holds.

Here,

Hence,

To prove (ii) holds, it remains to show that

We can write w = t p u where u / ∈ (t p ⋆). Then t p wt k 0 w = ut k 0 ut p , in normal form. Thus it suffices to show

then one of the following holds in (∂F g,1,p , ≤):

Proof. Recall < is the ordering with respect to the sequence

Let a ∈ {x i 0 , x i 0 , y i 0 , y i 0 }.

Thus, (ii) holds.

Case 2. w / ∈ (a⋆) ∪ {1}.

Thus, (i) holds.

Thus, (ii) holds.

To prove (i) holds, it remains to show that

We can write w = at p u where u / ∈ (t p ⋆). Then awt k 0 w = t p ut k 0 ut p a, in normal form. Thus it suffices to show that

which is clear since t p ut k 0 ut p a does not lie in the submonoid of F g,1,p generated by Π k=p

Thus, (i) holds.

If (at p ◭) < (w ◭), then (at p ◭) < (w ◭) ⊃ (wt k 0 ◭) and

Thus, (ii) holds.

Case 5. w = a. Since a(z ∞ 1 ) = max(at p ◭), (at p ◭) ⊃ (at p y g x g ◭) and (at p y g x g ◭) > (at k 0 at p ◭), we see

Thus, (i) holds.

Proposition 7.8. If (g, p) = (0, 1), (0, 2) then the following hold for each φ ∈ AM g,1,p :

) is a t-squarefree end, (ii). for every 1 ≤ i 0 ≤ g and every a ∈ {x i 0 , x i 0 , y i 0 , y i 0 }, a φ (z ∞ 1 ) is a tsquarefree end.

Proof. (i). By Lemma 7.4, A is AM g,1,p -invariant. By Lemma 7.6, t p (z ∞ 1 ) / ∈ A. By Lemma 7.5, A contains all non-t-squarefree ends of ∂F g,1,p . Thus,

)) φ is a t-squarefree end of F g,1,p . (ii). By Lemma 7.4, A is AM g,1,p -invariant. By Lemma 7.7, a(z ∞ 1 ) / ∈ A. By Lemma 7.5, A contains all non-t-squarefree ends of ∂F g,1,p . Thus, a φ (z

Proof. (of Theorem 4.

2) The case (g, p) = (0, 1) is clear since AM 0,1,1 = 1. Recall (2.3.1). AM 0,1,2 = σ 1 , and

) is a t-squarefree end. Hence, either a φ is t-squarefree or a φ = ut k t k v in normal form, and t k v is canceled in a φ (z ∞ 1 ) = ut k t k v(z ∞ 1 ); moreover ut k , t k v are t-squarefree. By Proposition 7.8(ii), a φ (z ∞ 1 ) = a φ ((Π k=p 1 t k Π i=g 1 [y i , x i ]) ∞ ) is a t-squarefree end. Hence, a φ = vt k t k u.