Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2013

Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case

Résumé

We prove that the KdV-Burgers is globally well-posed in $ H^{-1}(\T) $ with a solution-map that is analytic from $H^{-1}(\T) $ to $C([0,T];H^{-1}(\T))$ whereas it is ill-posed in $ H^s(\T) $, as soon as $ s<-1 $, in the sense that the flow-map $u_0\mapsto u(t) $ cannot be continuous from $ H^s(\T) $ to even ${\cal D}'(\T) $ at any fixed $ t>0 $ small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dissipation part of the KdV-Burgers equation allows to lower the $ C^\infty $ critical index with respect to the KdV equation, it does not permit to improve the $ C^0$ critical index .
Fichier principal
Vignette du fichier
periodickdvb4.pdf (228.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00467657 , version 1 (27-03-2010)
hal-00467657 , version 2 (30-03-2010)

Identifiants

Citer

Luc Molinet, Stéphane Vento. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case. Transactions of the American Mathematical Society, 2013, 365 (1), pp.123-141. ⟨hal-00467657v2⟩
280 Consultations
162 Téléchargements

Altmetric

Partager

More