Component-level aggregation of probabilistic PCA mixtures using variational-Bayes - Archive ouverte HAL
Autre Publication Scientifique Année : 2011

Component-level aggregation of probabilistic PCA mixtures using variational-Bayes

Résumé

This paper proposes a technique for aggregating mixtures of probabilistic principal component analyzers, which are a powerful probabilistic generative model for coping with a high-dimensional, non linear, data set. Aggregation is carried out through Bayesian estimation with a specific prior and an original variational scheme. We demonstrate how such models may be aggregated by accessing model parameters only, rather than original data, which can be advantageous for learning from distributed data sets. Experimental results illustrate the effectiveness of the proposal.
Fichier principal
Vignette du fichier
techrep.pdf (682.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00476076 , version 1 (14-06-2010)
hal-00476076 , version 2 (20-02-2011)

Identifiants

  • HAL Id : hal-00476076 , version 2

Citer

Pierrick Bruneau, Marc Gelgon, Fabien Picarougne. Component-level aggregation of probabilistic PCA mixtures using variational-Bayes. 2011. ⟨hal-00476076v2⟩
323 Consultations
280 Téléchargements

Partager

More