Hypocoercivity for linear kinetic equations conserving mass - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2015

Hypocoercivity for linear kinetic equations conserving mass

Résumé

We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models like the linear Boltzmann equation or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed.
Fichier principal
Vignette du fichier
DMS-I-20.pdf (282.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00482286 , version 1 (10-05-2010)

Identifiants

Citer

Jean Dolbeault, Clément Mouhot, Christian Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society, 2015, 367, pp.3807-3828. ⟨10.1090/S0002-9947-2015-06012-7⟩. ⟨hal-00482286⟩
601 Consultations
336 Téléchargements

Altmetric

Partager

More