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Abstract

This paper proposes a solution to the problem of aggregating versatile probabilistic models, namely

mixtures of probabilistic principal component analyzers. These models are a powerful generative form

for capturing a high-dimensional, non Gaussian, data set. They simultaneously perform mixture fitting

and dimensionality reduction. We demonstrate how such models may be advantageously aggregated by

accessing mixture parameters only, rather than original data. Aggregation is carried out through Bayesian

estimation with a specific prior and an original variational scheme. Experimental results illustrate the

effectiveness of the proposal.
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I. INTRODUCTION

This paper proposes an effective and original solution to the problem of aggregating versatile

probabilistic models, namely mixtures of probabilistic principal component analyzers (MPPCA

hereafter [22]). The contribution of the paper is a demonstration of how this aggregation can

be conducted by accessing only the parameters of the models to merge, rather than the original

data.

Probabilistic PCA (PPCA) is a dimensionality reduction technique that extends standard PCA

with the following advantages. First, since a probabilistic model is fit to the data, Bayesian

inference may be applied, in particular to determine the appropriate model complexity. Second,

mixtures of such PPCA components may be built and estimated, to capture high dimensional

data sets supported by non linear manifolds. Let us emphasize that Bayesian MPPCAs enable

the number of parameters to grow only as required by intrinsic data complexity. This is typically

much lower than the number of parameters of Gaussian mixture models with high-dimensional

covariance matrices. As a result, MPPCA models have better resilience to the curse of dimen-

sionality.

This paper deals with the aggregation of such models, providing a central tool for performing

data analysis on distributed data sources. There is a growing research interest on this matter,

as peer-to-peer infrastructures, grids and sensor networks are increasingly hosting data sets to

which statistical learning comes useful. Our scheme focuses on statistical learning of global data



models through the aggregation of a set of local, parametric models. Its main features are as

follows:

• motivated by low computational or network-load cost, or for protecting confidentiality of

individual data entries, our proposal is designed so that only model parameters need be

accessed to aggregate mixtures of PPCA. In other words, the scheme operates on the

components of the mixtures to aggregate, rather than original data.

• aggregation of a set of MMPCA models consists in their addition, followed by a ”compres-

sion” phase that seeks an optimal combination of mixture components. A central issue to

mixture aggregation is the determination of the number of components. We formulate it as

Bayesian estimation and show how EM-like variational inference can address it. While this

generalizes recent work [10] from Gaussian mixtures to MPPCA, iterative update equations

have to be largely reconsidered.

The aggregation task might be understood in various ways. For example summaries can be

merged in order to build a hierarchical representation [6] ; or, as mixture model posterior mem-

berships define a clustering structure, we may seek to build cluster ensembles from distributed

sources [21].

In this paper, we focus on reducing the weighted sum of input mixture model parameters,

thus optimizing a KL divergence-based loss. We do not address the important issue of weighing

mixtures to be added, in a manner that would varying over the feature space (to specialize them,

as mixture of experts [8]). Further, the clustering target does not drive the definition of our

optimality criterion, even if clustering experiments are used to illustrate the performance of our

technique.

A distributed social network architecture is presented in [15], to which the present contribution

may give building blocks. Variational mixture learning, extensively used throughout this paper,

is generalized to the whole exponential family distributions in [25]. However it differs from the

present scheme in that it learns only one common subspace for all mixture components. In the

context of sensor networks, the usage of shared sufficient statistics, in place of model parameters

as in the present work, is emphasized in [14]. In [18], a similar approach is used, jointly with

a variational Gaussian mixture setting.

Section II recalls Probabilistic PCA and its extension to mixtures of PPCA; we then sketch

an associated variational-Bayes estimation procedure. Section III first discloses how mixtures of



PPCA may be extended to handle components and presents a novel estimation scheme for this

model. Section IV provides experimental results. Section V draws conclusions and perspectives.

II. MIXTURES OF PROBABILISTIC PRINCIPAL COMPONENTS ANALYSERS (MPPCA)

A. A probabilistic view to PCA

Principal Component Analysis is a popular, baseline technique for dimensionality reduction.

Given a d-dimensional data set, the principal subspace is generally obtained by diagonalizing

the sample covariance, i.e. by seeking an eigendecomposition of this d× d matrix. Tipping [23]

proposed an alternative, probabilistic framework to PCA, based on the assumption that every

data item y is generated by transforming a zero mean unit variance q-dimensional variable x

(q < d) with additive isotropic noise.

y = Λx+ µ+ ǫ (1)

Let us define the associated probability density functions (pdf ) :

p(y|x) = N (y|Λx+ µ, σ2Id) (2)

p(x) = N (x|0, Iq) (3)

p(ǫ) = N (ǫ|0, σ2Id) (4)

Results for linear Gaussian models [8] provide the following marginal distribution for y :

p(y) = N (y|µ,ΛΛT + τ−1Id) (5)

where τ = σ−2. Λ is a d × q matrix, usually known as the factor matrix. In other words,

each data item y is constructed by the addition of µ, a linear combination of the columns of Λ

(columns denoted later as factors), and isotropic noise. x contains the coefficients of the linear

combination. Let us define C = ΛΛT + τ−1Id, for further use.

ML estimates for Λ were proven to span the principal subspace of the data sample [23]. This

estimate has no closed-form solution, but may be obtained through an iterative scheme. More

precisely, update formulas can be derived for parameters θ = {µ,Λ, τ} and latent variables x by

differentiation, implementing an EM algorithm [23].



The ML solution obtained for the PPCA model is up to an arbitrary rotation matrix. Still, this

matrix can be recovered by diagonalizing ΛT
MLΛML [23], with limited computational overhead

as this matrix is q × q. Post-multiplying ΛML by this rotation matrix allows us to obtain the

scaled eigenvectors for our subspace, ordered by decreasing magnitude.

B. Handling a mixture of PPCA

1) ML approach: The framework presented in paragraph II-A is naturally extended by intro-

ducing a latent variable z indicating the membership of a data item to a PPCA model (called

component hereafter). A set of weights {ωk} is associated with K components to describe the

relative importance of components. z is a binary 1-of-K variable, meaning that if any item y

belongs to the component k, then zk = 1 and zj = 0,∀j 6= k. Thus, a multimodal density is fitted

on the data set, and each component of the mixture density determines its principal subspace.

For a data item, the associated pdf is:

p(z) =
K
∏

k

ωk
zk p(y|z) =

K
∏

k

N (y|µk, Ck)
zk (6)

p(y) =
K
∑

k

ωkN (y|µk, Ck) (7)

Consequently, a data set y = {y1, . . . , yN} has a likelihood function defined as :

p(y) =
N
∏

n

K
∑

k

ωkN (yn|µk, Ck) (8)

Associated latent variables may be collectively denoted by z = {z1, . . . , zN} and x = {x1, . . . , xN}.

In eqn. (8), x and z are left implicit. Expanding this equation using (6), (3) and (2) makes our

latent variables set explicit. Differentiation can then be performed over parameters and latent

variables, leading to update equations for an EM algorithm. A ML estimate to the posterior

distribution over a data set is output. However, the target number of components K and the

number of factors in each component q have to be known in advance. In an unsupervised

learning context this is seldom possible, so this problem is traditionally addressed with model

selection criteria (eg. BIC [19], AIC [1] and variations thereof [26]). Models with various K

are used, and the criterion helps decide which complexity should be retained. However, this

approach suffers with several limitations :



• EM returns a distribution associated to a local maximum of the likelihood function. This

maximum may be associated with strongly overlapping components, which is undesirable

in certain contexts, even if some selection criteria take this property into account [26].

• The likelihood function for the mixture case is not bounded, especially when considering

a component being fitted on a single point (i.e. precision then tends to infinity).

• Learning has to be performed numerous times to build a set of models from which the

best is picked, according to the criterion. In distributed or online contexts, this may not be

appropriate.

Closely related to our proposal, a variational Bayes scheme was proposed for the single

component PPCA [7] and the mixture of Factor Analysers [5], [13]. Factor Analysers (FA) and

PPCA approaches differ only by the noise model involved ; from (4), it is chosen isotropic for

PPCA, as for FA a diagonal covariance matrix is used. Consequently, the rotational invariance

mentioned in section II-A does not hold any more for FA, replaced by invariance regarding

individual rescaling of the input variables [23].

2) Variational approach: The design of variational algorithms enables them to overcome the

ML defects indicated above. First, good probabilistic priors have to be chosen ; uninformative

(i.e. not shading off the data we fit the model to), and yet reflecting desired properties for

our target model (i.e. low complexity model, well separated components). The problem is then

fully integrated from the Bayesian perspective, thus guaranteeing to obtain a local minimum

that matches the desirable properties highlighted in [26]. A local maximum is still obtained, but

w.r.t. to a better defined optimization ; this means we will always output an acceptable solution

among a set of possible ”good” local maxima, lessening the necessity of multiple learnings.

We define the prior distributions set as :



p(ω|α0) =
K
∏

k

p(ωk|α0) =
K
∏

k

Dir(ωk|α0) (9)

p(Λ|ν) =
K
∏

k

p(Λk|νk)

=
K
∏

k

q
∏

j

p(Λ.j
k |νkj) =

K
∏

k

q
∏

j

N (Λ.j
k |0, ν

−1
kj Id) (10)

p(ν|a0, b0) =
K
∏

k

p(νk|a0, b0) =
K
∏

k

q
∏

j

Ga(νkj|a0, b0) (11)

p(µ|µ0, ν0) =
K
∏

k

p(µk|µ0k, ν0) =
K
∏

k

N (µk|µ0k, ν
−1
0 Id) (12)

Where Dir(.|α) denotes the Dirichlet distribution parametrized by α, νkj are precision param-

eters for the column factors, and Ga(.|a, b) denotes the Gamma distribution parametrized by a

and b which are respectively the scale and inverse shape of the distribution. Let us give further

details about the parametrization that may be used in practice :

• α0 is set to 10−3 to favor the minimal number of components effectively used,

• a0 and b0 are set to 10−3 to enforce that every factor column is a priori as important as any

other,

• µ0k are uniformly randomly chosen in the data space domain, and ν0 is set to 10−3. Doing

so allows proper data space exploration, while not biasing each component significantly.

We did not define a prior over the parameter τ (see eqn. (5) e.g.). This value reflects the lowest

eigenvalues of the sample covariance matrix [23]. This information being stable, we chose not to

optimize this variable, leaving it as a parameter. Moreover this would have involved significant

computational overhead, and experimental results happened to be more stable and accurate with

τ statically set to some arbitrary value, 1 in our experiments.

Using our set of priors, we define a Bayesian formulation of the problem :

p(y) =

∫

p(θ)p(y|θ)dθ (13)

with p(θ) = p(ω|α0)p(Λ|ν)p(ν|a0, b0)p(µ|µ0, ν0)

In this paper our purpose is to find the only one true posterior distribution p(θ|y) associated

with this integrand. This solution embodies the idea of a trade-off between prior information



and data likelihood. But practically its exact determination is intractable, and we have to resort

to some approximation scheme.

Let us take the log and expand (13) :

L = ln p(y)

= ln

(

∫

p(ω|α0)dω

∫

p(ν|a0, b0)dν

.

∫

p(Λ|ν)dΛ

∫

p(µ|µ0, ν0)dµ

.

N
∏

n

[

K
∑

k

p(znk = 1|ω)

∫

p(xn)p(yn|znk = 1, xn,Λk, µk)dxn

])

(14)

p(y|θ) has been rewritten in order to make the dependence on x explicit. p(xnk) is as given

in (3), and we used (8) along with noticing that p(znk = 1|ω) = ωk.

We consider a set of arbitrary distributions (often referred to as variational distributions)

q(ω, µ,Λ, ν) and
∏N

n q(xn, zn), and, with Jensen’s inequality applied to probabilistic measures,

use them to lower bound the expression (14). q(ω, µ,Λ, ν) is assumed to be factorized, i.e. :

q(θ) = q(ω, µ,Λ, ν) = q(ω)
K
∏

k

q(µk)q(Λk|νk)q(νk)

= q(ω|α)
K
∏

k

q(µk)

[

q(Λk|νk)

q
∏

j

q(νkj|akj, bkj)

]

(15)

Where α = {αk} and {akj, bkj} are variational parameters. Under this assumed factorization,

we can write the lower bound as follows :



L ≥

∫

q(ω) ln
p(ω|α0)

q(ω)
dω

+
K
∑

k

∫

q(νk)

[

ln
p(νk|a0, b0)

q(νk)
+

∫

q(Λk) ln
p(Λk|νk)

q(Λk)
dΛk

]

dνk

+
K
∑

k

∫

q(µk) ln
p(µk|µ0k, ν0)

q(µk)
dµk

+
N
∑

n

K
∑

k

q(znk = 1)

[
∫

q(ω) ln
p(znk = 1|ω)

q(znk = 1)
dω

+

∫

q(xn|znk = 1) ln
p(xn)

q(xn|znk = 1)
dxn

+

∫

q(Λk)q(µk)dΛkdµk

∫

q(xn|znk = 1) ln p(yn|znk =, xn,Λk, µk)dxn

]

= F (16)

It is possible to show that maximizing F is equivalent to minimizing KL[q(θ) ‖ p(θ|y)] (see

[3], [8] chapter 11 for proof). KL[q||p] denotes the Kullback-Leibler divergence of p w.r.t. q.

Thus, when F is maximized, our variational distribution will equal the true, intractable, posterior

we try to determine. On the one hand, as we assumed a factorization for q(θ), this maximization

may not lead to a tight bound (F ≤ L). But on the other hand, 1) now functional derivatives can

be performed w.r.t. individual terms in (15), forming a set of update equations, and 2) optimizing

a lower bound to a constant unknown value means we do not optimize an unbounded function as

is done with the traditional EM algorithm (see paragraph II-B.1). Iterating our update equations

set implements a pseudo-EM algorithm (E and M steps being respectively about updating the

variational posterior on latent variables, and parameters ; this general scheme is sometimes

referred to as Iterative Variational Bayes [20] in the literature ; for the present specific setting, it

will be further denoted as VBMPPCA), and the produced variational distribution will approximate

the true, unknown, posterior distribution. The update equations are obtained using standard

functional calculus over (16), and are given in appendix I-B. Detailed derivations may be found

in [5]. Each iteration should increase F , thus convergence is easily assessed by iterating until the

computed value for F has plateaued. Let us recall that, while standard EM algorithms optimize a

lower bound w.r.t. a point estimate, variational algorithms optimize w.r.t. a distribution function.



Also, through the optimization, functional forms of variational posteriors and their respective

priors happen to be identical. These are general properties for the variational methods involving

distribution functions from the exponential family [3].

3) Discussion on parametrization: Values for prior parameters were already discussed in the

previous section, and these can serve as initial values for the variational parameters. Earlier we

mentioned that using α0 = 10−3 favors the smallest sensible number of components ; indeed,

the modes of the associated Dirichlet distribution are thus located at ω values where some of

the ωk are 0. The variational parameter αk may then become significantly different from 0 only

if its component reflects the density of the data set ; components for which αk ⋍ α0 can be

pruned. Algorithm 1 below may be derived from these observations. A prior component set that

covers as much as possible the data space is used. Factor matrices are initialized with random

orthogonal matrices, so as to reflect the fact that principal subspaces are made of orthogonal

vectors.

Data: A Data Set, An upper bound K for the number of significant components

Result: The set {θ′} of significant components

Define {θ} the set of K prior components ;1

while not convergence do2

update latent variables x and z ;3

update sufficient statistics ;4

update {θ} ;5

end6

{θ′} ← empty set ;7

for each component θk in {θ} do8

if αk > α0 then9

add θk to {θ′} ;10

end11

end12

Algorithm 1: VBMPPCA designed to capture the most sensible number of components

This algorithm needs to be fed with an upper bound to the sensible number of significant

components. For real world problems, we often have little information about this value. One of

the following strategies may be employed :



• Set K to a very high value. This guarantees a good solution, but at high computational

cost.

• Set K to a very high value, and prune components at each iteration (i.e. incorporate a

pruning step after line 5 in algorithm 1). Computational cost will be high only for the first

iterations.

• Adopt an elaborate birth and death strategy, as carried out in [5].

The prior introduced by equations (10) and (11) implements the idea of Automatic Relevance

Determination (ARD) [16] ; a precision parameter is associated with each column vector of the

factor matrix, and when a column may play no role (i.e. if the data its factor matrix supports

has a principal subspace already fit by a complementary set of other columns), the associated

variational mode will be driven to high values, while supported columns while have low values.

Thus using this principle, the variational approximation to Bayesian inference embodies our

preference towards low dimensional subspaces, and an objective criterion for selecting the latent

dimensionality of each component.

Yet, an initial value for q has to be chosen ; it is constrained to being less than d, so the naive

choice would be to set q = d− 1. But update equations complexity scales with q2 ; so for high

d this choice would not be recommended.

After optimization, each factor may be re-arranged by post-multiplying with the rotation matrix

(see end of paragraph II-A). After some rank q′, the ARD parameter associated with the respective

column will potentially exceed some threshold, and so will those of the columns of superior

index. Thus we may output Λ as the d × q′ sub-matrix, whose columns have a low ARD

precision posterior expected value. This threshold will be scale dependent, so we can employ a

more elaborate scheme. For all significant components and, as factors are ordered by decreasing

magnitude, we build equivalent covariances with an increasing number of factors using the

formula for C in section II-A. We measure then the variation in terms of KL or Jensen-Shannon

(JS) divergence. We may then determine the appropriate local dimensionality when this variation

falls below a threshold. As divergences are scale independent, this threshold can then be used

for any data set.

4) Convergence and bias issues: In the Iterative Variational Bayes scheme, each parameter

update equation relies on moments evaluated with respect to other parameters and latent variables.

For the Gaussian mixture implementation (see [3] and [8], chap. 10. This algorithm will be



further denoted as VBGMM), variational updates in the M step rely solely on sufficient statistics

computed over latent variables moments and input data. This has the following consequences :

• the ordering chosen within the parameter set is not constrained ; to complete the M step,

each variational parameter has to be updated once;

• in other words, needed moments do not evolve during a single step.

Inspection of the VBMPPCA update equations (see appendix I-B) leads us to contrasting

conclusions :

• within the E step, a sequence is naturally set by remarking x variables do not depend on

z, whereas the contrary is true. Thus updating x and then z provides us with consistent

estimators. These are used to build sufficient statistics that summarize the influence of latent

variables and input data for the subsequent M step.

• M step is much more problematic. We see couples of mutually dependent parameters sets

(see fig. 1). This means that no natural sequence may be set ; for example, if µ is updated

first, and then is Λ, the subsequent E step may not use a consistent estimator for µ, as its

moment is implicitly changed when Λ update is performed.

From a statistical point of view, this means we use biased estimators. Due to the lack of a

natural sequence highlighted above, no systematic procedure exists to remove this bias. Properties

of variational methods hold (i.e. F is strictly monotonic and bounded), but in some cases the

posterior model distribution may reflect a poor local minimum. This problem has already been

briefly stated by Beal [5], suggesting that performing repetitive updates of z, µ, x and Λ, before

updating ω and ν, within a single iteration, may more efficiently increase F . We chose a slightly

different approach, which leads to algorithm 2. Briefly stated, we used repetitive updates (from 3

to 5 is a good compromise), but for µ, Λ and x. This new version breaks the usual EM scheme,

and burdens each iteration with repeated operations scaling with data size (x), but increases F

much more efficiently, and towards higher values on the likelihood surface. This adaptation can

be seen as an empirical way of stabilizing our estimators before the next iteration.

The observed dependencies among posteriors over parameters emerge from the chosen for-

malism, i.e. the independency assumption between (µ) and (Λ, ν). This choice is motivated in

the literature by the introduction of ARD priors as a key feature for automatic dimensionality

reduction. A more sophisticated model, which would not require the above mentioned assump-
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Fig. 1. Moment dependencies between variational parameters. Latent variables are collectively denoted by sufficient statistics.

tion, may theoretically be derived. However, this would lead to a highly cluttered formalism;

this property led practitioners to the simpler, present solution.

Data: A Data Set, An upper bound K for the number of significant components

Result: The set {θ′} of significant components

Define {θ} the set of K prior components ;1

while not convergence do2

update z ;3

update α ;4

perform µ, Λ and x updates 5 times ;5

update ν ;6

end7

{θ′} ← empty set ;8

for each component θk in {θ} do9

if αk > α0 then10

add θk to {θ′} ;11

end12

end13

Algorithm 2: Empirically effective VBMPPCA

5) Properties of VBMPPCA vs. VBGMM: VBGMM already addresses the case of highly

correlated data, so when using q = d − 1 we generally obtain similar solutions for VBGMM

and VBMPPCA. The complexity is almost the same for the 2 algorithms (i.e. asymptotically

linear w.r.t the number of input items), but for the PPCA mixture each iteration is burdened

with the update of the x latent variables. Thus, with additional regard to the initialization and



convergence issues highlighted above, it might seem advantageous to fit a Gaussian mixture, and

eigen-decompose each component afterwards.

However, for very high dimensional data where we strongly expect the local dimensionalities

to be much lower than d, we may initialize q with some upper bound to these dimensionalities,

so that q < d − 1. The gain is quadratic w.r.t the difference between q and d − 1. When the

hypothesis regarding the lower dimensional manifolds roughly holds, we may then obtain valid

models with much lower computational and memory requirements.

III. AGGREGATING MPPCA MODELS

FROM THEIR PARAMETERS

A straightforward way of aggregating MPPCA models separately estimated on different data

sources is to add them. However if sources reflect the same underlying process, the resulting

mixture will generally be unnecessarily complex, i.e. redundant, with regard to that would have

been estimated on the reunion of the data sets. In this section, we show first how such an

input can be seen as the limit representation of a virtual data set. Then, we incorporate this

representation in the algorithm proposed in section II-B in replacement of an ordinary data set.

As a result, we obtain the low complexity model that best fits the data which would have been

generated from the input mixture, without resorting to the data itself or any sampling scheme.

A. Virtual sample likelihood

A complete sample (i.e. data and labels) originating from an arbitrary input PPCA mixture

with L components may be denoted as (y, z) = {yi, zi}, with the usual 1-of-L notation for zi

(see paragraph II-B.1 for definition). Data items in this set may be regrouped according to values

taken by zi : let us note ŷl = {yi|zil = 1} and ẑl = {zi|zil = 1}. We will define the likelihood

of this data set w.r.t a new, unknown mixture of PPCA, and propose an appropriate learning

algorithm. This model will be further denoted as target, or output, model. We avoid further

ambiguities by defining some indexing conventions and shorthand notations : elements of the

input and of the output mixtures will be respectively indexed by l ∈ {1 . . . L} and k ∈ {1 . . . K}.

The whole output model will be collectively identified by θ, and its full weights set by ω. Also,

in order to keep notations as uncluttered as possible, and without loss of generality, we will

assume that all input PPCA components have the same number of factors, q. As the output



model should not be more complex than the input, this same value may be used to parametrize

the output factor matrices. The likelihood of our complete sample is defined as :

L(y|θ) = L(y|z, θ)L(z|θ) (17)

with L(y|z, θ) =
∏

k

∏

l

(N (ŷl|µk, Ck))
zlk (18)

and L(z|θ) =
∏

k

∏

l

(ω
|ẑl|
k )zlk (19)

where we transferred the formulation in eqn. (6) to an i.i.d data set. y, the latent PPCA

variable x being intentionally marginalized (see eqn. (5)) at this point. This set of formulas is

valid under the assumption that zlk is common for all yi in ŷl. In most cases it will hold, as

aggregating models is mostly about regrouping components.

Let us notice that

|ẑl| = |ŷl| ≃ Nωl (20)

where N denotes the size of the full sample discussed above. By incorporating this approxi-

mation, (19) now depends on the input data set only through model parameters and the data set

size.

(18) may be written as follows :

L(y|z, θ) =
∏

k

∏

l

(N (ŷl|µk, Ck))
zlk =

∏

k

∏

l

Lzlk

lk (21)

Now we consider a single Llk term. We first take its log, expand ŷl and use the approximation

(20) :

lnLlk =

Nωl
∑

j

lnN (ylj|ωk, µk, Ck) (22)

≃ Nωl [−KL(N (µl, Cl) ‖ N (µk, Ck)− H(N (µl, Cl)] (23)

where we used the law of large numbers to approximate KL divergence and entropy integrals

by a finite sum. Thus N should be sufficiently large to ensure validity of expressions (20) and

(23).



Let us highlight a remarkable fact : our approximated likelihood expressions do not depend

on the complete input data set any more, but solely on the parameters of the model originating

it. Therefore, a large value can be arbitrarily chosen for N . This trick was presented as virtual

sampling in [24], and used in [10] to perform the aggregation of Gaussian mixtures.

KL divergence between Gaussians, and entropy for a Gaussian distribution, have closed form

expressions, enabling rewriting (23) as :

lnLlk = Nωl[−
d

2
ln(2π)−

1

2
ln det(ΛkΛ

T
k + τ−1

k Id)

−
1

2
Tr((ΛkΛ

T
k + τ−1

k Id)
−1

[ΛlΛ
T
l + τ−1

l + (µl − µk)(µl − µk)
T )])]

In the remainder of the paper, we discard the influence of τ−1
l , as the ML value of this term

embodies the smallest eigenvalues of the respective components. Since ΛlΛ
T
l =

∑

j Λ.j
l Λ.j

l

T
, we

may describe lnLlk as the combined likelihood of the means and factors of our input components

(after renormalization, and with respective means µk and 0).

Llk =

[

N (µl|µk, Ck)
∏

j

N (Λ.j
l |0, Ck)

]Nωl

(24)

Using (24) along with (21) and (19) gives as an approximation for the complete likelihood of

our virtual sample :

L(y|θ) =
∏

l

∏

k

(ωNωl

k )zlk (25)

[(

N (µl|µk, Ck)
∏

j

N (Λ.j
l |0, Ck)

)Nωl
]zlk

In (25) all the terms belong to the exponential family. Taken to an exponent, such a distribution

is still in the exponential family, so Nωl may be incorporated in the parametrizations, giving :

L(y|θ) =
∏

l

∑

k

(

p(zlk = 1|ωNωl)p(µl)
∏

j

p(Λ.j
l )

)

(26)



In order to keep the notations uncluttered in (26), we used :

p(zlk = 1|ωNωl) = ω
Nωl

k (27)

p(µl) = N (µl|µk, (Nωl)
−1Ck) (28)

p(Λl) = N (Λ.j
l |0, (Nωl)

−1Ck) (29)

The Gaussian terms in our likelihood still depend on Ck, so these may be expanded with x

variables using linear Gaussian models properties. In the classical scheme [5], [22], there is a

single variable x per item. Now, each input component is associated with 1+q items, so x scales

accordingly. To avoid ambiguities among latent variables, we define x = (x1,x2), x1 = {x1l}

and x2 = {x2lj|j ∈ 1 . . . q}. The complete likelihood is then defined as :

L(y|θ) =
L
∏

l

K
∑

k

p(zlk = 1|ωNωl).

∫

dx1lp(x1l)p(µl|x1l).

q
∏

j

∫

dx2ljp(x2lj)p(Λ
.j
l |x2lj) (30)

with p(x.l.) = N (x.l.|0, (Nωl)
−1Iq)

p(µl|x1l) = N (µl|Λkx1l + µk, (Nωlτk)
−1Id)

p(Λ.j
l |x2lj) = N (Λ.j

l |Λkx2lj, (Nωlτk)
−1Id)

B. Lower bound derivation

The class of algorithms presented in this paper optimize a lower bound to the marginal

likelihood, obtaining an estimate to the posterior MPPCA model as a result. We also defined a

set of variational distributions in eqn. (15). This set is augmented with terms associated to the

supplementary latent variables introduced in eqn. (30). Consequently the lower bound derivation

given in eqn. (16) is slightly modified. The structure of the output model, a mixture of PPCA,

is unchanged, then so are the first three lines. The last four lines are specifically associated to

the data likelihood, so expression (30) can be used instead of standard data likelihood.



F =

∫

q(ω) ln
p(ω|α0)

q(ω)
dω

+
K
∑

k

∫

q(νk)

[

ln
p(νk|a0, b0)

q(νk)
+

∫

q(Λk) ln
p(Λk|νk)

q(Λk)
dΛk

]

dνk

+
K
∑

k

∫

q(µk) ln
p(µk|µ0k, ν0)

q(µk)
dµk

+
L
∑

l

K
∑

k

q(zlk = 1)

[
∫

q(ω) ln
p(zlk = 1|ωNωl)

q(zlk = 1)
dω

+

∫

q(x1l|zlk = 1) ln
p(x1l)

q(x1l|zlk = 1)
dx1l

+
∑

j

∫

q(x2lj|zlk = 1) ln
p(x2lj)

q(x2lj|zlk = 1)
dx2lj

+

∫

q(Λk)q(µk)dΛkdµk

.

(
∫

q(x1l|zlk = 1) ln p(µl|Λkx1l + µk)dx1l (31)

+
∑

j

∫

q(x2lj|zlk = 1) ln p(Λ.j
l |Λkx2lj)dx2lj

)]

(32)

Functional calculus may be again employed, with no greater difficulty than in section II-B.2,

to perform derivatives, leading to coupled update equations, with the same theoretic properties.

This new set of updates is given in appendix I-C. Thus we define algorithm VBMPPCA-A as

an extension of algorithm 2, designed to obtain our posterior output mixture.

C. Parametrization

In section II-B, we mentioned the usage of uninformative priors. These are still used here, but

we may also jointly exploit some strong prior knowledge. Indeed in paragraph II-A we noticed

that the standard estimation procedure was able to recover the scaled eigenvectors ordered by

decreasing magnitude in the columns of ΛML. We also remark that the additional latent variables

are associated with the columns of the Λ input matrices. Under the assumption of appropriately

ordered input Λ, intuitively we would associate the first column of the input Λ to the first column

of the output Λ and so on. As x variables denote the combination of columns of Λ, we therefore

choose to initialize x2 estimates to canonical vectors, so as to reflect this belief. Experimentally



1) 3)2)

Fig. 2. Synthetic data sets representations (2D projections). 1) Gaussian 2) semisphere 3) circle

this principle was found to improve the results very significantly. The x2 variables updates burden

our E step, but but this is largely outweighed by noticing that the complexity of our algorithm

now scales with the number of input components instead of the size of a data set.

At the beginning of the section III-A, we stated the same q might be used without loss

of generality. To see this, let us consider a set of input factor matrices, with qi the subspace

dimensionalities attached to them. We define qmax = max qi. We see that completing each factor

matrix with qmax − qi void columns, and setting the associated x2.. variable to 0 instead of a

canonical vector reduces to consider a single q for all input factors.

IV. EXPERIMENTAL RESULTS

A. Data sets

We report results on the following data sets :

• Gaussian : this synthetic data was generated by sampling from 3 well separated 3D Gaus-

sians (see figure 2-1). 6 additional dimensions were then built by random linear combinations

of the original 3D signal. 2000 points were sampled from each Gaussian.

• semisphere : this synthetic data set was obtained by sampling random angles from a 3D

semi-sphere (see figure 2-2). 6000 points were generated.

• circle : 6000 points were generated along a 2D circle with additive noise (see figure 2-3).

This original 2D signal was then linearly transformed to 6 dimensional using a random

orthogonal matrix, with, again, some additive noise.

• Pen-based recognition of handwritten digits (further denoted as Pen data) : 10992 16-

dimensional data points built from the positions taken on a tablet to draw numerical digits

[2]. Each point is labeled with the true digit that was drawn (0-9, thus defining 10 classes).



B. Estimating probability density models

We assess the ability of our method for building density models from distributed data sources,

which supply only model parameters. To this aim, the 3 above synthetic data sets are used

according to the following protocol :

• input models are built using VBMPPCA on random subsamples of the input data. All our

synthetic data sets are made of 6000 points, from which we extract 200 points subsamples.

500 models are built using this procedure, forming a pool of inputs. For comparison sake,

we also estimate VBGMM models on the same subsamples.

• we apply VBMPPCA-A to aggregate a varying number n of input MPPCA models, ran-

domly chosen in our pool. For each n value, the experiment is performed 20 times, and

results are averaged. The Gaussian mixture aggregation scheme presented in [10] (and

further denoted as VBGMM-A) supplies a benchmark result. For the comparison to be fair,

selected input MPPCA models are converted to Gaussian mixtures using formula (5) in

order to feed this reference procedure.

• the ground truth density model is fitted using VBGMM over the whole data set.

The following characteristics are measured :

• the estimated complexities for our input models (i.e. number of components and number of

factors per component). This evaluates to which extent VBMPPCA is able to automatically

discover the number of components and factors. As a comparison, the number of components

discovered by fitting a Gaussian mixture is also given.

• the Jensen-Shannon (JS) divergence between the aggregated mixtures and the sum of the

input mixtures, depending on n. Jensen-Shannon divergence is a symmetrized version of

KL divergence. This will assess the quality of our aggregation.

• the JS divergence between the aggregated mixtures and the ground truth density model,

depending on n.

• the average number of components in the output, depending on n.

Table I summarizes the respective behaviors of VBGMM and VBMPPCA. On average, it

can be seen that VBMPPCA tends to produce richer models. But this is not an explicit flaw ;

the number of components for the Gaussian data set can be seen as over-estimated, whereas 7

components seem more able to fit circle. Estimated subspace dimensionalities are, on average,
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Fig. 3. Aggregation quality evaluation results for the 3 synthetic data sets.



K (MPPCA) K (Gaussian mixture) q

Gaussian 3.3 2.98 2.71

semi-sphere 13.8 11.16 1.64

circle 7.43 4.27 1.25

TABLE I

COMPLEXITIES (NUMBER OF GROUPS K , AND COMPONENT SUBSPACE DIMENSIONALITY q) FOR THE INPUT MPPCA

MODELS USED IN OUR PROTOCOL. USED SUBSAMPLES ARE ALSO FITTED WITH GAUSSIAN MIXTURES FOR COMPARISON

WITH MPPCA.

conform to the original signals ; 3D Gaussians were used, and in table I qoutput = 2.71. Semi-

sphere and circle clearly expose 1D to 2D manifolds ; this property is empirically recovered

(qoutput respectively equals 1.64 and 1.25 for these data sets).

On figures 3-(2,5,8), we see that the KL (or, equivalently, JS) loss w.r.t. the input models

weighted sum is, on average, higher when using VBGMM-A instead of VBMPPCA-A. The

only exception occurs when aggregating a very small number of sources for the semi-sphere data

set (fig. 3-5). Similar facts can be seen when considering ground truth models as a comparison

point (figs 3-(1,4,7)). Variational methods optimization is based on a KL divergence minimization

(see paragraph II-B.2). In that sense, VBMPPCA-A leads to more accurate estimates. The output

number of components seems data-dependent ; with VBMPPCA-A, it is higher for circle (fig.

3-9) , and lower only when considering small or large inputs for semi-sphere (fig. 3-6) and

Gaussian (fig. 3-3). This illustrates significantly different behaviors, even if no inconsistency

can be highlighted here, as values for both techniques always stay pretty much in the same

range.

C. Clustering

Here we evaluate our method on a real data set. Similarly to the previous paragraph, we will

measure the quality of our density models w.r.t some standard, but we will also confront them

to a ground truth labeling. Mixture models are often employed to cluster a data set ; each data

item will have its label inferred using Bayes decision rule.

A n-element data set, when partitioned (or clustered) in k groups, defines a set of n labels,



K (MPPCA) K (Gaussian mixture) q

Pen data 15.97 23.95 6.35

error (%) (MPPCA) error (%) (Gaussian mixture)

Pen data 12.3 9.8

TABLE II

COMPLEXITIES (NUMBER OF GROUPS K , AND COMPONENT SUBSPACE DIMENSIONALITY q) AND ERRORS FOR THE INPUT

MPPCA MODELS USED IN OUR PROTOCOL. USED SUBSAMPLES ARE ALSO FITTED WITH GAUSSIAN MIXTURES FOR

COMPARISON WITH MPPCA.

each label taking values in {1 . . . k}. We will measure the quality of a label set (or equivalently

its error w.r.t the true label set) by comparing the inferred labels Ii to the true labels Ti ; the

error would increase only if Ii 6= Ti.

However this method can be inconsistent ; clustering is unsupervised, so any permutation

between label modalities should be equally valid. Furthermore, measuring strict inequalities

between labels is problematic when the true k and the inferred k are not the same, which may

often happen with real world data.

This motivates the usage of another error measure, suggested in [17], [12]. This relies on

processing the labels taken by each possible couple of data items ; two items should have the

same inferred labels only if the true ones are identical, and symmetrically. Violations would

increase the error measure. This error measure is normalized by
n(n−1)

2
, the number of possible

couples. This ensures it lies in [0, 1].

To this end, the protocol of the previous paragraph is again employed, augmented with

the suggested measure of error for the models involved. 300 input models were built with

VBMPPCA, on larger subsamples (500 data points). Errors are measured w.r.t the full data set,

even for input models fitted on partial data. Properties of input models are summarized in table

II, and results for aggregation experiments are presented in figure 4. Let us recall that the data

set used in this section is defined over 16 dimensions. To illustrate how computational burden

can be limited with VBMPPCA, input models were fitted using q = 8, instead of the default

setting, q = d− 1.
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Fig. 4. Aggregation quality evaluation results for Pen data.

Using VBMPPCA over subsamples of this data set leads to simpler models on average. The

estimated number of groups is closer to the ground truth (16 for MPPCA, 24 for Gaussian

mixtures, vs. 10 real groups, see table II). We see that even if we used prior subspace dimen-

sionalities smaller than the maximum that may be used, on average there is an supplementary

dimensionality reduction (qoutput = 6.35). The measured error is significantly higher when using

VBMPPCA, but this may be due to the strong difference regarding the estimated number of

groups. Indeed, augmenting the number of clusters mechanically reduces our clustering error

measure.

JS divergences of aggregations carried out with VBMPPCA-A w.r.t the input models weighted

sum tend to be higher, as may be noticed in fig. 4-2. The same fact holds when comparing

to the ground truth density (see fig. 4-1). Thus VBMPPCA-A first appears to perform worse

than VBGMM-A. This discrepancy may originate from the usage of limited prior subspace

dimensionalities. However, this result has to be carefully interpreted ; this real data set is strongly

non-Gaussian, which means numerous local optima models may be found for it. All will be

equivalently good, i.e. their lower bounds will lie in the same range, but pairwise divergences

will often be high.



Despite this apparent flaw, the estimated number of groups seems much more adequate with

VBMPPCA-A in fig. 4-3; VBGMM-A tends to strongly underestimate the output number of

components when the data sources become numerous, as this number happens to be much

more stable when using VBMPPCA-A. Actually, MPPCA input models and aggregated MPPCA

always have similar complexities, whereas using Gaussian mixtures tends to produce over-

complex inputs and under-complex outputs. It may be seen as an effect of using combinations

of subspaces to compensate the noise induced by input models fitted on partial data, and

local minima problems highlighted above. Also, VBMPPCA-A produces models with much

lower clustering error (see fig. 4-4). Even if this difference may partially be induced by model

complexities, we globally see that VBMPPCA-A has better ability to preserve the information

carried by input models, even when the subspace dimensionalities are constrained.

V. CONCLUSION AND FUTURE WORKS

In this paper we proposed a new technique that performs the aggregation of mixtures of

PPCA. A fully probabilistic and Bayesian framework, along with the possibility to deal with

high dimensional data motivated our approach. Theoretical justifications were developed, and

some illustrative results were detailed.

Results obtained, with remarks given in paragraphs II-B.3, II-B.5 and III-C, show that process-

ing over subspaces and principal axes provide an interesting guideline to carry out aggregations.

Components are fitted according to their intrinsic subspace dimensionality, instead of a crisp co-

variance structure combination. Furthermore, properties of ML PPCA solutions (and particularly

the ability to recover easily the ordered principal axes set), provide us with some strong prior

knowledge, and a well-defined initialization scheme.

Besides providing building blocks for distributed, incremental and on-line learning, we believe

there should be some interesting derivation of the mixture of PPCA in the domain of semi-

supervised clustering. Let us suppose, as formalized and used in [4], that we have a set of

”must-link” constraints (i.e. pairs of data items that should be clustered together), and ”must-

not-link” constraints (i.e. data that should not be in the same group). Under the hypothesis of

compact clusters (i.e. each cluster should lie on a compact and approximately linear manifold,

see [11] for discussion), we may these as follows :

• must-link : for now, each factor matrix is initialized with a random orthogonal matrix (see



section II-B.3). Data items we believe to be in the same component may be used to influence

this initialization, and guide the algorithm towards a specific local minimum (as we said

earlier, real world data might be strongly non gaussian, so there might be several posterior

models with similar likelihoods but significant pairwise KL divergences).

• must-not-link : As we employed a Bayesian integration scheme, this kind of constraint might

be modeled by some pdf (e.g. as in [9]). This remark is not specific to the PPCA mixture

scheme ; but we might exploit the fact we maintain principal subspace structures.
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APPENDIX I

UPDATE EQUATIONS

A. Notations used

〈X〉q(X) : expectation of X w.r.t. q(X)

M ij : matrix element located at ith row and j th column

M i., M .j : respectively ith row and j th column of M

vi : vector v ith element

Id : d-dimensional identity matrix

diag(X) : diagonal matrix which diagonal is 1) X if

X is a vector, 2) X repeated d times if X is a scalar,

3) the diagonal of X if X is a matrix

In general, we will use 〈f(X)〉 as a shorthand notation for 〈f(X)〉q(X), when f(X) is a function

of X and no other latent variable or parameter.



B. MPPCA update equations

1) E step:

Σxk
= (Iq + τ〈ΛT

k Λk〉)
−1 (33)

〈xn〉q(xn|znk=1) = 〈xnk〉 = τΣxk
〈ΛT

k 〉(yn − 〈µk〉) (34)

〈xnx
T
n 〉q(xn|znk=1) = 〈xnkx

T
nk〉 = Σxk

+ 〈xnk〉〈xnk〉
T (35)

q(znk = 1) ∝ exp

(

ψ(αk)− ψ

(

∑

j

αj

)

+
1

2
ln|Σxk

| (36)

−
1

2
〈xnkx

T
nk〉 −

τ

2

[

‖yn‖
2 + 〈‖µk‖

2〉

− 2(yn − 〈µk〉)
T 〈Λk〉〈xnk〉

− 2yT
n 〈µk〉+ Tr(〈ΛT

k Λk〉〈xnkx
T
nk〉)

]

)

NB : a term was missing in [5] for eqn. (36). The corrected version is given here.

2) Sufficient statistics:

Nk =
∑

n

q(znk = 1) (37)

yk =
∑

n

q(znk = 1)yn (38)

sk =
∑

n

q(znk = 1)〈xnk〉 (39)

syk =
∑

n

q(znk = 1)yn〈xnk〉
T (40)

Sk =
∑

n

q(znk = 1)〈xnkx
T
nk〉 (41)



3) M step:

αk = α0 +Nk (42)

akj = a0 +
d

2
(43)

bkj = b0 +
1

2

d
∑

i

〈Λij
k

2
〉 (44)

ΣΛk
= (diag(〈νk〉) + τSk)

−1
(45)

〈Λi.
k〉 = ΣΛk

τ

[

syi.
k − 〈µ

i
k〉sk

]

(46)

〈ΛT
k Λk〉 =

d
∑

i

〈Λi.
kΛi.

k

T
〉 (47)

〈Λij
k

2
〉 = 〈Λi.

kΛi.
k

T
〉j (48)

Σµk
=

[

diag(ν0) + τNk

]−1

Id (49)

〈µk〉 = Σµk

[

diag(ν0µ0) + τ(yn − 〈Λk〉sk)

]

(50)

C. MPPCA aggregation update equations

When absent, a parameter update should be taken identical as in section I-B.



1) E step:

Σxkl
=
(

Nωl[Iq + τ〈ΛT
k Λk〉]

)−1
(51)

= (Nωl)
−1Σxk

(52)

〈x1lk〉 = τNωlΣxkl
〈ΛT

k 〉

(

µl − 〈µk〉

)

(53)

〈x2lkj〉 = τNωlΣxkl
〈ΛT

k 〉Λ
.j
l (54)

= τΣxk
〈ΛT

k 〉

(

µl − 〈µk〉

)

(55)

q(zlk = 1) ∝ Nωl(ψ(αk)− ψ(
∑

j

αj)) +
1 + q

2
ln|Σxk

| (56)

−
Nωl

2
Tr(〈x1lkx

T
1lk〉+

∑

j

〈x2lkjx2lkj〉) (57)

−
τNωl

2

[

‖µl‖
2 +

∑

j

‖Λ.j
l ‖

2 + 〈‖µk‖
2〉 − 2µT

l 〈µk〉 (58)

− 2(µl − 〈µk〉)
T 〈Λk〉〈x1lk〉 − 2

∑

j

Λ.j
l

T
〈Λk〉〈x1lk〉 (59)

+ Tr〈ΛT
k Λk〉[〈x1lkx

T
1lk〉+

∑

j

〈x2lkjx
T
2lkj〉]

]

(60)

2) Sufficient statistics:

Nk =
∑

l

Nωlq(zlk = 1) (61)

mk =
∑

l

Nωlq(zlk = 1)µl (62)

sk =
∑

l

Nωlq(zlk = 1)〈x1lk〉 (63)

smk =
∑

l

Nωlq(zlk = 1)

(

µl〈x1lk〉
T +

∑

j

Λ.j
l 〈x2lkj〉

T

)

(64)

Sk =
∑

l

Nωlq(zlk = 1)

(

〈x1lkx
T
1lk〉+

∑

j

〈x2lkjx
T
2lkj〉

)

(65)

3) M step: Using the new set of sufficient statistics, the M step updates are identical to those

found in appendix I-B.3, the only modification being the substitution of syk by smk.


