A variational-Bayes technique for aggregating probabilistic PCA mixtures from their parameters - Archive ouverte HAL
Autre Publication Scientifique Année : 2010

A variational-Bayes technique for aggregating probabilistic PCA mixtures from their parameters

Résumé

This paper proposes a solution to the problem of aggregating versatile probabilistic models, namely mixtures of probabilistic principal component analyzers. These models are a powerful generative form for capturing a high-dimensional, non Gaussian, data set. They simultaneously perform mixture fitting and dimensionality reduction. We demonstrate how such models may be advantageously aggregated by accessing mixture parameters only, rather than original data. Aggregation is carried out through Bayesian estimation with a specific prior and an original variational scheme. Experimental results illustrate the effectiveness of the proposal.
Fichier principal
Vignette du fichier
pami.pdf (779.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00476076 , version 1 (14-06-2010)
hal-00476076 , version 2 (20-02-2011)

Identifiants

  • HAL Id : hal-00476076 , version 1

Citer

Pierrick Bruneau, Marc Gelgon, Fabien Picarougne. A variational-Bayes technique for aggregating probabilistic PCA mixtures from their parameters. 2010. ⟨hal-00476076v1⟩
323 Consultations
280 Téléchargements

Partager

More