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Sharp ill-posedness and well-posedness results for
the KdV-Burgers equation: the periodic case

Luc Molinet and Stéphane Vento

Abstract. We prove that the KdV-Burgers is globally well-posed in
H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T))
whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the
flow-map u0 7→ u(t) cannot be continuous from Hs(T) to even D′(T) at any
fixed t > 0 small enough. In view of the result of Kappeler and Topalov for
KdV it thus appears that even if the dissipation part of the KdV-Burgers
equation allows to lower the C∞ critical index with respect to the KdV
equation, it does not permit to improve the C0 critical index .

1 Introduction and main results

The aim of this paper is to establish positive and negative optimal results
on the Cauchy problem in Sobolev spaces for the Korteweg-de Vries-Burgers
(KdV-B) equation posed on the one dimensional torus T = R/2πZ:

ut + uxxx − uxx + uux = 0 (1.1)

where u = u(t, x) is a real valued function.
This equation has been derived by Ott and Sudan [16] as an asymptotic
model for the propagation of weakly nonlinear dispersive long waves in some
physical contexts when dissipative effects occur.

In order to make our result more transparent, let us first introduce differ-
ent notions of well-posedness (and consequently ill-posedness) related to the
smoothness of the flow-map (see in the same spirit [12], [9]). Throughout
this paper we shall say that a Cauchy problem is (locally) C0-well-posed in
some normed function space X if, for any initial data u0 ∈ X, there exist
a radius R > 0, a time T > 0 and a unique solution u, belonging to some
space-time function space continuously embedded in C([0, T ];X), such that
for any t ∈ [0, T ] the map u0 7→ u(t) is continuous from the ball of X cen-
tered at u0 with radius R into X. If the map u0 7→ u(t) is of class Ck,
k ∈ N ∪ {∞}, (resp. analytic) we will say that the Cauchy is Ck-well-posed
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(resp. analytically well-posed). Finally a Cauchy problem will be said to be
Ck-ill-posed, k ∈ N ∪ {∞}, if it is not Ck-well-posed.

In [15], Molinet and Ribaud proved that this equation is analytically
well-posed in Hs(T) as soon as s > −1. They also established that the
index −1 is critical for the C2-well-posedness. The surprising part of this
result was that the C∞ critical index s∞c (KdV B) = −1 was lower that the
one of the KdV equation

ut + uxxx + uux = 0

for which s∞c (KdV ) = −1/2 (cf. [13], [7]) and also lower than the C∞ index
s∞c (dB) = s0c(dB) = −1/2 (cf. [1], [8]) of the dissipative Burgers equation

ut − uxx + uux = 0 .

On the other hand, using the integrability theory, it was recently proved
in [12] that the flow-map of KdV equation can be uniquely continuously
extended in H−1(T). Therefore, on the torus, KdV is C0-well-posed in H−1

if one takes as uniqueness class, the class of strong limit in C([0, T ];H−1(T))
of smooth solutions.

In [14] the authors completed the result of [15] in the real line case by
proving that the KdV-Burgers equation is analytically well-posed in H−1(R)
and C0-ill-posed in Hs(R) for s < −1 in the sense that the flow-map defined
on H−1(R) is not continuous for the topology inducted by Hs, s < −1,
with values even in D′(R). To reach the critical Sobolev space H−1(R) they
adapted the refinement of Bourgain’s spaces that appeared in [19] and [18]
to the framework developed in [15]. The proof of the main bilinear estimate
used in a crucial way the Kato smoothing effect that does not hold on the
torus. Our aim here is to give the new ingredients that enable to overcome
this lack of smoothing effects. The main idea is to weaken the space regu-
larity of the Bourgain’s spaces in a suitable space-time frequencies region.
Note that our resolution space will still be embedded in C([0, T ];H−1(T))
and that, to get the L∞([0, T ];H−1(T))-estimate in this region, we use an
idea that appeared in [4]. Finally, once the well-posedness result is proved,
the proof of the ill-posedness result follows exactly the same lines as in
[14]. It is due to a high to low frequency cascade phenomena that was first
observed in [2] for a quadratic Schrödinger equation.

In view of the result of Kappeler and Topalov for KdV it thus appears
that, at least on the torus, even if the dissipation part of the KdV-Burgers
equation1 allows to lower the C∞ critical index with respect to the KdV
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equation, it does not permit to improve the C0 critical index .
Our results can be summarized as follows:

Theorem 1.1. The Cauchy problem associated to (1.1) is locally analyti-
cally well-posed in H−1(T). Moreover, at every point u0 ∈ H−1(T) there
exist T = T (u0) > 0 and R = R(u0) > 0 such that the solution-map
u0 7→ u is analytic from the ball centered at u0 with radius R of H−1(T)
into C([0, T ];H−1(T)). Finally, the solution u can be extended for all posi-
tive times and belongs to C(R∗

+;H
∞(T)).

Now that we have established analytic well-posedness, proceeding ex-
actly as in [14] by taking as sequence of initial data

φN (x) = N cos(Nx) ,

we get the following ill-posedness result.

Theorem 1.2. The Cauchy problem associated to (1.1) is ill-posed in Hs(T)
for s < −1 in the following sense: there exists T > 0 such that for any 0 <
t < T , the flow-map u0 7→ u(t) constructed in Theorem 1.1 is discontinuous
at the origin from H−1(T) endowed with the topology inducted by Hs(T) into
D′(T).

Acknowledgements: L.M. was partially supported by the ANR project
”Equa-Disp”.

2 Resolution space

In this section we introduce a few notation and we define our functional
framework.

For A,B > 0, A . B means that there exists c > 0 such that A ≤ cB.
When c is a small constant we use A ≪ B. We write A ∼ B to denote
the statement that A . B . A. For u = u(t, x) ∈ S ′(R × T), we denote
by û (or Fxu) its Fourier transform in space, and ũ (or Fu) the space-time
Fourier transform of u. We consider the usual Lebesgue spaces Lp, Lp

xL
q
t and

abbreviate Lp
xL

p
t as L

p. Let us define the Japanese bracket 〈x〉 = (1+|x|2)1/2

so that the standard non-homogeneous Sobolev spaces are endowed with the
norm ‖f‖Hs = ‖〈∇〉sf‖L2 .

We use a Littlewood-Paley analysis. Let η ∈ C∞
0 (R) be such that η ≥ 0,

supp η ⊂ [−2, 2], η ≡ 1 on [−1, 1]. We define next ϕ(k) = η(k) − η(2k).

1It is important to notice that the dissipative term −uxx is of lower order than the

dispersive one uxxx.
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Any summations over capitalized variables such as N,L are presumed to be
dyadic, i.e. these variables range over numbers of the form 2ℓ, ℓ ∈ N∪{−1}.
We set ϕ 1

2

≡ η and for N ≥ 1, ϕN (k) = ϕ(k/N) and define the operator

PN by F(PNu) = ϕN û. We introduce ψL(τ, k) = ϕL(τ − k3) and for any
u ∈ S ′(R× T),

Fx(PNu(t))(k) = ϕN (k)û(t, k), F(QLu)(τ, k) = ψL(τ, k)ũ(τ, k).

Roughly speaking, the operator P1/2 and Q1/2 localize respectively in the
ball {|k| . 1} and {|τ−k3| . 1} whereas forN ≥ 1, the operator PN localizes
in the annulus {|k| ∼ N} and QN localizes in the region {|τ − k3| ∼ N}.

Furthermore we define more general projection P.N =
∑

N1.N PN1
,

Q≫L =
∑

L1≫LQL1
etc.

Let e−t∂xxx be the propagator associated to the Airy equation and define
the two parameters linear operator W by

W (t, t′)φ =
∑

k∈Z

exp(itk3 − |t′|k2)φ̂(k) eikx, t ∈ R. (2.1)

The operator W : t 7→ W (t, t) is clearly an extension on R of the linear
semi-group S(·) associated with (1.1) that is given by

S(t)φ =
∑

k∈Z

exp(itk3 − tk2)φ̂(k) eikx, t ∈ R+. (2.2)

We will mainly work on the integral formulation of (1.1):

u(t) = S(t)u0 −
1

2

∫ t

0
S(t− t′)∂xu

2(t′)dt′, t ∈ R+. (2.3)

Actually, to prove the local existence result, we will follow the strategy of
[14] and apply a fixed point argument to the following extension of (2.3):

u(t) = η(t)
[
W (t)u0 −

1

2
χR+

(t)

∫ t

0
W (t− t′, t− t′)∂xu

2(t′)dt′

−
1

2
χR−

(t)

∫ t

0
W (t− t′, t+ t′)∂xu

2(t′)dt′
]
. (2.4)

It is clear that if u solves (2.4) then u is a solution of (2.3) on [0, T ], T < 1.
In [14], adapting some ideas of [19] and [18] to the framework devel-

oped in [15], the authors performed the iteration process in the sum space

X−1, 1
2
,1 + Y −1, 1

2 where

‖u‖Xs,b,1 =
(∑

N

[∑

L

〈N〉s〈L+N2〉b‖PNQLu‖L2
xt

]2)1/2
.
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and

‖u‖Y s,b =
(∑

N

[〈N〉s‖F−1[(i(τ − k3) + k2 + 1)b+1/2ϕN ũ]‖L1
tL

2
x
]2
)1/2

,

so that

‖u‖
Y −1, 1

2
∼
(∑

N

[〈N〉−1‖(∂t + ∂xxx − ∂xx + I)PNu‖L1
tL

2
x
]2
)1/2

.

As explained in the introduction, due to the lack of the Kato smoothing
effect on the torus, we will be able to control none of the two above norms
in the region ”σ-dominant”. The idea is then to weaken the required x -
regularity on the Xs,b component of our resolution space in this region. For
ε > 0 small enough, we thus introduce the function space Xs,b,q

ε endowed
with the norm

‖u‖
Xs,b,1

ε
=
(∑

N

[ ∑

L≤N3

〈N〉s〈L+N2〉b‖PNQLu‖L2
xt

]2)1/2

+
(∑

N

[ ∑

L>N3

〈N〉s−ε〈L+N2〉b‖PNQLu‖L2
xt

]2)1/2
. (2.5)

However, Xs,b,1
ε is not embedded anymore in L∞(R;H−1(T)). For this rea-

son we will take its intersection with the function space L̃∞
t H

−1, that is a
dyadic version of L∞(R;H−1(T)), equipped with the norm

‖u‖ ˜L∞
t H−1

=
(∑

N

[〈N〉−1‖PNu‖L∞
t L2

x
]2
)1/2

.

Finally, we also need to define the space Zs,− 1

2 equipped with the norm

‖u‖
Zs,− 1

2
=
(∑

N

[〈N〉s‖ϕN (k)〈i(τ − k3) + k2〉−1ũ‖L2
kL

1
τ
]2
)1/2

.

We are now in position to form our resolution space S̃s
ε = (X

s, 1
2
,1

ε ∩L̃∞
t H

−1)+

Y s, 1
2 and the ”nonlinear space” N s

ε = (X
s,− 1

2
,1

ε ∩ Zs,− 1

2 ) + Y s,− 1

2 where the
nonlinear term ∂xu

2 will take place. Actually we will estimate ‖∂xu
2‖N s

ε
in

term of ‖u‖Ss
ε
where Ss

ε = X
s, 1

2
,1

ε + Y s, 1
2 . Obviously ‖u‖Ss

ε
≤ ‖u‖

S̃s
ε
and the

first of these norms has the advantage to only see the size of the modulus of
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the space-time Fourier transform of the function. This will be useful when
dealing with the dual form of the main bilinear estimate.

Note that we endow these sum spaces with the usual norms:

‖u‖X+Y = inf{‖u1‖X + ‖u2‖Y : u1 ∈ X,u2 ∈ Y, u = u1 + u2}.

In the rest of this section, we study some basic properties of the function
space S−1

ε .

Lemma 2.1. For any φ ∈ L2,

(∑

L

[L1/2‖QL(e
−t∂xxxφ)‖L2 ]2

)1/2
. ‖φ‖L2 .

Proof. From Plancherel theorem, we have

(∑

L

[L1/2‖QL(e
−t∂xxxφ)‖L2 ]2

)1/2
∼ ‖|τ − k3|1/2F(e−t∂xxxφ)‖L2 .

Moreover if we set ηT (t) = η(t/T ) for T > 0, then

F(ηT (t)e
−t∂xxxφ)(τ, k) = η̂T (τ − k3)φ̂(k).

Thus we obtain with the changes of variables τ − k3 → τ ′ and Tτ ′ → σ that

‖|τ − k3|1/2F(ηT (t)e
−t∂xxxφ)‖L2 . ‖φ‖L2‖|τ ′|1/2T η̂(Tτ ′)‖L2

τ ′
. ‖φ‖L2 .

Taking the limit T → ∞, this completes the proof.

Lemma 2.2. 1. For any ε ≥ 0 and all u ∈ S̃−1
ε , we have

‖u‖L∞
t H−1(T) . ‖u‖˜S−1

ε
and

(∑

N

‖PNQ≤N3u‖2L∞
t H−1(T)

)1/2
. ‖u‖S−1

ε
.

(2.6)

2. For any 0 ≤ ε ≤ 1/2 and all u ∈ S−1
ε , we have

‖u‖L2
xt

. ‖u‖S−1
ε
. (2.7)

3. For all u ∈ Y 0,1/2,

(∑

L

[L1/2‖QLu‖L2 ]2
)1/2

. ‖u‖
Y 0, 1

2
. (2.8)
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Proof. 1. First it is fairly obvious that L̃∞
t H

−1
x →֒ L∞

t H
−1
x and that,

according to the definition of X
−1, 1

2
,1

ε ,

(∑

N

‖PNQ≤N3u‖2L∞
t H−1(T)

)1/2
. ‖u‖

X
−1, 1

2
,1

ε

.

Second, for any dyadic N ,

‖PNu‖L∞
t H−1 =

∥∥∥F−1
t

( 〈k〉−1

i(τ − k3) + k2 + 1
(i(τ − k3) + k2 + 1)ϕN ũ

)∥∥∥
L∞
t L2

k

.
∥∥∥F−1

t

( 〈k〉−1ϕN (k)

i(τ − k3) + k2 + 1

)∥∥∥
L∞
t L∞

k

‖PNu‖
Y 0, 1

2

. ‖〈k〉−1ϕN (k)‖L∞
k
‖e−t〈N〉2χR+(t)‖L∞

t
‖PNu‖

Y 0, 1
2

. 〈N〉−1‖PNu‖
Y 0, 1

2
. ‖PNu‖

Y −1, 1
2
.

This completes the proof of (2.6) after square summing in N .

2. In the same way, for any dyadic N

‖PNu‖L2 .
∑

L≤N3

‖PNQLu‖L2 +
∑

L>N3

‖PNQLu‖L2

.
∑

L≤N3

‖PNQLu‖L2 +
∑

L>N3

L1/2N−3/2‖PNQLu‖L2

. ‖PNu‖
X

−1, 1
2
,1

1/2

. (2.9)

On the other hand, applying Young and Hölder’s inequalities, we get

‖PNu‖L2 =
∥∥∥F−1

t

( 1

i(τ − k3) + k2 + 1
(i(τ − k3) + k2 + 1)ϕN ũ

)∥∥∥
L2
tk

.
∥∥∥F−1

t

( ϕN (k)

i(τ − k3) + k2 + 1

)∥∥∥
L2
tL

∞
k

‖PNu‖
Y 0, 1

2

. ‖e−t〈N〉2χR+(t)‖L2
t
‖PNu‖

Y 0, 1
2

. 〈N〉−1‖PNu‖
Y 0, 1

2
. ‖PNu‖

Y −1, 1
2
.

This proves (2.7) after square summing in N .

3. Setting v = (∂t + ∂xxx)u, we see that u can be rewritten as

u(t) = e−t∂xxxu(0) +

∫ t

0
e−(t−t′)∂xxxv(t′)dt′.
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By virtue of Lemma 2.1, we have

(∑

L

[L1/2‖QLe
−t∂xxxu(0)‖L2 ]2

)1/2
. ‖u(0)‖L2 . ‖u‖L∞

t L2
x
.

Moreover, we get as previously

‖u‖L∞
t L2

x
.
∥∥∥F−1

t

( 1

i(τ − k3) + k2 + 1

)∥∥∥
L∞
tk

‖u‖
Y 0, 1

2
. ‖u‖

Y 0, 1
2
.

Now it remains to show that
(∑

L

[
L1/2

∥∥∥QL

∫ t

0
e−(t−t′)∂xxxv(t′)dt′

∥∥∥
L2

]2)1/2
. ‖v‖L1

tL
2
x
, (2.10)

since the right-hand side is controlled by

‖PNv‖L1
tL

2
x
. ‖(I − ∂xx)PNu‖L1

tL
2
x
+ ‖PNu‖

Y 0, 1
2

.
(∥∥∥F−1

t

( ϕN (ξ)(ξ2 + 1)

i(τ − ξ3) + ξ2 + 1

)∥∥∥
L1
tL

∞
ξ

+ 1
)
‖PNu‖

Y 0, 1
2

. ‖PNu‖
Y 0, 1

2
.

In order to prove (2.10), we split the integral
∫ t
0 =

∫ t
−∞−

∫ 0
−∞. By

Lemma 2.1, the contribution with integrand on (−∞, 0) is bounded
by

.
∥∥∥
∫ 0

−∞
et

′∂xxxv(t′)dt′
∥∥∥
L2
x

. ‖v‖L1
tL

2
x
.

For the last term, we reduce by Minkowski to show that

(∑

L

[L1/2‖QL(χt>t′e
−(t−t′)∂xxxv(t′))‖L2

tx
]2
)1/2

. ‖v(t′)‖L2
x
.

This can be proved by a time-restriction argument. Indeed, for any
T > 0, we have

(∑

L

[L1/2‖QL(ηT (t)χt>t′e
−(t−t′)∂xxxv(t′))‖L2 ]2

)1/2

. ‖|τ |1/2v̂(t′)Ft(ηT (t)χt>t′)(τ)‖L2

. ‖v(t′)‖L2‖|τ |1/2Ft(η(t)χtT>t′)‖L2

. ‖v(t′)‖L2 .

We conclude by passing to the limit T → ∞.
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3 Linear estimates

It is straightforward to check that estimates on the linear operator W (t)
and on the extension of the Duhamel term proven in [14] on R still hold on

T. We thus will concentrate ourselves on the X
s, 1

2
,1

ε ∩ L̃∞
t H

−1 component.

Proposition 3.1. 1. For any ε ≥ 0 and all φ ∈ H−1(T), we have

‖η(t)W (t)φ‖˜S−1
ε

. ‖φ‖H−1 . (3.1)

2. Let L : f → Lf denote the linear operator

Lf(t, x) = η(t)
(
χR+(t)

∫ t

0
W (t− t′, t− t′)f(t′)dt′

+χR−(t)

∫ t

0
W (t− t′, t+ t′)f(t′)dt′

)
. (3.2)

If f ∈ N−1
ε with ε ≥ 0, then

‖Lf‖˜S−1
ε

. ‖f‖N−1
ε
. (3.3)

Proof. The first assertion is a direct consequence of the corresponding es-
timate in Xs, 1

2
,1 proven in [14] together with the continuous embedding

Xs, 1
2
,1 →֒ L̃∞

t H
−1 ∩X

s, 1
2
,1

ε for ε ≥ 0.
To prove the second assertion, it clearly suffices to show the three fol-

lowing inequalities

‖Lf‖
Y 0, 1

2
. ‖f‖

Y 0,− 1
2
, (3.4)

‖Lf‖
X

0, 1
2
,1

ε

. ‖f‖
X

0,− 1
2
,1

ε

+ ‖f‖
Z0,− 1

2
, (3.5)

‖Lf‖ ˜L∞
t H−1

. ‖f‖
Z0,− 1

2
. (3.6)

Estimate (3.4) has been proved in [14]. To prove (3.5) we first note that
according to [14], it holds

‖Lf‖
Xs, 1

2
,1 . ‖f‖

Xs,− 1
2
,1 . (3.7)

It is then not too hard to be convinced that (3.5) is a consequence of the
following estimate:

(∑

N≥4

[ ∑

L≤N3

〈L+N2〉1/2‖PNQL(L(Q≥2N3f))‖L2

]2)1/2

. ‖f‖
Z0,− 1

2
+
(∑

N≥4

[ N3∑

L=N3/2

〈L+N2〉−1/2‖PNQLf‖L2

]2)1/2
. (3.8)
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To prove (3.6) and (3.8) we proceed as in [14]. Using the x-Fourier expansion
and setting w(t) = U(−t)f(t) it is easy to derive that

Lf(t, x) = U(t)

[
η(t)

∑

k∈Z

eixk
∫

R

eitτ e(t−|t|)k2 − e−|t|k2

iτ + k2
w̃(τ, k)dτ

]
.

In particular by Plancherel and Minkowski,

‖Lf‖
L̃∞
t L2

x

= ‖U(−t)Lf‖
L̃∞
t L2

x

≤
(∑

N

∥∥∥η(t)ϕN (k)

∫

R

eitτ e(t−|t|)k2 − e−|t|k2

iτ + k2
w̃(τ, k)dτ

∥∥∥
2

L2
kL

∞
t

)1/2
.

Now for k ∈ Z fixed and v ∈ S(R) we set

Kk(v)(t) = η(t)ϕN (k)

∫

R

eitτ e(t−|t|)k2 − e−|t|k2

iτ + k2
v(τ)dτ.

We thus are reduced to show that for any k ∈ Z,

‖Kk(v)‖L∞
t

.
∥∥∥ϕN (k)v(τ)

〈iτ + k2〉

∥∥∥
L1
τ

(3.9)

and

∑

L≤N3

〈L+N2〉1/2‖PL(Kk(Φ≥2N3v))‖L2
t

.
∥∥∥ϕN (k)v(τ)

〈iτ + k2〉

∥∥∥
L1
τ

+

N3∑

L=N3/2

ϕN (k)〈L+N2〉−1/2‖ϕLv‖L2
τ
. (3.10)

where we set Φ≥2N3 :=
∑

L≥2N3 ϕL. To prove (3.9) it suffices to notice that

‖Kk(v)‖L∞
t

. ‖η‖L∞ϕN (k)

∫

R

|v(τ)|

|iτ + k2|
dτ

which gives the result for k 6= 0. In the case k = 0 we use a Taylor expansion
to get

‖K0(v)‖L∞
t

. ϕN (k)
[
‖η‖L∞

∫

|τ |≥1

|v(τ)|

|τ |
dτ +

∑

n≥1

1

n!
‖tnη‖L∞

∫

|τ |≤1

|τ |n|v(τ)|

|τ |
dτ
]

. ϕN (k)

∫

R

|v(τ)|

〈τ〉
dτ
∑

n≥0

1

n!
‖tnη‖L∞

10



which is acceptable since ‖tnη‖L∞ . 2n.
To get (3.10) we first rewrite Kk(Φ≥2N3v) as

η(t)e(t−|t|)k2ϕN (k)

∫

R

eitτ

iτ + k2
Φ≥2N3(τ)v(τ)dτ−η(t)ϕN (k)

∫

T

e−|t|k2

iτ + k2
Φ≥2N3(τ)v(τ)dτ.

The contribution of the second term is easily controlled by the first term of
the right-hand side of (3.10) since, according to [14],

∑

L

〈L+N2〉1/2‖ϕN (k)PL(η(t)e
−|t|k2)‖L2

t
. 1.

To treat the contribution of the first one, we set θ(t) = η(t)e(t−|t|)k2 and
rewrite this contribution as

∑
L≤N3 IL with

IL := 〈L+N2〉1/2
∥∥∥ϕN (k)ϕL(τ)

(
θ̂(τ ′)⋆ [Φ≥2N3(τ ′)

v(τ ′)

iτ ′ + k2
]
)
(τ)
∥∥∥
L2
τ

. (3.11)

For L ≤ N3/4, by support considerations we may replace θ̂(τ ′) by χ
|τ ′|≥N3

2

θ̂(τ ′)

in (3.11). Since it is not too hard to check that two integrations by parts

yield |θ̂(τ)| . 〈k〉2

|τ |2 , this ensures that

∑

L≤N3/4

IL .
∑

L≤N3/4

〈L+N2〉1/2ϕN (k)‖χ
|τ |≥N3

2

θ̂‖L2

∥∥∥ v

〈iτ + k2〉

∥∥∥
L1

.
∑

L≤N3/4

〈L+N2〉1/2N−5/2ϕN (k)
∥∥∥ v

〈iτ + k2〉

∥∥∥
L1

. ϕN (k)
∥∥∥ v

〈iτ + k2〉

∥∥∥
L1
.

Now, for L = N3 (Note that the case L = N3/2 can be treated in exactly
the same way), we use that ϕL ≡ η(·/2L)ϕL and that by the mean value
theorem, |ϕL(τ)−ϕL(τ

′)| . L−1|τ − τ ′|. Substituting this in (3.11) we infer
that

IN3 . 〈N3 +N2〉1/2ϕN (k)
∥∥∥
∫

R

θ̂(τ − τ ′)ϕN3(τ ′)
Φ≥2N3(τ ′)v(τ ′)

iτ ′ + k2
dτ ′
∥∥∥
L2
τ

+ 〈N3 +N2〉1/2ϕN (k)
∥∥∥η(τ/4N3)N−3

∫

R

|θ̂(τ − τ ′)||τ − τ ′|
|v(τ ′)|

|iτ ′ + k2|
dτ ′
∥∥∥
L2
τ

:= I1N3 + I2N3 .
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Applying Plancherel theorem, Hölder inequality in t and then Parseval the-
orem, the first term can be easily estimated by

I1N3 . 〈N3 +N2〉1/2ϕN (k)‖θ‖L∞

∥∥∥ϕN3(τ)v(τ)

iτ + k2

∥∥∥
L2

. 〈N3〉−1/2ϕN (k)‖ϕN3(τ)v(τ)‖L2

which is acceptable. Finally, note that ‖θ̂‖L∞ ≤ ‖θ‖L1 ≤ ‖η‖L1 . 1 and that
integrating by parts one time, it is not too hard to check that |θ̂(τ)| . 1

〈τ〉 .
This ensures that the second term can be controlled by

IN3 . 〈N3〉1/2ϕN (k)
∥∥∥η(τ/4N3)N−3

∫

R

|τ − τ ′|

〈τ − τ ′〉

|v(τ ′)|

|iτ ′ + k2|
dτ ′
∥∥∥
L2

. N−3/2ϕN (k)‖η(τ/4N3)‖L2
τ

∥∥∥ v(τ)

iτ + k2

∥∥∥
L1
τ

. ϕN (k)
∥∥∥ v(τ)

iτ + k2

∥∥∥
L1
τ

.

4 Bilinear estimate

In this section we provide a proof of the following crucial bilinear estimate.

Proposition 4.1. Let 0 < ε < 1/12. Then for all u, v ∈ S−1
ε it holds

‖∂x(uv)‖N−1
ε

. ‖u‖S−1
ε

‖v‖S−1
ε
. (4.1)

We will need the following sharp estimates proved in [17].

Lemma 4.1. Let u1 and u2 be two real valued L2 functions defined on R×Z

with the following support properties

(τ, k) ∈ suppui ⇒ |k| ∼ Ni, 〈τ − k3〉 ∼ Li, i = 1, 2.

Then the following estimates hold:

‖u1 ⋆ u2‖L2
τL

2(|k|≥N) . min(L1, L2)
1/2
(max(L1, L2)

1/4

N1/4
+ 1
)
‖u1‖L2‖u2‖L2

and if N1 ≫ N2,

‖u1 ⋆ u2‖L2 . min(L1, L2)
1/2
(max(L1, L2)

1/2

N1
+ 1
)
‖u1‖L2‖u2‖L2 .

12



Proof of Proposition 4.1. First we remark that because of the L2
k struc-

ture of the spaces involved in our analysis we have the following localization
property

‖f‖S−1
ε

∼
(∑

N

‖PNf‖
2
S−1
ε

)1/2
and ‖f‖N−1

ε
∼
(∑

N

‖PNf‖
2
N−1

ε

)1/2
.

Performing a dyadic decomposition for u, v we thus obtain

‖∂x(uv)‖N−1
ε

∼
(∑

N

∥∥∥
∑

N1,N2

PN∂x(PN1
uPN2

v)
∥∥∥
2

N−1
ε

)1/2
. (4.2)

We can now reduce the number of case to analyze by noting that the right-
hand side vanishes unless one of the following cases holds:

• (high-low interaction) N ∼ N2 and N1 . N ,

•• (low-high interaction) N ∼ N1 and N2 . N ,

• (high-high interaction) N ≪ N1 ∼ N2.
The former two cases are symmetric. In the first case, we can rewrite the
right-hand side of (4.2) as

‖∂x(uv)‖N−1
ε

∼
(∑

N

‖PN∂x(P.NuPNv)‖
2
N−1

ε

)1/2
,

and it suffices to prove the high-low estimate

‖PN∂x(P.NuPNv)‖N−1
ε

. ‖u‖S−1
ε

‖PNv‖S−1
ε

(HL)

for any dyadic N . If we consider now the third case, we easily get

‖∂x(uv)‖N−1
ε

.
∑

N1

‖P≪N1
∂x(PN1

uPN1
v)‖N−1

ε
,

and it suffices to prove for any N1 the high-high estimate

‖P≪N1
∂x(PN1

uPN1
v)‖N−1

ε
. ‖PN1

u‖S−1
ε

‖PN1
v‖S−1

ε
(HH)

since the claim follows then from Cauchy-Schwarz.
Finally, since the S−1

ε -norm only sees the size of the modulus of the space-
time Fourier transform we can always assume that our functions have real-
valued non negative space-time Fourier transform.
Before starting to estimate the different terms we recall the resonance rela-
tion associated with the KdV equation that reads

(τ1−k
3
1)+(τ2−k

3
2)+(τ3−k

3
3) = 3k1k2k3 whenever (τ1, k1)+(τ2, k2)+(τ3, k3) = 0.

(4.3)
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4.1 High-Low interactions

We decompose the bilinear term as

PN∂x(P.NuPNv) =
∑

N1.N

∑

L,L1,L2

PNQL∂x(PN1
QL1

uPNQL2
v).

Note first that we can always assume that N1 ≫ 1, since otherwise, by using
Sobolev inequalities and (2.7), it holds

∑

N1.1

‖PN∂x(PN1
uPNv)‖

Y −1,− 1
2

.
∑

N1.1

〈N〉−1N‖PN (PN1
uPNv)‖L1

tL
2
x

.
∑

N1.1

‖PN1
u‖L2

tL
∞
x
‖PNv‖L2

.
∑

N1.1

N
1/2
1 ‖PN1

u‖L2‖PNv‖L2

. ‖u‖S−1
ε

‖PNv‖S−1
ε

(4.4)

as soon as ε ≤ 1/2. We now separate different regions. It is worth noticing
that (4.3) ensures that max(L,L1, L2) & N2N1.

4.1.1 L & N2N1

We set L ∼ 2lN2N1. Taking advantage of the X
−1,− 1

2
,1

ε ∩ Z−1,− 1

2 part of

N−1
ε as well as the continuous embedding X−1,− 1

2
,1 →֒ X

−1,− 1

2
,1

ε ∩ Z−1,− 1

2 ,
by using Lemma 4.1 we get

I1 : =
∑

1≪N1.N

∑

l≥0
L1,L2

‖PNQL∂x(PN1
QL1

uPNQL2
v)‖

X−1,− 1
2
,1

.
∑

1≪N1.N

∑

l≥0
L1,L2

2−l/2N−1N
−1/2
1 ‖PNQL(PN1

QL1
uPNQL2

v)‖L2

.
∑

1≪N1.N

∑

l≥0
L1,L2

2−l/2N−1N
−1/2
1 (L1 ∧ L2)

1/2
((L1 ∨ L2)

1/4

N1/4
+ 1
)

× ‖PN1
QL1

u‖L2‖PNQL2
v‖L2

Noticing that for any 0 < α < 1 it holds

(L1∧L2)
1/2
( (L1 ∨ L2)

1/4

N1/4
+1
)
. (L1∨L2)

−α
4N− 3−2α

4 (L1+N
2
1 )

1/2(L2+N
2)1/2,

14



we deduce that

I1 .
∑

1≪N1.N

∑

l≥0
L1,L2

2−l/2(L1L2)
−α/8

(N1

N

) 5−2α
8

‖PN1
QL1

u‖
X−

9−2α
8

, 1
2
,1‖PNQL2

v‖
X−

9−2α
8

, 1
2
,1

Taking α > 0 small enough this proves with (2.8) that

I1 . ‖u‖S−1
ε

‖PNv‖S−1
ε

whenever ε < 1/8.

4.1.2 L1 & N2N1 and L≪ N2N1

We can set L1 ∼ 2lN2N1 with l ≥ 0. By duality, it is equivalent to show
that 1

I2 . ‖u‖S−1
ε

‖PNv‖S−1
ε

‖PNw‖
X1, 1

2
,∞

where

I2 :=
∑

1≪N1.N

∑

l≥0
L2,L≪N2N1

∣∣∣
(
PNQLw , ∂x(PN1

Q2lN2N1
uPNQL2

v)
)
L2

∣∣∣

=
∑

1≪N1.N

∑

l≥0
L2,L≪N2N1

∣∣∣
(

˜PN1
Q2lN2N1

u , ˜∂xPNQLw ⋆
ˇ̃

PNQL2
v)
)
L2

∣∣∣

and θ̌(τ, k) = θ(−τ,−k). According to Lemma 4.1 we get

I2 .
∑

1≪N1.N

∑

l≥0
L2,L.N2N1

2−l/2N−1N
−1/2
1 (L

1/2
1 ‖PN1

Q2lN2N1
u‖L2)

∥∥∥ ˜∂xPNQLw ⋆
ˇ̃

PNQL2
v
∥∥∥
L2

.
∑

1≪N1.N

∑

l≥0
L2,L.N2N1

2−l/2N−1N
−1/2
1 (L

1/2
1 ‖PN1

Q2lN2N1
u‖L2)

×(L ∧ L2)
1/2
((L ∨ L2)

1/4

N
1/4
1

+ 1
)
‖∂xPNQLw‖L2‖PNQL2

v‖L2 .

1The space X1, 1
2
,∞ is endowed with the norm

‖u‖
X

1, 1
2
,∞ :=

(

∑

N

sup
L

[

〈N〉s〈L+N
2〉b‖PNQLu‖L2

xt

]2)1/2
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Since for any ε > 0 we have the estimate

(L∧L2)
1/2
((L ∨ L2)

1/4

N
1/4
1

+1
)
. (L∨L2)

−ε/2N
− 3

4
+ε

1 (L+N2)1/2(L2+N
2)1/2,

it follows that

I2 .
∑

1≪N1.N

∑

l≥0
L2,L.N2N1

2−l/2(LL2)
−ε/4N

− 1

4
+3ε

1

×‖PN1
Q2lN2N1

u‖
X−1−ε, 1

2
,1‖PNQLw‖

X1, 1
2
,∞‖PNQL2

v‖
X−1−ε, 1

2
,1

which is acceptable whenever ε < 1/12.

4.1.3 L2 & N2N1 and L ∨ L1 ≪ N2N1

In this region thanks to the resonance relation (4.3) one has L2 ∼ N2N1.
We proceed as in the preceding subsection. We get

I3 :=
∑

1≪N1.N

∑

L∨L1≪N2N1

∣∣∣
(
PNQLw , ∂x(PNQN2N1

vPN1
QL1

u)
)
L2

∣∣∣

.
∑

1≪N1.N

∑

L∨L1.N2N1

N−1N
−1/2
1 (L

1/2
2 ‖PNQN2N1

v‖L2)

× (L ∧ L1)
1/2
((L ∨ L1)

1/4

N1/4
+ 1
)
‖∂xPNQLw‖L2‖PN1

QL1
u‖L2 . (4.5)

On the other hand, we clearly have

(L∧L1)
1/2
((L ∨ L1)

1/4

N1/4
+1
)
. (L∨L1)

−ε/2N
− 3

4
+ε

1 (L+N2)1/2(L1+N
2
1 )

1/2

Inserting this into (4.5) we deduce

I3 .
∑

1≪N1.N

∑

L∨L1.N2N1

(LL1)
−ε/4N

− 1

4
+2ε

1 ‖PNQN2N1
v‖

X−1, 1
2
,1

× ‖PNQLw‖
X1, 1

2
,∞‖PN1

QL1
u‖

X−1−ε, 1
2
,1 . (4.6)

Now eitherN1 ≤ N orN1 ∼ N . In the first case we have ‖PNQN2N1
v‖

X−1, 1
2
,1 =

‖PNQN2N1
v‖

X
−1, 1

2
,1

ε

which shows that (4.6) is acceptable for 0 < ε < 1/8.

In the second case, we have N−ε
1 ‖PNQN2N1

v‖
X−1, 1

2
,1 ≤ ‖PNQN2N1

v‖
X

−1, 1
2
,1

ε

which shows that (4.6) is acceptable for 0 < ε < 1/12.
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4.2 High-High interactions

We perform the decomposition

P≪N1
∂x(PN1

uPN1
v) =

∑

N≪N1

∑

L,L1,L2

PNQL∂x(PN1
QL1

uPN1
QL2

v).

By symmetry we can assume that L1 ≥ L2. Then (4.3) ensures that
max(L,L1) & NN2

1 .

4.2.1 N2
1N . L1 ≤ N3

1 .

We can set L1 ∼ 2lN2
1N with l ≥ 0. Using the Y −1,− 1

2 part of N−1
ε , we

want to estimate

I4 :=
∥∥∥
∑

N≪N1
l≥0

PN∂x(PN1
Q2lN2

1
NuPN1

v)
∥∥∥
Y −1,− 1

2

.
( ∑

N≪N1
l≥0

‖PN (PN1
Q2lN2

1
NuPN1

v)‖2L1
tL

2
x

)1/2

.
( ∑

N≪N1
l≥0

[N1/2‖PN1
Q2lN2

1
Nu‖L2‖PN1

v‖L2 ]2
)1/2

.

According to (2.7) and (2.8), this leads for ε ≤ 1/2 to

I4 .
( ∑

N≪N1
l≥0

2−l
∑

L1∼2lN2
1
N≤N3

1

[N−1
1 L

1/2
1 ‖PN1

QL1
u‖L2 ]2

)1/2
‖PN1

v‖S−1
ε

.
( ∑

L1≤N3
1

l≥0

2−l
∑

N∼2−lL1N
−2
1

[N−1
1 L

1/2
1 ‖PN1

QL1
u‖L2 ]2

)1/2
‖PN1

v‖S−1
ε

.
( ∑

L1≤N3
1

[N−1
1 L

1/2
1 ‖PN1

QL1
u‖L2 ]2

)1/2
‖PN1

v‖S−1
ε

. ‖PN1
u‖S−1

ε
‖PN1

v‖S−1
ε
.

4.2.2 L1 ≥ N3
1

We can set L1 = 2lN3
1 with l ≥ 0. We proceed by duality as in Subsection

4.1.2 to get

I5 .
∑

1.N≪N1

∑

l≥0
L2,L

2−l/2N
− 1

2
+ε

1 (N−1−ε
1 L

1/2
1 ‖PN1

Q2lN3
1
u‖L2)

∥∥∥ ˜∂xPNQLw⋆
ˇ̃

PN1
QL2

v
∥∥∥
L2
.
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By virtue of Lemma 4.1, we have the bound

∥∥∥ ˜∂xPNQLw ⋆
ˇ̃

PN1
QL2

v
∥∥∥
L2

. (L ∧ L2)
1/2
( (L ∨ L2)

1/4

N
1/4
1

+ 1
)
‖∂xPNQLw‖L2‖PN1

QL2
v‖L2

. (L ∨ L2)
−ε/2N

1

4
+2ε

1 ‖PNQLw‖
X1, 1

2
,∞‖PN1

QL2
v‖

X−1−ε, 1
2
,1 .

Thus it is enough to check that

∑

1.N≪N1

∑

l≥0
L2,L

2−l/2(LL2)
−ε/4N

− 1

4
+3ε

1 . 1,

but this is easily verified for ε < 1/12.

4.2.3 L & N2
1N and N2

1N
1−ε ≤ L2 ≤ L1 ≪ N2

1N

Then, by the resonance relation (4.3) we must have L ∼ N2
1N . We set

L2 ∼ 2qN2
1N

1−ε and L1 = 2pL2 with q ≥ 0 and p ≥ 0. Since N ≪ N1 we

are in the region L & N3. However since X−1,− 1

2
,1 →֒ X−1−ε,− 1

2
,1 ∩Z−1,− 1

2 ,
it suffices to show that

I6 . ‖PN1
u‖S−1

ε
‖PN1

v‖S−1
ε

(∑

N

‖PNQN2
1
Nw‖

2

X1, 1
2
,∞

)1/2

where

I6 :=
∑

N≪N1

∑

p≥0,q≥0

∣∣∣
(
PNQN2

1
Nw, ∂x(PN1

QL1
uPN1

QL2
v)
)
L2

∣∣∣.

Using Lemma 4.1 we get

I6 .
∑

N≪N1

∑

p≥0,q≥0

‖PN1
QL1

u‖L2N−1
1 ‖PNQN2

1
Nw‖X1, 1

2
,∞‖PN1

QL2
v‖

X0, 1
2
,1

.
∑

N≪N1

∑

p≥0,q≥0

2−q/22−p/2N− 1

2
+ ε

2 ‖PN1
Q2p2qN2

1
N1−εQ≤N3

1
u‖

X−1, 1
2
,1

× ‖PNQN2
1
Nw‖X1, 1

2
,∞‖PN1

Q2qN2
1
N1−εQ≤N3

1
v‖

X−1, 1
2
,1

which is acceptable as soon as ε < 1.
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4.2.4 L & N2
1N , L1 ≪ N2

1N and L2 ≤ N2
1N

1−ε

Since N ≪ N1 we are in the region L > N3. It thus suffices to estimate both
the X−1−ε,− 1

2
,1 and the Z−1,− 1

2 norms. Let us start by estimating the first
one. Note that in this region we can replace PN1

u and PN1
v by PN1

Q≤N3
1
u

and PN1
Q≤N3

1
v. Taking into account the gain of ε in the definition of the

space, we get

‖∂x(uv)‖
X−1−ε,− 1

2
,1 .

∑

1.N≪N1

N−εN−1
1 N−1/2‖PN (PN1

Q≤N3
1
uPN1

Q≤N3
1
v)‖L2

.
∑

1.N≪N1

N−εN−1
1 ‖PN1

Q≤N3
1
uPN1

Q≤N3
1
v‖L2

tL
1
x

.
∑

1.N≪N1

N−ε(N−1
1 ‖PN1

Q≤N3
1
u‖L∞

t L2
x
)‖PN1

Q≤N3
1
v‖L2 ,

which is acceptable as soon as ε > 0. It remains to estimate the Z−1,− 1

2 -
norm. By duality we have to estimate

I7 :=
∑

N≪N1

N−2
1 N−1

∣∣∣
(
P̂Nwχ〈σ〉∼N2

1
N , ˜PN1

Q≤N3
1
u ⋆ ˜PN1

Q≤N2
1
N1−εv

)
L2

∣∣∣

where w only depends on k and with σ = τ − k3 (recall that we can assume
that the space-time Fourier transforms of u and w are non negative real-
valued functions). We follow an idea that can be found in [4]. First we
notice that for any fixed k,

χ〈σ〉∼L . χ〈σ〉∼L ⋆τ (
1

L
χ〈σ〉≤L)

and thus the above scalar product can be rewritten as
∣∣∣
(
P̂Nwχ〈σ〉∼N2

1
N , ˜PN1

Q≤N3
1
u ⋆ ˜PN1

Q≤N2
1
N1−εv ⋆τ (

1

N2
1N

χ〈σ〉≤N2
1
N )
)
L2

∣∣∣

where F−1
[

˜PN1
Q≤N2

1
N1−εv ⋆τ (

1
N2

1
N
χ〈σ〉≤N2

1
N )
]
is of the form PN1

Q.N2
1
Nv

′

with
‖PN1

Q.N2
1
Nv

′‖L2 . N−ε/2‖PN1
Q≤N2

1
N1−εv‖L2 . (4.7)

Indeed the linear operator TK,K2
: v 7→ 1

K v(·)χ{〈·〉≤K2} ⋆ χ{〈·〉≤K} is a con-
tinuous endomorphism of L1(R) and L∞(R) with

‖TK,K2
v‖L∞(R) ≤ sup

x∈R

1

K

∣∣∣
∫

R

v(y)χ{〈y〉≤K2}χ{〈x−y〉≤K} dy
∣∣∣

.
min(K,K2)

K
‖v‖L∞(R)
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and

‖TK,K2
v‖L1(R) ≤

1

K
‖v‖L1(R)‖χ{〈·〉≤K}‖L1(R) . ‖v‖L1(R) .

Therefore, by Riesz interpolation theorem TK,K2
is a continuous endomor-

phism of L2(R) with

‖TK,K2
v‖L2(R) . min

(
1,
K2

K

)1/2
‖v‖L2(R) .

Hence, by Sobolev in k and (4.7),

I7 .
∑

N≪N1

N−2
1 N−1N1/2‖P̂Nwχ〈σ〉∼N2

1
N‖L2‖PN1

Q≤N3
1
u‖L∞

t L2
x
‖PN1

Q.N2
1
Nv

′‖L2

.
∑

N≪N1

N−ε/2‖PNw‖L2(T)(N
−1
1 ‖PN1

Q≤N3
1
u‖L∞

t L2
x
)‖PN1

v‖L2 ,

which is acceptable as soon as ε > 0. �

5 Well-posedness

In this section, we prove the well-posedness result. The proof follows exactly
the same lines as in [14]. Using a standard fixed point procedure, it is clear
that the bilinear estimate (4.1) allows us to show local well-posedness but
for small initial data only. This is because H−1 appears as a critical space
for KdV-Burgers. Indeed, on one hand, we cannot get any contraction factor
by restricting time. On the other hand, a dilation argument does not work
here since the reduction of the H−1-norm of the dilated initial data would
be exactly compensated by the diminution of the dissipative coefficient in
front of uxx (that we take equal to 1 in (1.1)) in the equation satisfied by
the dilated solution. In order to remove the size restriction on the data, we
change the metric on our resolution space.

For 0 < ε < 1/12 and β ≥ 1, let us define the following norm on S̃−1
ε ,

‖u‖Zβ
= inf

u=u1+u2

u1∈
˜S−1
ε ,u2∈S̃0

ε

{
‖u1‖˜S−1

ε
+

1

β
‖u2‖S̃0

ε

}
.

Note that this norm is equivalent to ‖ ·‖˜S−1
ε

. Now we will need the following

modification of Proposition 4.1. This new proposition means that as soon
as we assume more regularity on u we can get a contractive factor for small
times in the bilinear estimate.
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Proposition 5.1. There exists ν > 0 such that for any 0 < ε < 1/12 and
all (u, v) ∈ S0

ε × S−1
ε , with compact support (in time) in [−T, T ], it holds

‖∂x(uv)‖N−1
ε

. T ν‖u‖S0
ε
‖v‖S−1

ε
. (5.1)

Proof. It suffices to slightly modify the proof of Proposition 4.1 to make use
of the following result that can be found in [[11], Lemma 3.1] (see also [[15],
Lemma 3.6]): For any θ > 0, there exists µ = µ(θ) > 0 such that for any
smooth function f with compact support in time in [−T, T ],

∥∥∥∥∥F
−1
t,x

(
f̂(τ, k)

〈τ − k3〉θ

)∥∥∥∥∥
L2
t,x

. T µ‖f‖
L2,2
t,x
. (5.2)

According to (2.8) this ensures, in particular, that for any w ∈ S0
3/8 with

compact support in [−T, T ] it holds

‖w‖L2
tH

3/4 . ‖w‖
X

0, 3
8
,2

3/8

. T µ( 1
8
)‖w‖

X
0, 1

2
,2

3/8

. T µ( 1
8
)‖w‖S0

3/8
. (5.3)

It is pretty clear that the interactions between high frequencies of u and high
or low frequencies of v can be treated by following the proof of Proposition
4.1 and using (5.3). The region that seems the most dangerous is the one
of interactions between low frequencies of u and high frequencies of v in the
proof of Proposition 4.1. But actually in this region, except in the subregion
N1 . 1, we can notice that we may keep some powers of L1 or L2 in the
estimates and thus (5.3) ensures that (5.1) holds (one can even replaced S0

ε

by S−1
ε ) . Finally, in the subregion N1 . 1, (5.1) follows directly by applying

(5.3) in the next to the last line in (4.4).

We are now in position to prove that the application

F T
φ : u 7→ η(t)

[
W (t)φ−

1

2
L∂x(ηTu)

2
]
,

where L is defined in (3.2), is contractive on a ball of Zβ for a suitable
β > 0 and T > 0 small enough. Assuming this for a while, the local part of
Theorem 1.1 follows by using standard arguments. Note that the uniqueness

will hold in the restriction spaces S̃−1
ε (τ) endowed with the norm

‖u‖˜S−1
ε (τ)

:= inf
v∈˜S−1

ε

{‖v‖˜S−1
ε
, v ≡ u on [0, τ ]} .

Finally, to see that the solution u can be extended for all positive times
and belongs to C(R∗

+;H
∞) it suffices to notice that, according to (2.7),
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u ∈ S−1
ε (τ) →֒ L2(]0, τ [×T) . Therefore, for any 0 < τ ′ < τ there exists

t0 ∈]0, τ ′[, such that u(t0) belongs to L
2(T) . Since according to [15], (1.1)

is globally well-posed in L2(T) with a solution belonging to C(R∗
+;H

∞(T)),
the conclusion follows.

In order to prove that F T
φ is contractive, the first step is to establish the

following result.

Proposition 5.2. For any β ≥ 1 there exists 0 < T = T (β) < 1 such that
for any u, v ∈ Zβ with compact support in [−T, T ] we have

‖L∂x(uv)‖Zβ
. ‖u‖Zβ

‖v‖Zβ
. (5.4)

Assume for the moment that (5.4) holds and let u0 ∈ H−1 and α > 0.
Split the data u0 into low and high frequencies:

u0 = P.Nu0 + P≫Nu0

for a dyadic number N . Taking N = N(α) large enough, it is obvious to
check that ‖P≫Nu0‖H−1 ≤ α. Hence, according to (3.1),

‖η(·)W (·)P≫Nu0‖Zβ
. α.

Using now the S̃0
ε -part of Zβ, we control the low frequencies as follows:

‖η(·)W (·)P.Nu0‖S̃0
ε
.

1

β
‖P.Nu0‖L2 .

N

β
‖u0‖H−1 .

Thus we get

‖η(·)W (·)P.Nu0‖Zβ
. α for β &

N‖u0‖H−1

α
.

Since α can be chosen as small as needed, we conclude with (5.4) that F T
φ

is contractive on a ball of Zβ of radius R ∼ α as soon as β & N‖u0‖H−1/α
and T = T (β).

Proof of Proposition 5.2. By definition on the function space Zβ, there exist

u1, v1 ∈ S̃−1
ε and u2, v2 ∈ S̃0

ε such that u = u1 + u2, v = v1 + v2 and

‖u1‖˜S−1
ε

+
1

β
‖u2‖S̃0

ε
≤2‖u‖Zβ

,

‖v1‖˜S−1
ε

+
1

β
‖v2‖S̃0

ε
≤2‖v‖Zβ

.
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Thus one can decompose the left-hand side of (5.4) as

‖L∂x(uv)‖Zβ
. ‖L∂x(u1v1)‖˜S−1

ε
+ ‖L∂x(u1v2 + u2v1)‖˜S−1

ε
+ ‖L∂x(u2v2)‖˜S−1

ε

= I + II + III.

From the estimates (3.3) and (4.1) we get

I . ‖∂x(u1v1)‖N−1
ε

. ‖u1‖S−1
ε
‖v1‖S−1

ε
. ‖u‖Zβ

‖v‖Zβ
.

On the other hand, we obtain from (5.1) that

III . T ν‖u2‖S0
ε
‖v2‖S0

ε
. β2T ν‖u‖Zβ

‖v‖Zβ
.

and

II . T ν(‖u1‖S−1
ε

‖v2‖S0
ε
+ ‖u2‖S0

ε
‖v1‖S−1

ε
)

. βT ν‖u‖Zβ
‖v‖Zβ

.

We thus get

‖L∂x(uv)‖Zβ
. (1 + (β + β2)T ν)‖u‖Zβ

‖v‖Zβ
.

This ensures that (5.4) holds for T ∼ β−2/ν ≤ 1.
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