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Abstract. We develop a new method for proving hypocoercivity for a large
class of linear kinetic equations with only one conservation law. Local mass
conservation is assumed at the level of the collision kernel, while transport in-
volves a confining potential, so that the solution relaxes towards a unique equi-
librium state. Our goal is to evaluate in an appropriately weighted L

2 norm
the exponential rate of convergence to the equilibrium. The method covers
various models, ranging from diffusive kinetic equations like Vlasov-Fokker-
Planck equations, to scattering models like the linear Boltzmann equation or
models with time relaxation collision kernels corresponding to polytropic Gibbs
equilibria, including the case of the linear Boltzmann model. In this last case
and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear
growth of the potential is allowed.

1. Method, result and consequences

1.1. Linear kinetic equations and hypocoercivity. We consider linear kinetic
equations which can be written as

(1.1) ∂tf + T f = L f , f = f(t, x, v) , (t, x, v) ∈ R
+ × R

d × R
d,

and describe the evolution of a distribution function f . The transport operator

T := v · ∇x −∇xV · ∇v

has characteristics given on the phase space R
d×R

d by the flow of the Hamiltonian

(x, v) 7→ E(x, v) :=
1

2
|v|2 + V (x) .

The external potential V = V (x) is a measurable function on R
d. The collision

operator L is independent of time t and acts as a multiplicator in the position

variable x. The variable v is the velocity.
We shall consider steady states which are in the intersection of the null spaces

of T and L simultaneously. We shall assume that there exists a nonnegative energy
profile function Γ such that, for each fixed value of x, the nullspace N (L) of L is
spanned by F (x, v) := Γ(E(x, v)), so that

N (L) = {f(x, v) : ∃φ(x) such that f(x, v) = φ(x)F (x, v)} .
Functions in N (L) are local equilibria; they depend on x and t. The function F
is a global equilibrium or global Gibbs state. It is independent of t (stationary)
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and isotropic with respect to v. Consistently, we shall further assume that L has
rotational symmetry in v, i.e. Rv L = LRv for any rotation operator Rv acting on
the velocity space. Under the assumption that the support of F is connected, the
intersection of the null spaces of L an T is generated by F . Assume that F is
integrable and normalized by

∫∫

Rd×Rd

F dv dx = 1 .

We shall refer to this assumption as Assumption (H0) and assume that it holds
throughout the paper, although we shall not specify it explicitly when it is not useful
for the understanding of our arguments. Under such a normalization condition, we
shall prove that F is the unique stationary distribution function. Integrability with
respect to v is an assumption on Γ, whereas integrability with respect to x requires
a Γ-dependent growth of the external potential V . Such a property is a confinement

condition.
The one-dimensionality of N (L) for fixed x suggests the existence of one local

(in x) conservation law. We shall therefore assume the local conservation of mass,

that is ∫

Rd

L f dv = 0 .

Global mass conservation for solutions of (1.1) follows:

d

dt

∫∫

Rd×Rd

f dv dx =

∫∫

Rd×Rd

(L− T) f dv dx = 0 .

For an integrable initial datum

f(t = 0, ·, ·) = fI ,

let M :=
∫∫

Rd×Rd fI dv dx, so that MF is the unique global Gibbs state with
mass M . In this paper we investigate the asymptotic behavior of the semigroup
generated by L − T. Our goal is to quantify its stability or, to be precise, to
determine the rate of convergence of f towards MF as t → ∞. Since the equation
is linear, there is no restriction to study fluctuations around a global equilibrium,
that is solutions f of (1.1) which satisfy

(1.2) M =

∫∫

Rd×Rd

f(t, x, v) dv dx =

∫∫

Rd×Rd

fI(x, v) dv dx = 0 .

Notice that distribution functions are usually nonnegative, but fluctuations around
an equilibrium have to change sign.

Local mass conservation for f and F imply the identity
∫

Rd

L f

(
f

F

)
dv =

∫

Rd

L (f − φF )

(
f − φF

F

)
dv

for any function φ = φ(x), thus showing that the left hand side is, at least formally,
quadratic in the distance between f and the kernel of L. This suggests to introduce
the space L2(dµ) where the measure dµ is defined on the phase space by

dµ = dµ(x, v) :=
dv dx

F (x, v)
, (x, v) ∈ R

d × R
d.
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We shall denote by 〈·, ·〉 the corresponding scalar product and by ‖ · ‖ the asso-
ciated norm, so that 〈f, g〉 =

∫∫
Rd×Rd f g dµ and ‖f‖2 = 〈f, f〉. The orthogonal

projection Π on the set of local equilibria is denoted by

Π f :=
ρf
ρF

F , with ρf :=

∫

Rd

f dv .

We also assume that the collision operator is dissipative in the sense that an ‘H-

theorem’ holds, i.e. 〈L f, f〉 ≤ 0. Since the transport operator T is skew symmetric
with respect to 〈·, ·〉, this implies the entropy inequality

1

2

d

dt
‖f‖2 = 〈L f, f〉 ≤ 0 .

Under the normalization condition (1.2), if the entropy dissipation −〈L f, f〉 was
coercive with respect to the norm ‖ · ‖, exponential decay to zero as t → ∞ would
follow. However such a coercivity property cannot hold since L vanishes on the set
of local equilibria. Instead we shall assume that microscopic coercivity holds, i.e.
there exists a positive constant λm, such that

−〈L f, f〉 ≥ λm ‖(1−Π) f‖2 for all f ∈ L2(dµ) .

The key tool of our method is a modified entropy functional H[f ], whose square
root is a norm equivalent to ‖ · ‖, such that

d

dt
H[f ] ≤ −λH[f ] ,

for an explicitly computable positive constant λ. As a consequence, we find an
estimate of the exponential decay rate of the semigroup. Following the vocabulary
used in [33, 20, 26], such a strategy will be called hypocoercivity.

In some cases, the existence of a spectral gap can be obtained by non-constructive
compactness methods, see for instance [32] in the case of the linearized Boltzmann
equation on the torus. For a non-positive closed operator U with a spectral gap
λ > 0, it is well-known, see [27], that there exists a norm equivalent to the ambiant
norm, for which the semigroup of U+λ is contractive. However this method is not
constructive regarding the norm of contractivity and gives no estimate on λ. In
our approach, under assumptions specifically adapted to kinetic theory, we are able
to construct an explicit Hilbert norm which is equivalent to the standard norm of
L2(dµ) and to estimate λ.

Various results related to hypocoercivity have recently appeared, on large time
estimates: [13, 5, 8, 9]; based on hypoellipticity: [21, 19, 22]; on hypocoerciv-
ity itself: [33, 20, 26]; on applications of the so-called kinetic-fluid decomposition:
[15, 14, 16, 17, 18, 29, 30, 31]; on hyperbolic estimates based on micro-macro de-
compositions: [23, 24, 25, 34]. Some of the results of this paper, namely Theorems 9
and 14, have been announced in [11] without complete proofs.

Our purpose is to establish, in a simplified framework, sufficient conditions for
proving hypocoercivity for a large class of linear kinetic models confined by an
external potential, without assuming regularity on the initial datum and valid for

hypoelliptic kinetic Fokker-Planck equations as well as singularity preserving col-

lisional kinetic equations. This is the main difference with hypoelliptic methods.
The method also makes use of a micro-macro decomposition. Accordingly we shall
split our assumptions into two main requirements: microscopic coercivity as intro-
duced above, and a macroscopic coercivity assumption, which is a spectral gap-like
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inequality for the operator obtained when taking an appropriate macroscopic dif-
fusion limit that we shall now describe.

1.2. Formal macroscopic limit. As a motivation for the macroscopic coercivity

assumption, we recall, at a formal level, the macroscopic diffusion limit procedure,
which can be seen as intermediate asymptotics governing the long time behaviour
of solutions. On a large time scale, it heuristically models how local equilibria
relax towards the global Gibbs state. Since the macroscopic flux of the equilibrium
distribution vanishes, i.e.

∫
Rd v F dv = 0, the appropriate macroscopic rescaling of

the solution of (1.1) is given by

f ε(t, x, v) = f(ε2 t, ε x, v) , 0 < ε ≪ 1 ,

which is known as the parabolic rescaling. Assuming that the potential V is rescaled
accordingly, we obtain the singular limit problem

ε2 ∂tf
ε + εT f ε = L f ε ,

as ε → 0. The assumption limε→0 f
ε = f0 leads to L f0 = 0 and, thus, f0 = Π f0.

The identities Π L = LΠ = ΠTΠ = 0 imply the relations

ε ∂tf
ε + T f ε = LRε , ∂tΠ f ε +ΠTRε = 0 ,

with Rε := 1
ε (1−Π) f ε. Assuming formally that limε→0 R

ε = R0, the first equation

can be solved for ε = 0 with respect to R0, giving

R0 = JT f0 = JTΠ f0 ,

where J denotes the inverse of the restriction of L to the orthogonal complement of
its null space. Note that the inhomogeneity TΠ f0 satisfies the solvability condition
ΠTΠ f0 = 0. The second equation becomes

(1.3) ∂t Π f0 = (TΠ)∗J (TΠ) f0 ,

where the superscript ∗ denotes the adjoint operator with respect to 〈·, ·〉, and the
skew symmetry of T has been used. A straightforward computation shows that this
is equivalent to a drift-diffusion equation for the macroscopic density ρ0 = ρf0 :

(1.4) ∂tρ
0 = ∇x ·

[
ρF σ∇x

(
ρ0

ρF

)]
= ∇x ·

[
∇x(σ ρ0) + γ ρ0 ∇xV

]
.

Here σ is scalar due to the rotational symmetry of L,

ρF σ = −1

d

∫

Rd

v · J (v F ) dv and γ∇xV = − 1

ρF
∇x(ρF σ) .

The operator J being negative definite on (1− Π)L2(dµ), σ(x) > 0 for all x ∈ R
d.

In the two following important cases, the macroscopic transport coefficients γ and σ
have particularly simple expressions.

Case (C1). When Γ(s) = e−s, the global Gibbs state is a Maxwellian, or Gaussian
function, which factorizes as

F (x, v) = ρF (x)M(v) , with ρF =
e−V

∫
Rd e−V dx

and M(v) =
e−|v|2/2

(2 π)d/2
.

Notice that the separation of position and velocity variables is a characteristic
property of Maxwellian functions. Both coefficients γ and σ are constant, equal to
1
d

∫
Rd v · J (vM) dv and ρ0 solves the Fokker-Planck equation

∂tρ
0 = σ∇x ·

(
∇xρ

0 + ρ0 ∇xV
)
.
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Case (C2). The collision operator L is, for fixed x, a time-relaxation operator

onto span{F}, i.e.,
L = Π− 1 .

In this case J = −Id holds, so that

ρF σ = mF :=
1

d

∫

Rd

|v|2 F dv ,

and, since ∇x(ρF σ) = − ρF ∇xV because

1

d

∫

Rd

|v|2 Γ′(E(x, v)) dv =
1

d

∫

Rd

v · ∇vF dv = − ρF ,

the macroscopic limit equation reads

∂tρ
0 = ∇x ·

(
∇x(σ ρ0) + ρ0 ∇xV

)
.

The intersection of both cases, (C1) and (C2) i.e., L = Π− 1 with Π f = ρf M,
gives σ = γ = 1. This is the linear BGK case, which has been considered in [11].
In both cases, (1.3) can be rewritten as

∂tΠ f0 = − σ0 (TΠ)∗(TΠ) f0

for some positive constant σ0, with σ0 ≡ σ in Case (C1) and σ0 = 1 in Case (C2).
With Assumption (1.2) on the initial data, we expect decay to zero of the solution.
Under a macroscopic coercivity assumption, namely (H2) (see below), which is
equivalent to a Poincaré inequality (see Lemma 1.8),the decay of Π f0 is exponential.

1.3. Method and main result in an abstract setting. We start with the basic
assumption that L and T are closed linear operators on an Hilbert spaceH, such that
L− T generates the strongly continuous semigroup e(L−T) t on H. The orthogonal
projection on the null space N (L) of L is denoted by Π and D(L) is the domain
of L. We assume that the restriction of L to N (L)⊥ is coercive. More precisely, our
first assumption is:

Assumption (H1) (microscopic coercivity): The operator L is symmetric and

there exists λm > 0 such that

−〈L f, f〉 ≥ λm ‖(I −Π) f‖2 for all f ∈ D(L) .

Motivated by the results of Section 1.2, coercivity of the transport operator is
required, when acting on N (L):

Assumption (H2) (macroscopic coercivity): The operator T is skew symmetric

and there exists λM > 0 such that

‖TΠ f‖2 ≥ λM ‖Π f‖2 for all f ∈ H such that Π f ∈ D(T) .

Inspired by [20], we introduce the modified entropy

H[f ] :=
1

2
‖f‖2 + ε 〈A f, f〉 , with A :=

(
1 + (TΠ)∗(TΠ)

)−1
(TΠ)∗ .

The constant ε > 0 will be chosen below. A straightforward computation for a
solution f of (1.1), now considered as an abstract ODE, gives

d

dt
H[f ] = −D[f ]
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where the dissipation of entropy functional is given by

D[f ] := −〈L f, f〉+ ε 〈ATΠ f, f〉+ ε 〈AT (1−Π) f, f〉 − ε 〈TA f, f〉 − ε 〈AL f, f〉 .
By (H1), (H2), and by ATΠ = (1 + (TΠ)∗(TΠ))−1(TΠ)∗(TΠ), the sum of the
first two terms in D[f ] is coercive:

−〈L f, f〉+ ε 〈ATΠ f, f〉 ≥ min
{
λm,

ε λM

1 + λM

}
‖f‖2

For the completion of our program, we need to show that H[f ] is equivalent to ‖f‖2
and to control the last three terms of D[f ]. Part of this can be carried out at the
abstract level under the following additional assumption:

Assumption (H3):
ΠTΠ = 0 .

Lemma 1. Let Assumptions (H1)–(H3) hold. Then the operators A and TA are

bounded, and for all f ∈ H,

(1.5) ‖A f‖ ≤ 1

2
‖(1−Π) f‖ and ‖TA f‖ ≤ ‖(1−Π) f‖ .

Proof. The equation A f = g is equivalent to

(TΠ)∗f = g + (TΠ)∗(TΠ) g .

Writing this as g = ΠT
2 Π g − ΠT f proves A = ΠA and, thus, TAf = TΠ g.

Taking the scalar product of the above equality with g and using (H3), we get

‖g‖2 + ‖TΠ g‖2 = 〈f,TΠ g〉 = 〈(1 −Π) f,TΠ g〉

≤ ‖(1−Π) f‖ ‖TΠ g‖ ≤ 1

4
‖(1−Π) f‖2 + ‖TΠ g‖2 ,

which completes the proof. �

The boundedness of the remaining terms in D[f ] has to be proven case by case.
We shall therefore assume it in the abstract setting.

Assumption (H4) (Boundedness of auxiliary operators): The operators AT (1−
Π) and AL are bounded, and there exists a constant CM > 0 such that, for all f ∈ H,

‖AT (1−Π) f‖+ ‖AL f‖ ≤ CM ‖(1−Π) f‖ .

Theorem 2. Let Assumptions (H1)–(H4) hold. Then there exist positive con-

stants λ and C, which are explicitly computable in terms of λm, λM , and CM , such

that, for any initial datum fI ∈ H,
∥∥et (L−T)fI

∥∥ ≤ C e−λ t ‖fI‖ , ∀ t ≥ 0 .

Proof. The first inequality in (1.5) implies

(1.6)
1

2
(1− ε) ‖f‖2 ≤ H[f ] ≤ 1

2
(1 + ε) ‖f‖2 .

For any ε ∈ (0, 1), H[f ] is equivalent to ‖f‖2. The second inequality in (1.5) and
(H1)–(H4) imply

D[f ] ≥ λm ‖(1−Π) f‖2 + ε λM

1+λM

‖Π f‖2 − ε (1 + CM ) ‖(1−Π) f‖ ‖f‖

≥
[
λm − ε (1 + CM )(1 + 1

2 δ )
]
‖(1−Π) f‖2 + ε

[
λM

1+λM
− (1 + CM ) δ2

]
‖Π f‖2
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for an arbitrary positive δ. By choosing first δ and then ε small enough, a positive
constant κ can be found, such that D[f ] ≥ κ ‖f‖2. Using (1.6), this implies

d

dt
H[f ] ≤ − 2 κ

1 + ε
H[f ] ,

for f = et (L−T)fI , completing the proof with λ = κ/(1 + ε) and C =
√

1+ε
1−ε . �

Let us conclude this abstract approach by some comments. First of all, our proof
is constructive: H is an explicit Lyapunov functional and λ can be computed. The
work of F. Hérau has been a crucial source of inspiration for our method. In [20], he
deals with the linear time relaxation collision kernel corresponding to Maxwellian
Gibbs states, in case of a confining potential V growing at most quadratically
at infinity and such that the associated Witten Laplacian satisfies a spectral gap
inequality. In our approach, we are able to relax some of these assumptions. See
Theorem 9.

Our results apply to various Fokker-Planck and Boltzmann models. We shall
compare applications of Theorem 2 to previous results in Section 3. Only [26] and
[33] deal with abstract results like the ones of Theorem 2. Ours are more general
than the ones of [26] since we deal with a general confining potential. In [26], the
problem is indeed set on a torus, a setting to which our method can be adapted
without any difficulty. It is also more general than in [33] since we deal not only
with Fokker-Planck type operators, or operators in Hörmander form in the words
of [33], but also with non-local integral collision operators, like in [26]. Last but
not least, our results are also stronger than those in [26] and [33] in the sense
that we construct a zeroth order norm of hypocoercivity, which is equivalent to
L2 and not Hk, for some k ≥ 1. However, our results are weaker than those in
[26] at least in one aspect: we only deal with models with 1-dimensional space of
collision invariants, whereas, in [26], any finite dimension is allowed. In principle,
our approach can be extended to such a situation, which is the purpose of a current
research project [12].

1.4. Hypocoercivity for a toy problem. To illustrate the fact that our formal
setting applies to other models than the kinetic equations of Section 1.1, we intro-
duce the following toy model, which captures very well the essential features of our
hypocoercive approach. We consider a one-dimensional Cattaneo model introduced
in [6], which can be written as a kinetic model with only two velocities v = ±1, and
where L describes a switching process between the two velocities without preference
for one of them. As a further simplification we replace the confining potential by
a periodicity assumption, where x varies in a one-dimensional torus. The model
equations are

∂tf
± ± ∂xf

± = ± 1

2
(f− − f+) ,

for the distributions f±(t, x) of right- and left-moving particles, periodic in x with
period 2 π.

The interest of such a model is that it gives an application of our hypocoercivity
method in a discrete setting, or even for a finite dimensional ODE version of it,
if we truncate the Fourier sum in the x variable and keep only a finite number of
terms.
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Initial value problems can be solved explicitly by Fourier decomposition. Intro-
ducing the total density ρ = f++ f−, the total flux j = f+− f−, and their Fourier
representations

ρ(t, x) =
∑

k∈Z

ρk(t) e
ikx , j(t, x) =

∑

k∈Z

jk(t) e
ikx ,

leads to real ODE systems for Uk =
(
uk

vk

)
:=

(Re(ρk)
Im(jk)

)
and Ũk :=

(Im(ρk)
Re(jk)

)
:

(1.7)
dUk

dt
+ Tk Uk = LUk ,

where the skew symmetric matrix Tk :=
(
0 −k
k 0

)
represents the transport operator,

L :=
(
0 0
0 −1

)
represents the collision operator acting only on the microscopic com-

ponent j, and Ũk solves an analogous system with Tk replaced by −Tk. Eq. (1.7)
is linear, and it is elementary to check that the eigenvalues of L − T are given by
λ0,± := 0,−1 and λk,± := (−1 ± i

√
4 k2 − 1)/2 if k 6= 0. All solutions converge

to an eigenstate of the zero eigenvalue: U0 = (ρ0, 0) and Uk = 0 for k 6= 0. The
convergence is exponential with its speed determined by the spectral gap 1/2.

For k 6= 0, we can compute the entropy dissipation as

d

dt

(
1
2 |Uk(t)|2

)
= −|vk(t)|2 ,

so that it is clear that no exponential decay directly follows, since the right hand
side is not coercive and there is an unbounded increasing sequence (tn)n∈N such
that vk(tn) = 0. Note that microscopic coercivity holds with λm = 1.

With Π = ( 1 0
0 0 ) and J = −Id, we find that (TΠ)∗J (TΠ) =

(
−k2 0
0 0

)
, thus giving

for the macroscopic diffusion limit du0
k/dt = −k2u0

k, and showing also that macro-
scopic coercivity holds with λM = 1. According to the strategy of the Section 1.3,
for k 6= 0 we introduce the modified entropies

Hk(t) =
1
2 |Uk(t)|2 + ε

k

1 + k2
uk(t) vk(t) , t ≥ 0 .

Observing that, for k ≥ 1,

1
2

(
1− ε k

1+k2

)
|Uk|2 ≤ 1

2

(
1− ε k

1+k2

)
|Uk|2 + ε

2
k

1+k2 |uk + vk|2 = Hk ,

Hk = 1
2

(
1 + ε k

1+k2

)
|Uk|2 − ε

2

k

1 + k2
|uk − vk|2 ≤ 1

2

(
1 + ε k

1+k2

)
|Uk|2 ,

using supk≥1
k

1+k2 = 1
2 ≤ 1, and performing a similar computation for k ≤ −1, we

finally get

1
2 (1− ε) |Uk|2 ≤ Hk ≤ 1

2 (1 + ε) |Uk|2.

Hence, for any ε ∈ (0, 1), Hk(t) decays exponentially if and only if |Uk(t)|2 decays
exponentially as well. Obviously, we have

1

2
≤ k2

1 + k2
≤ 1 ,
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which makes it easy to compare Hk with d
dt Hk, given by

d

dt
Hk = −ε

k2

1 + k2
u2
k −

(
1− ε

k2

1 + k2

)
v2k − ε

k

1 + k2
uk vk

≤ −ε

2
u2
k − (1− ε) v2k +

ε

2
|uk| |vk| ≤ −ε

2
(1− λ2)u2

k −
(
1− ε− ε

8 λ2

)
v2k

for any λ ∈ (0, 1). If ε ∈
(
0, 8λ2

8 λ2+1

)
, the coercivity constant

κ := min
{

ε
2 (1− λ2), 1− ε− ε

8λ2

}

is positive and
d

dt
Hk ≤ −κ |Uk|2 ≤ − 2 κ

1 + ε
Hk .

This implies |Uk(t)| decays like e−κ t/(1+ε). We may observe that

κ

1 + ε
<

min{ ε
2 , 1− ε}
1 + ε

≤ 1

5
,

thus showing that the method is not optimal, in the sense that it does not give the
exact decay rate, 1/2, even when refining the above estimates and computing κ for
each k.

1.5. Application to kinetic equations. Let us apply the abstract procedure of
Section 1.3 to the setting of Section 1.1. Thus, we set

T f = v · ∇xf −∇xV · ∇vf , Π f = ρf
F

ρF
,

where the potential V is given as well as the energy profile Γ. We recall that the
unique global equilibrium is F (x, v) = Γ(|v2|/2 + V (x)), x, v ∈ R

d. For such an
equilibrium distribution, define the velocity moments up to the fourth order by

ρF :=

∫

Rd

F dv , mF :=
1

d

∫

Rd

|v|2F dv , MF :=

∫

Rd

|v|4F dv

and assume that they are measurable functions of x. We consider the Hilbert space
H = {f ∈ L2(dµ) :

∫∫
Rd×Rd f dv dx = 0}, with dµ(x, v) = dx dv/F (x, v). The

collision operator L remains unspecified at the moment, so that we shall defer the
discussion of the microscopic coercivity for a while. A simple computation with
u = ρf/ρF shows that the macroscopic coercivity assumption is equivalent to a
weighted Poincaré inequality:

Lemma 3. Assumption (H2) holds if and only if

(1.8)

∫

Rd

|∇xu|2 mF dx ≥ λM

∫

Rd

u2 ρF dx

for any u ∈ L2(ρF dx) with ∇xu ∈ L2(mF dx) such that
∫
Rd u ρF dx = 0.

In case of kinetic equations, Assumption (H3) is a consequence of the compu-
tation

TΠ f = F v · ∇xuf ,

with uf := ρf/ρF , and of the observation that the right hand side is an odd
function of v, whose mean value is zero. In other words: The macroscopic flux of
the equilibrium distributions vanishes.
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Concerning the Assumption (H4), we remark that boundedness of AL is pos-
sible even for unbounded collision operators L (see Section 2). The boundedness
assumption on AT (1−Π) can be interpreted as an elliptic regularity result for:

(1.9) u− 1

ρF
∇x · (mF ∇xu) = w .

Lemma 4. If there exists a positive constant C such that

(1.10) ‖∇2
xu‖L2(MF dx) ≤ C ‖w‖L2(ρF dx)

for any w ∈ L2(ρF dx) and for any solution u ∈ L2(ρF dx) with ∇xu ∈ L2(mF dx),
then the operator AT (1−Π) is bounded on H.

Proof. The operator AT (1−Π) is bounded if and only if its adjoint

[AT (1−Π)]∗ = −(1−Π)T2 Π [1 + (TΠ)∗(TΠ)]−1

is bounded. If g = [1 + (TΠ)∗(TΠ)]−1f , then

[AT (1−Π)]∗f = −(1−Π)T2 Π g with g + (TΠ)∗(TΠ) g = f ,

where the latter implies (1.9) for u = ug = ρg/ρF and w = uf = ρf/ρF . Then

T
2Π g = F v · ∇x(v · ∇xu) + F ∇xV · ∇xu

results in

[AT (1−Π) ]∗f = −(1−Π) [F v · ∇x(v · ∇xu)] .

This implies that for some positive constant C, we have

‖[AT (1−Π)]∗f‖ ≤ ‖F v · ∇x(v · ∇xu)‖ ≤ c ‖∇2
xu‖L2(MF dx) ,

which completes the proof using ‖uf‖L2(ρF dx) = ‖Π f‖. �

2. A framework for the elliptic regularity estimate

Our goal is to give conditions on V which are sufficient to establish the existence
of a positive constant C as in Lemma 4. In the applications considered below, the
combination of weights MF ρF /m

2
F is constant. This motivates the notations

w2
0 := ρF , w2

i :=
(
mF

ρF

)i
w2

0 with i = 1, 2 , ‖u‖i := ‖uwi‖L2(Rd) .

With ρ = uρF , the Poincaré inequality in (H3) can then be rewritten as

(2.1) ‖∇xu‖21 ≥ λM ‖u‖20
under the zero average condition

∫
Rd u ρF dx = 0, and the desired estimate (1.10) is

(2.2) ‖∇2
xu‖2 ≤ C ‖uf‖0

for the solution of

(2.3) w2
0 u−∇x · (w2

1 ∇xu) = w2
0 uf .

Roughly speaking we just have to prove (L2 → H2)-regularization for a second
order elliptic equation. However, different norms have to be taken into account.
The result can only be shown under certain assumptions on the weights, which will
later be translated into assumptions on the confining potential:

(2.4) ∃ c1 > 0 , c2 ∈ [0, 1) such that − w2
1 ∆x(logw1) ≤ c1 w

2
0 + c2 |∇xw1|2 ,
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(2.5)

∃ c3 > 0 such that
w1

w0
|∇x W | ≤ c3

(
1 +

|∇xw1|
w0

)
with W :=

√
1 +

∣∣∣
∇xw1

w0

∣∣∣
2

,

(2.6) ∃ c4 > 0 such that

∣∣∣∣∇x

(w1

w0

)∣∣∣∣ ≤ c4
|∇xw1|
w0

,

(2.7) ‖W‖20 =
∫

Rd

W 2 ρF dx < ∞ .

Note that a condition on the third weight function w2 could be deduced from (2.4)-
(2.5)-(2.6) since any two of the weight functions determine the last one. The goal
of this section is to prove the following H2-regularity estimate.

Proposition 5. Let (2.1), (2.4), (2.5), (2.6), and (2.7) hold. Then the solution u
of (2.3) satisfies (2.2).

By Lemma 4, this shows that the operator AT (1−Π) is bounded.

2.1. Improved Poincaré inequalities. We start with an improvement of the
Poincaré inequality (2.1).

Lemma 6. Let (2.1) and (2.4) hold. There exists κ > 0 such that

(2.8) ‖∇xu‖21 ≥ κ
∥∥∥u

∇xw1

w0

∥∥∥
2

0
for any u ∈ L2(ρF dx) with

∫

Rd

u ρF dx = 0 .

Proof. With the identity w1∇xu = ∇x(w1 u)− u∇xw1, the inequality

‖∇xu‖21 ≥
∫

Rd

u2 |∇xw1|2 dx− 2

∫

Rd

u∇xw1 · ∇x(uw1) dx

=
∥∥∥u

∇xw1

w0

∥∥∥
2

0
+

∫

Rd

u2w2
1 ∆x(logw1) dx

is easily derived. Now (2.1) and (2.4) imply

‖∇xu‖21 ≥ (1− c2)
∥∥∥u

∇xw1

w0

∥∥∥
2

0
− c1

λM
‖∇xu‖21 .

This completes the proof with κ = λM (1− c2)/(λM + c1). �

Lemma 7. Let (2.1), (2.4), (2.5) and (2.7) hold. There exists κ′ > 0 such that

‖W ∇xu‖21 ≥ κ′
∥∥∥W u

∇xw1

w0

∥∥∥
2

0
for any u ∈ L2(ρF dx) with

∫

Rd

u ρF dx = 0 .

Proof. We apply (2.8) with u replaced by (uW − u) with u :=
∫
Rd uW ρF dx. We

recall that
∫
Rd ρF dx =

∫∫
Rd×Rd F dv dx = 1. We thus obtain

κ
∥∥(uW − u)W

∥∥2
0
≤ ‖∇x(W u)‖21 .

By expanding the left hand side, we get

κ ‖W 2 u‖20 ≤ ‖∇x(W u)‖21 + 2 κ

∫

Rd

W 3 uw2
0 dx ‖W‖0 ‖u‖0 .

Using ∫

Rd

W 2 uW ρF dx ≤ 1

2 a
‖W 2 u‖20 +

a

2
‖W‖20
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with a := 2 ‖W‖0 ‖u‖0, we obtain

2 κ

∫

Rd

W 3 uw2
0 dx ‖W‖0 ‖u‖0 ≤ κ a

(
1

2 a
‖W 2 u‖20 +

a

2
‖W‖20

)

=
κ

2
‖W 2 u‖20 + 2 κ ‖W‖40 ‖u‖20 .

On the other hand, we can also expand the square in ‖∇x(W u)‖21
‖∇x(W u)‖21 ≤ 2 ‖W ∇xu‖21 + 2

∥∥∥u∇xW
w1

w0

∥∥∥
2

0
,

and by (2.5), get
∥∥∥u∇xW

w1

w0

∥∥∥
2

0
≤ c23

∥∥∥u
(
1 + |∇xw1|

w0

)∥∥∥
2

0
≤ 2 c23 ‖W u‖20 .

Collecting all terms, we finally end up with

κ ‖W 2 u‖20 ≤ 2 ‖W ∇xu‖21 + 4 c23 ‖W u‖20 +
κ

2
‖W 2 u‖20 + 2 κ ‖W‖40 ‖u‖20 .

which, using (2.1), (2.8) and W ≥ 1 establishes the inequality:

κ

2
‖W 2 u‖20 ≤

(
2 + 4

c23
κ

+ 2
κ

λM
‖W‖40

)
‖W ∇xu‖21 .

�

2.2. The regularity estimate. Now we start working on Equation (2.3). The
standard energy estimate gives

(2.9) ‖u‖20 + ‖∇xu‖21 ≤ ‖uf‖20 .
With W =

√
1 + |∇xw1|2/w2

0 , Lemma 6 leads to the improved L2-estimate

‖uW‖0 ≤
1

κ
‖uf‖0 .

Lemma 6 can also be used to get an improved H1-estimate.

Lemma 8. Let (2.1), (2.4), (2.5) and (2.7) hold. Then any solution of (2.3) such
that

∫
Rd u ρF dx = 0 satisfies

‖W ∇xu‖1 ≤ C ‖uf‖0 .
Proof. Multiplication of (2.3) by uW 2 and integration gives

(2.10) ‖uW‖20 + ‖W ∇xu‖21 ≤ ‖uW 2‖0 ‖uf‖0 −
∫

Rd

w2
1 u∇xu · ∇x(W

2) dx .

Since W 2 ≤ 1 +W |∇xw1|/w0, (2.1) and Lemma 7 imply

(2.11) ‖uW 2‖20 ≤ 2 (1/λM + 1/κ′) ‖W ∇xu‖21 .
The integrand in the last term above can be estimated by

w0 |u|w1 |∇xu|
2w1 W |∇xW |

w0
≤ 2

√
2 c3 w0 |u|w1 |∇xu|W 2

with the help of (2.5), so that the integral is bounded by

2
√
2 c3 ‖uW‖0 ‖W ∇xu‖1 ≤ 2

√
2
c3
κ

‖uf‖0 ‖W ∇xu‖1 .
Combining our results gives

‖W ∇xu‖21 ≤ C ‖uf‖0 ‖W ∇xu‖1
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with C =
√
2 (1/λM + 1/κ′) + 2

√
2 c3

κ , thus completing the proof. �

Proof of Proposition 5. We follow the standard procedure for provingH2-regularity
of the solutions of second order elliptic equations with L2 right hand sides: mul-
tiply (2.3) with ∇x · (∇xuw

2
1/w

2
0), and integrate by parts twice. We also use the

consequence w2 = w2
1/w0 of the relations between the weights:

‖∇2
xu‖22 =

∫

Rd

w0 (u− uf)w2 ∆xu dx+

∫

Rd

w2
0 (u− uf)∇xu · ∇x

(
w2

1

w2
0

)
dx

−
∫

Rd

w2
1 ∇xu∇2

xu∇x

(
w2

1

w2
0

)
dx−

∫

Rd

w2
1

w2
0

∇xu∇2
xu∇x(w

2
1) dx

−
∫

Rd

[
∇xu · ∇x

(
w2

1

w2
0

)] [
∇xu · ∇x

(
w2

1

)]
dx

= I1 + I2 + I3 + I4 + I5 .

The first integral is easily estimated:

|I1| ≤
(
‖u‖0 + ‖uf‖0

)
‖∇2

xu‖2 ≤ 2 ‖uf‖0 ‖∇2
xu‖2 ,

by (2.9). For the second integral we use (2.6) and Lemma 8:

|I2| ≤ 2 c4

∫

Rd

w0 (u− uf )w1 |∇xu|
|∇xw1|
w0

dx

≤ 2 c4 ‖u− uf‖0 ‖W ∇xu‖1 ≤ 4 c4 C ‖uf‖20 .
With the third, fourth and fifth integrals we proceed similarly:

|I3| ≤ 2 c4

∫

Rd

w1 |∇xu|w2 |∇2
xu|

|∇xw1|
w0

dx

≤ 2 c4 ‖W ∇xu‖1 ‖∇2
xu‖2 ≤ 2 c4 C ‖uf‖0 ‖∇2

xu‖2 ,

|I4| ≤ 2

∫

Rd

w1 |∇xu|w2 |∇2
xu|

|∇xw1|
w0

dx ≤ 2 c4 C ‖uf‖0 ‖∇2
xu‖2 ,

|I5| ≤ 4

∫

Rd

w2
1 |∇xu|2

∣∣∇x

(w1

w0

)∣∣ |∇xw1|
w0

dx

≤ 4 c4

∫

Rd

w2
1 |∇xu|2

|∇xw1|2
w2

0

dx ≤ 4 c4 ‖W ∇xu‖21 ≤ 4 c4 C ‖uf‖20 .

The combination of our results gives

‖∇2
xu‖22 ≤ K ‖uf‖0

(
‖uf‖0 + ‖∇2

xu‖2
)

for some explicit constant K > 0, which completes the proof. �

3. Maxwellian equilibria

When the local equilibrium is a Maxwellian distribution, the global equilibrium
has the form

(3.1) F (x, v) = ρF (V (x))M(v) , with ρF (V ) = e−V and M(v) =
e−|v|2/2

(2 π)d/2
.

In this framework, Assumption (H0) is a consequence of

Assumption (H0.1) The external potential V ∈ C2(Rd) is such that e−V ∈
L1(dx).
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As far as the macroscopic coercivity condition (H2) and the boundedness of
AT (1 − Π), i.e. the first part of (H4), are concerned, no further details of the
collision operator are required. Consider first the issue of equivalent conditions for
(H2).

With w := ρ eV/2 the macroscopic coercivity condition (1.8) is equivalent to
∫

Rd

[
|∇xw|2 +

(
1
4 |∇xV |2 − 1

2 ∆V
)
w2

]
dx ≥ λM

∫

Rd

w2 dx ,

under the orthogonality condition
∫
Rd w e−V/2 dx = 0. The first eigenvalue of the

Schrödinger operatorH := −∆+ 1
4 |∇xV |2− 1

2 ∆V is zero. It is non-degenerate, and

the corresponding eigenfunction is w = e−V/2. According to [28], Inequality (1.8)
holds if and only if the lower end of the continuous spectrum of H is positive, that is

Assumption (H2.1) lim inf |x|→∞

(
|∇xV |2 − 2∆V

)
> 0.

As a consequence, macroscopic coercivity holds if ∆V is negligible compared
to |∇xV |2 as |x| → ∞, and if lim inf |x|→∞ |∇xV | > 0. An example of such a

potential is V (x) = (1 + |x|2)β for some β ≥ 1/2. See for instance [33, A.19.
Some criteria for Poincaré inequalities, page. 137] for an elementary proof if
lim|x|→∞

(
|∇xV |2 − 2∆V

)
= ∞, and [1] for some recent considerations on Poincaré

inequalities when e−V is a probability measure.
Since all three weights ρF , mF , and MF are constant multiples of e−V , the

framework of Section 2 can be used for the boundedness of AT (1−Π). Assumptions
(2.4), (2.5) are satisfied if

Assumption (H4.1) There exist constants c1 > 0, c2 ∈ [0, 1), and c3 > 0, such
that

∆xV ≤ c1 +
c2
2
|∇xV |2 , |∇2

xV | ≤ c3 (1 + |∇xV |) .
Assumption (2.6) holds trivially (since w1/w0 = const), and (2.7) can be trans-
lated to ∫

Rd

|∇xV |2e−V dx < ∞ ,

which follows from (H0.1) and (H4.1) by
∫

Rd

|∇xV |2e−V dx = −
∫

Rd

∇xV · ∇xe
−V dx =

∫

Rd

∆xV e−V dx

≤ c1

∫

Rd

e−V dx+
c2
2

∫

Rd

|∇xV |2e−V dx .

3.1. BGK operator. For the BGK collision operator

L = Π− 1 ,

the microscopic coercivity condition (H1) is trivially satisfied with λm = 1, and,
since L is bounded (by 1), the boundedness of AL follows from Lemma 1.

Theorem 9. Let L = Π− 1, and let the external potential satisfy (H0.1), (H2.1),
and (H4.1). Then solutions of (1.1) with initial data in L2(dµ) decay exponentially

to the global equilibrium given by (3.1).

This result is an improvement upon the work of Hérau [20], since the require-
ments for the external potential are weaker. In particular, Hérau’s result requires
potentials with at most quadratic growth at infinity, whereas an arbitrary super-
linear growth is permitted by (H2.1), (H4.1).
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3.2. Fokker-Planck operator. For the Fokker-Planck collision operator

L f = ∇v · (∇vf + v f) ,

the microscopic coercivity condition (H1) is equivalent to the Poincaré inequality
for the Gaussian measure M(v) dv, which satisfies

−〈L f, f〉 =

∫

Rd

eV
∫

Rd

M

∣∣∣∇v
(1−Π) f

M

∣∣∣
2

dv dx

≥ λm

∫

Rd

eV
∫

Rd

M

∣∣∣ (1−Π) f
M

∣∣∣
2

dv dx = λm ‖(1−Π) f‖2 .

A somewhat surprising fact is the boundedness of AL, although L is an unbounded
operator. Since A = −(1 + (TΠ)∗(TΠ))−1ΠT and ΠT f = F

ρF
∇x · jf where jf is

the flux given by jf =
∫
Rd v f dv, the identity jL f = −jf implies AL = −A, and the

boundedness of AL is a consequence of Lemma 1.

Theorem 10. Let L f = ∇v · (∇vf + v f) and assume that the external potential

satisfies (H0.1), (H2.1), and (H4.1). Then solutions of (1.1) with initial data in

L2(dµ) decay exponentially to the global equilibrium given by (3.1).

The above assumptions are similar to those of [33], which are weaker than those
of [21]. Moreover this result is an important improvement compared to [33] as
involves an L2 setting rather than a H1 setting. Let us emphasize that the latter
point is not a technical issue and answers an open question raised in [33, Part II,
Section 13]).

3.3. Scattering operators (without detailed balance). Consider a scattering
operator that can be written as

(3.2) (L f)(v) =

∫

Rd

[k(v∗ → v)f(v∗)− k(v → v∗)f(v)] dv∗ , k ≥ 0

where k(v∗ → v) denotes the transition probability of changing the velocity v∗

into v. Such an equation obviously conserves mass. Rotational symmetry can
be enforced as a consequence of the assumption k(Rv∗ → Rv) = k(v∗ → v), for
all v, v∗, and for all rotation matrices R. Detailed balance would mean that the
integrand vanishes, whenever f is a local equilibrium distribution. We shall only
require that LM = 0. In the right hand side f can be replaced by (1−Π) f . It has
been shown in [7] that in this case an H-theorem holds:

−
∫

Rd

L f
f

M
dv =

1

4

∫

Rd

(
k(v∗ → v)

M
+

k(v → v∗)

M∗

)
MM

∗

(
f

M
− f∗

M∗

)2

dv∗ dv ,

where f∗ denotes f(v∗). A sufficient condition for microscopic coercivity is

Assumption (H1.1)
k(v∗ → v)

M
+

k(v → v∗)

M∗
≥ 2λm > 0.

Note that, because of LM = 0, the collision frequency ν(v) =
∫
Rd k(v → v∗) dv∗

can be written as

ν(v) =
1

2

∫

Rd

(
k(v∗ → v)

M
+

k(v → v∗)

M∗

)
M

∗ dv∗ .

Thus, (H1.1) implies ν(v) ≥ λm.
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For proving the boundedness of AL, note that g = AL f can be written as
g = uF with

u e−V −∇x ·
(
e−V ∇xu

)
= −∇x · jL f .

Multiplication by u and integration gives
∫

Rd

u2e−V dx+

∫

Rd

|∇xu|2 e−V dx =

∫

Rd

∇xu · jL f dx .

For the gain term L
+f =

∫
Rd k(v

∗ → v)f∗ dv∗, by applying the Cauchy-Schwarz
inequality twice, we get

|jL+f | ≤
∫

Rd

|v|
[ ∫

Rd

|f∗|2
M∗

dv∗
∫

Rd

k(v∗ → v)2M∗ dv∗
] 1

2

dv

≤
[ ∫

Rd

|f∗|2
M∗

dv∗
∫∫

Rd×Rd

|v|2 k(v∗ → v)2
M

∗

M
dv∗ dv

] 1
2

.

An analogous estimate for the loss term holds, so that we finally have
∣∣∣∣
∫

Rd

∇xu · jL f dx

∣∣∣∣ ≤ C

(∫

Rd

|∇xu|2 e−V dx

)1/2

‖f‖

under the assumption

Assumption (H4.2)

∫∫

Rd×Rd

(
|v|2 + |v∗|2

)
k (v∗ → v)

2 M
∗

M
dv∗ dv < ∞ .

As a consequence, ‖AL f‖ =
(∫

Rd |u|2 e−V dx
)1/2 ≤ C ‖f‖ and AL is bounded.

Combined with (H4.1), (H4.2) shows that (H4) holds.

Theorem 11. Let L be given by (3.2). If (H0.1), (H1.1), (H2.1), (H4.1) and

(H4.2) hold, then solutions of (1.1) with initial data in L2(dµ) decay exponentially

to the global equilibrium given by (3.1).

4. Linearized BGK operators

4.1. Motivation: nonlinear models. Our motivation in this section comes from
nonlinear BGK models with collision operators of the form

Q(f) = γ

(
1

2
|v|2 − µ(ρf )

)
− f .

The operator is determined by the energy profile γ(E) ≥ 0 which is assumed to be
monotone decaying on γ−1(0,∞). The (strictly increasing) function µ(ρ) is defined
implicitly by the requirement of local mass conservation, i.e.

∫

Rd

γ

(
1

2
|v|2 − µ(ρ)

)
dv = ρ .

Global equilibria of the nonlinear equation ∂tf+T f = Q(f) are given by f∞(x, v) =
γ(E(x, v)− µ∞), where the constant µ∞ is determined by the total mass, and the
macroscopic equilibrium density ρ∞ by µ∞ − V (x) = µ(ρ∞(x)). In this section,
we shall investigate the linearized stability of these equilibria, leading to the linear
equation (1.1) with the linearized collision operator L = Π− 1 with

F (x, v) = − γ′(E(x, v) − µ∞) , ρF (x) =
1

µ′(ρ∞(x))
.
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Note that in the Maxwellian case γ(E) = e−E , µ(ρ) = log(ρ(2 π)−d/2), the operator
Q is linear, and therefore equal to L. This case has already been investigated in
Section 3.1.

The macroscopic limit

∂tρ = ∇x ·
(
∇xν(ρ) + ρ∇xV

)
,

of the nonlinear equation is a drift-diffusion equation with nonlinear diffusivity
σ(ρ) = ν′(ρ) = ρ µ′(ρ) (see [10] for a justification). Macroscopic limit and lineariza-
tion commute in the sense that the linearization

∂tρ = ∇x ·
(
∇x(σ(ρ∞) ρ) + ρ∇xV

)

of the macroscopic equation is the macroscopic limit of the linearized kinetic equa-
tion.

In the following section we consider a family of equilibrium energy distribu-
tions γ, giving rise to nonlinear diffusions of fast diffusion type. As in Section 3.1,
boundedness of L and microscopic coercivity are straightforward. Since jLf = −jf ,
AL is bounded, and LA = 0 is easy to check. It remains to check the macroscopic
coercivity condition and the boundedness of AT (1 − Π), corresponding to (H2)
and (H4) respectively.

4.2. Fast diffusion. The choice γ(E) = E−d/2−1/(1−m) and m < 1 leads to

ν(ρ) = c

{
ρm for m 6= 0 ,
log ρ for m = 0 ,

with a constant c > 0 depending on m and d. For m < 1, we also compute the
moments

ρF = c0(V − µ∞)−1−1/(1−m) , mF = c1(V − µ∞)−1/(1−m) ,

MF = c2(V − µ∞)1−1/(1−m) ,

where the positive constants c0, c1, c2 depend onm and d. For the external potential
we shall, for notational convenience, only consider the choice

(4.1) V (x) − µ∞ = (1 + |x|2)β , β > 0 .

However, all our results are easily extendable to potentials whose asymptotic be-
haviour as |x| → ∞ is given by (4.1). With these choices,

Assumption (H0.2) β >
d (1−m)

2 (2−m)
.

is necessary and sufficient for ρF ∈ L1(dx).
Macroscopic coercivity is related to Hardy-Poincaré inequalities. In [2, 3, 4], for

any d ≥ 3, α 6= α∗ := −(d − 2)/2 a positive constant Cα,d is given explicitly, such
that

(4.2)

∫

Rd

|∇xu|2 (1 + |x|2)α dx ≥ Cα,d
∫

Rd

u2 (1 + |x|2)α−1 dx ,

for all u ∈ H1
(
(1+|x|2

)α
dx), under the additional condition

∫
Rd u (1+|x|2)α−1 dx =

0 if α < α∗, in which case the measure (1 + |x|2)α−1 dx is bounded. The Hardy-
Poincaré inequality is equivalent to macroscopic coercivity (H2) for β = 1. A small
generalization is even more useful for our purposes:
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Corollary 12. Let d ≥ 3, α1 ≥ α2 + 1, and α1 6= α∗ := 1 − d/2 if α1 = α2 + 1.
Let w be a function such that 0 ≤ w(x) ≤ c (1 + |x|2)α2 for any x ∈ R

d, for some

c > 0. Then there exists a positive constant Kα1,α2,d such that
∫

Rd

|∇xu|2 (1 + |x|2)α1 dx ≥ Kα1,α2,d

∫

Rd

u2 w dx

for any u such that
∫
Rd uw dx = 0 if

∫
Rd w dx < ∞.

Proof. The assumptions on α1 and α2 allow to choose α 6= α∗ with α2+1 ≤ α ≤ α1.
Then Theorem 1 in [2] implies

∫

Rd

|∇xu|2(1 + |x|2)α1 dx ≥
∫

Rd

|∇xu|2(1 + |x|2)α dx

≥ Cα,d
∫

Rd

|u⊥|2(1 + |x|2)α−1 dx ≥ Cα,d
∫

Rd

|u⊥|2 w dx ,

where u = ū + u⊥ with ū = 0 for α > α∗, and ū = Const and
∫
Rd u

⊥(1 +

|x|2)α−1dx = 0 for α < α∗. This completes the proof for α > α∗. Otherwise,∫
Rd w dx < ∞ holds, and the right hand side can be estimated as follows:

∫

Rd

|u− ū|2 w dx ≥ inf
µ∈R

∫

Rd

|u− µ|2 w dx =

∫

Rd

u2w dx ,

using the side condition
∫
Rd uw dx = 0. �

To get examples, where macroscopic coercivity holds in the fast diffusion case,
we apply Corollary 12 with α1 = −β/(1−m) and α2 = −β (2−m)/(1−m). Then

Assumption (H2.2) d ≥ 3, β ≥ 1, and m 6= (d− 4)/(d− 2)

implies (H2). Note that the last condition is needed only for β = 1. It will however
be useful in the following. For proving the boundedness of AT (1− Π), a modified
version of the framework of Section 2 can be used. Redefining

W := (1 + |x|2)(β−1)/2 ,

∇xw1

w0
≤ cW holds with the notation of Section 2. The result of Lemma 7:

(4.3) ‖W ∇xu‖21 ≥ κ′
∥∥∥W 2 u

∥∥∥
2

0
,

is a direct consequence of the Hardy-Poincaré inequality with α = β−1+β/(m−1).
Note that we have to require that α is different from α∗. The proof of Lemma 8 uses
Assumption (2.5), which would together with (H2.2) require β = 1 and therefore
by (H0.2) m > (d− 4)/(d− 2). This can be slightly improved by redoing the proof
of Lemma 8.

Lemma 13. Let (H2.2) hold. Then there exists a constant β0 > 1, depending on

m and d, such that for β < β0 the operator AT (1−Π) is bounded.

Proof. As mentioned above, (4.3) follows from [2, Theorem 1]. Since, by (H2.2),
1/(m− 1) 6= α∗, also β − 1 + β/(m− 1) 6= α∗, if β is close enough to 1. According
to [4], the explicit expression of the constant Cα,d in (4.2) is a positive, continuous
function of α for α < α∗ and α > α∗ and κ′ = κ′(β,m, d) > 0 in (4.3) can be chosen
to be continuous with respect to β at β = 1.

As in the proof of Lemma 8, we derive the inequality (2.10) and use

w2
1 |∇x(W

2)| ≤ 2 (β − 1)w0 w1 W
3
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to estimate the last term by 2 (β − 1) ‖uW 2‖0 ‖W ∇xu‖1. With the help of (4.3),
(2.10) implies

‖W ∇xu‖21 ≤ 1

κ′
‖W ∇xu‖1

(
‖uf‖0 + 2 (β − 1) ‖W ∇xu‖1

)
.

By the continuity of κ′, there exists β0(m, d) > 1 such that 2 (β − 1)/κ′ < 1 for
1 ≤ β < β0. or such a β the result of Lemma 8 follows. This allows to carry out the
proof of Proposition 5, since Assumption (2.6), which is used there, is satisfied. �

As a consequence of this result, we formulate

Assumption (H4.3) β < β0 with β0(m, d) from Lemma 13.

Theorem 14. With the above notations, let L = Π− 1, and assume that (H0.2),
(H2.2), and (H4.3) hold. Then solutions of (1.1) with initial data in L2(dµ) decay
exponentially to the global equilibrium given by

F (x, v) =

(
1

2
|v|2 + V (x)

)−d/2−1/(1−m)−1

, V (x) = (1 + |x|2)β ,

This result is, to our knowledge, the first hypocoercivity result for kinetic equa-
tion whose Gibbs state does not separate position and velocity variables.
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