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Sharp ill-posedness and well-posedness results for
the KdV-Burgers equation: the periodic case

Luc Molinet and Stéphane Vento

Abstract. We prove that the KdV-Burgers is globally well-posed in
H~Y(T) with a solution-map that is analytic from H~!(T) to C([0, T]; H~(T))
whereas it is ill-posed in H*(T), as soon as s < —1, in the sense that the
flow-map ug — u(t) cannot be continuous from H*(T) to even D'(T) at any
fixed t > 0 small enough. In view of the result of Kappeler and Topalov for
KdV it thus appears that even if the dissipation part of the KdV-Burgers
equation allows to lower the C*° critical index with respect to the KdV
equation, it does not permit to improve the C? critical index .

1 Introduction and main results

The aim of this paper is to establish positive and negative optimal results
on the Cauchy problem in Sobolev spaces for the Korteweg-de Vries-Burgers
(KdV-B) equation posed on the one dimensional torus T = R/27Z:

Ut + Upgy — Upg + ULy =0 (1.1)

where u = u(t,x) is a real valued function.

This equation has been derived by Ott and Sudan [1§] as an asymptotic
model for the propagation of weakly nonlinear dispersive long waves in some
physical contexts when dissipative effects occur.

In order to make our result more transparent, let us first introduce differ-
ent notions of well-posedness (and consequently ill-posedness) related to the
smoothness of the flow-map (see in the same spirit [[J], [[]). Throughout
this paper we shall say that a Cauchy problem is (locally) C%-well-posed in
some normed function space X if, for any initial data uy € X, there exist
a radius R > 0, a time T" > 0 and a unique solution u, belonging to some
space-time function space continuously embedded in C([0,77]; X), such that
for any t € [0,T] the map up — u(t) is continuous from the ball of X cen-
tered at ug with radius R into X. If the map ug — u(t) is of class CF,
k € NU {oo}, (resp. analytic) we will say that the Cauchy is C*-well-posed



(resp. analytically well-posed). Finally a Cauchy problem will be said to be
C*-ill-posed, k € NU {oo}, if it is not C*-well-posed.

In [[[§], Molinet and Ribaud proved that this equation is analytically
well-posed in H*(T) as soon as s > —1. They also established that the
index —1 is critical for the C?-well-posedness. The surprising part of this
result was that the C*° critical index s2°(KdV B) = —1 was lower that the
one of the KdV equation

Ut + Upgy + Uy =0

for which s°(KdV) = —1/2 (cf. [1J], [[l]) and also lower than the C°° index
52(dB) = s9(dB) = —1/2 (cf. [[ll, [B]) of the dissipative Burgers equation

Ut — Upy + Uty =0 .

On the other hand, using the integrability theory, it was recently proved
in [[J that the flow-map of KAV equation can be uniquely continuously
extended in H~!(T). Therefore, on the torus, KdV is C%-well-posed in H 1
if one takes as uniqueness class, the class of strong limit in C([0, T|; H~*(T))
of smooth solutions.

In [[[4] the authors completed the result of [[[5] in the real line case by
proving that the KdV-Burgers equation is analytically well-posed in H~*(R)
and C%-ill-posed in H*(R) for s < —1 in the sense that the flow-map defined
on H~'(R) is not continuous for the topology inducted by H*, s < —1,
with values even in D’(R). To reach the critical Sobolev space H!(R) they
adapted the refinement of Bourgain’s spaces that appeared in [[[J] and [[[]
to the framework developed in [[§]. The proof of the main bilinear estimate
used in a crucial way the Kato smoothing effect that does not hold on the
torus. Our aim here is to give the new ingredients that enable to overcome
this lack of smoothing effects. The main idea is to weaken the space regu-
larity of the Bourgain’s spaces in a suitable space-time frequencies region.
Note that our resolution space will still be embedded in C([0,T]; H~*(T))
and that, to get the L>(]0,T]; H!(T))-estimate in this region, we use an
idea that appeared in [f]. Finally, once the well-posedness result is proved,
the proof of the ill-posedness result follows exactly the same lines as in
[[4). It is due to a high to low frequency cascade phenomena that was first
observed in [J] for a quadratic Schrédinger equation.

In view of the result of Kappeler and Topalov for KAV it thus appears
that, at least on the torus, even if the dissipation part of the KdV-Burgers
equation! allows to lower the C° critical index with respect to the KdV



equation, it does not permit to improve the C? critical index .
Our results can be summarized as follows:

Theorem 1.1. The Cauchy problem associated to ([.1) is locally analyti-
cally well-posed in H~Y(T). Moreover, at every point ug € H~1(T) there
exist T = T(ug) > 0 and R = R(up) > 0 such that the solution-map
ug +— u is analytic from the ball centered at ug with radius R of H~'(T)
into C([0,T); H-1(T)). Finally, the solution u can be extended for all posi-
tive times and belongs to C'(R%; H>(T)).

Now that we have established analytic well-posedness, proceeding ex-
actly as in [[[4] by taking as sequence of initial data

¢n(x) = Ncos(Nzx) ,
we get the following ill-posedness result.

Theorem 1.2. The Cauchy problem associated to ([[.1) is ill-posed in H*(T)
for s < —1 in the following sense: there exists T > 0 such that for any 0 <
t < T, the flow-map ug — u(t) constructed in Theorem is discontinuous
at the origin from H~Y(T) endowed with the topology inducted by H*(T) into
D'(T).

Acknowledgements: L.M. was partially supported by the ANR project
”Equa-Disp”.

2 Resolution space

In this section we introduce a few notation and we define our functional
framework.

For A, B > 0, A < B means that there exists ¢ > 0 such that A < ¢B.
When c is a small constant we use A < B. We write A ~ B to denote
the statement that A < B < A. For v = u(t,z) € §'(R x T), we denote
by @ (or Fpu) its Fourier transform in space, and u (or Fu) the space-time
Fourier transform of u. We consider the usual Lebesgue spaces L?, LE L} and
abbreviate L L? as LP. Let us define the Japanese bracket (z) = (14 |z|?)'/?
so that the standard non-homogeneous Sobolev spaces are endowed with the
norm ||l = [{9)* Il .

We use a Littlewood-Paley analysis. Let n € C§°(R) be such that n > 0,
suppn C [—2,2], n = 1 on [—1,1]. We define next ¢(k) = n(k) — n(2k).

Mt is important to notice that the dissipative term —uy, is of lower order than the
dispersive one Ugzzs.



Any summations over capitalized variables such as IV, L are presumed to be

dyadic, i.e. these variables range over numbers of the form 2¢, £ € NU{-1}.

We set 1 = nand for N > 1, on(k) = ¢(k/N) and define the operator
2

Py by F(Pyu) = onu. We introduce 1y, (7,k) = ¢r(7 — k?) and for any

ue S (RxT),

fx(PNU(t))(k) = @N(kj)ﬂ(t’ k)’ ]:(QLU)(T’ k) = T;Z)L(Ta k‘)ﬂ(T, k)

Roughly speaking, the operator P/, and @)/ localize respectively in the

ball {|k| < 1} and {|7—k?| < 1} whereas for N > 1, the operator Py localizes

in the annulus {|k| ~ N} and Qx localizes in the region {|7 — k3| ~ N}.
Furthermore we define more general projection P<y = N<N PN

Qsr=>1,51 QL etc.
Let e 9722 be the propagator associated to the Airy equation and define
the two parameters linear operator W by

W(t,t)¢ = exp(ith® — [t'|k*)p(k) e, teR. (2.1)
keZ
The operator W : ¢t — W (t,t) is clearly an extension on R of the linear
semi-group S(-) associated with ([[.T]) that is given by
S(t)p =Y exp(ith® — th*)p(k) e*”, teR,. (2.2)
kEZ

We will mainly work on the integral formulation of ([L.1)):
1 t
u(t) = S(t)ug — 3 / S(t —t)ou(t)dt, teR,. (2.3)
0

Actually, to prove the local existence result, we will follow the strategy of
4] and apply a fixed point argument to the following extension of (2.9):

u(t) = n(t)[W(t)UO_%XRJr(t) /O W (t—t't —t")ou?(t)dt

—%XR_ (t) /t W(t—1t,t+ t’)@muz(t’)dt’] . (2.4)
0

It is clear that if u solves (2.4) then u is a solution of (2-3) on [0,T], T < 1.
In [[4], adapting some ideas of [[] and [[§] to the framework devel-
oped in [[J], the authors performed the iteration process in the sum space

1 1
X131 £ y—13 where

fuless = (30 [ SN+ N2 1PN @uulsz ) )

N L



and

1/2
lully~e = (UMY IF MG = ) + K2+ 0P 2onil | a)?)
N

so that

3 1/2
lallyag ~ (SN + Bre — B + DPyully )
N

As explained in the introduction, due to the lack of the Kato smoothing
effect on the torus, we will be able to control none of the two above norms
in the region ”o-dominant”. The idea is then to weaken the required z -
regularity on the X*® component of our resolution space in this region. For

e > 0 small enough, we thus introduce the function space X2’ %4 endowed
with the norm
24 1/2
fullgns = (] 30 N+ N2 PvQuulyz, )
N L<N3
2\ 1/2
(| W NP Qs | ) T (25)
N L>N3

However, X2*! is not embedded anymore in L (R; H~*(T)). For this rea-

son we will take its intersection with the function space L H~1, that is a
dyadic version of L>®(R; H~(T)), equipped with the norm

3 1/2
lull e = (UM PN ulgesal?)
N

Finally, we also need to define the space Z =3 equipped with the norm

ful -y = (V) low ®) i — )+ 13 Yz 07

N

We are now in position to form our resolution space Ss = (X2 NLRH- )+
S

Y*2 and the "nonlinear space” N = (X5’72’ N Z%73) 4+ Y*"2 where the
nonlinear term d,u? will take place Actually we will estimate [|0,u?||xs in

term of |jul|ss where S = X5’2’ LY. Obviously [jul/ss < ||uH~ and the
first of these norms has the advantage to only see the size of the modulus of



the space-time Fourier transform of the function. This will be useful when
dealing with the dual form of the main bilinear estimate.
Note that we endow these sum spaces with the usual norms:

[ullx+y = nf{[lur][x + [luglly s w1 € Xsug € Yu = uy + us}.

In the rest of this section, we study some basic properties of the function
space S 1.

Lemma 2.1. For any ¢ € L?,

(S 21Quie )] a?)

L

1/2
S ol e

Proof. From Plancherel theorem, we have

/
(i 21Que ) ,a?) " ~ e = K 2F (o)

L

Moreover if we set np(t) = n(t/T) for T > 0, then

Flur (e %= ) (r, k) = ip(r — k)b (k).
Thus we obtain with the changes of variables 7 — k> — 7/ and Tt/ — o that
i = K2 2F (e == 9) | 2 S Nolloz 7' [V2THTT) 12, < N6ll12-
Taking the limit T" — oo, this completes the proof. O

Lemma 2.2. 1. For anye >0 and all u € S{l , we have

1/2
el ensn Sl g and (3 IPxQenoul gy S g
N

(2.6)
2. For any 0 <e <1/2 and all u 655_1 , we have
ullzz, S llullg-1- (2.7)
3. For allu € YO1/2,
(S 2iQuula)” < lul oy 28)

L



—_—

Proof. 1. First it is fairly obvious that L{°H, Uy L®H' and that,

1
7271

according to the definition of X,

) 1/2
(S IPvQenstlt ) S Il 1y
N

€

Second, for any dyadic N

k)1 ~
Pyull o = || 77 ( — )+ K+ Do)
| NuHLt H-1 t i(r — k?3) T RZ+ 1( i(T )+ k" +1onu oL
- k)" lon (k)
< )
~ H PNi(r - k) + R+ 1 L?°L°°H Pl
_ 2
SR on (Bl zgelle™ N xger (D) e | Pavull, o,
S(N)” 1HPNUH 1 SIPyull, g
This completes the proof of (B.6) after square summing in N.
2. In the same way, for any dyadic IV
IPyvulle S > [IPNQrullzz + > IPvQrullz2
L<N3 L>N3
S ) IPNQuulipe + Y LYVPN T3 PyQuul
L<N3 L>N3
< ||P . 2.9
~ H NUHXI_/IQ’%’I ( )

On the other hand, applying Young and Holder’s inequalities, we get

1
(T —k3) + k2 + 1

| Prullpe = Hf_ ( (i(T — k%) +k2+1)90Nu)‘

2
tk

&)
P
~ H]: ( T — k;3) 1 k241 LfLZO” NtuO,%
S e ™ X (0l z 1Pl o,y

SAN) TPyl oy S IPvull oy

This proves (@) after square summing in V.

3. Setting v = (0 + Opysx)u, we see that u can be rewritten as

t
u(t) — e—taxxxu(o) +/ e—(t—t’)axacx,u(t/)dt/.
0

7



By virtue of Lemma P.1], we have
B 1/2
(DI 2IQue = u(0)2)?) " S Iu(0)llze S llull e 12
L

Moreover, we get as previously

! >H [ S lull
u .
(T — k) + k2 + 1/ g yo3 ~ Hlyos

lullpers S |77

Now it remains to show that

(Z {Ll/2HQL /Ot e~ =) Bwaaqy (1) qt!
L

since the right-hand side is controlled by

2\ 1/2
L) sl @10)

I1PNvllpirs S I = One) Prullpyzz + [[Paull o

2
(7 e e

S IPvull o8-

e F L) IPwlay

In order to prove (R.1(), we split the integral fg = ffoo - fEOO. B
Lemma P, the contribution with integrand on (—o0,0) is bounded
by

S HUHLtng'

0
< H / e Owea () dt!
L2
—0oQ

For the last term, we reduce by Minkowski to show that
/ 1/2
(S 21QuCaswe™ 2w )12 1) S o(t)llse.
L

This can be proved by a time-restriction argument. Indeed, for any
T > 0, we have

/ /
(UL 21Qurr (Exisre™ = Pemo@ ) 1a2)

L

S Y20 ) Fa (e ()xes0) (7) | 2
S @2l 12 Fo () xerse) | o2
S @) ze-

We conclude by passing to the limit T" — oo.



3 Linear estimates

It is straightforward to check that estimates on the linear operator W (t)
and on the extension of the Duhamel term proven in [[4] on R still hold on

811 o~ —

T. We thus will concentrate ourselves on the X;'2" N L H~1 component.

Proposition 3.1. 1. For anye >0 and all ¢ € H-(T), we have
InOW )0l ;= < 1ol (3.1)

€

2. Let L: f — Lf denote the linear operator

£hto) = a®(xee®) [ Wttt =)5@)ar

t
+XR_(t)/O W(t—t’,t+t’)f(t’)dt’> : (3.2)
If f e N7V with e >0, then
1Ll = S 1l (3-3)

Proof. The ﬁr§t assertion is a direct consequence of the corresponding es-
timate in X*2'! proven in [[4] together with the continuous embedding
X2l o LXH-1 A X202 for e > 0.

To prove the second assertion, it clearly suffices to show the three fol-
lowing inequalities

1l oy S 71l oy (3.4)
151 oy S IF1 oy + 1710y (3.5)
1efl s S Wl (3.6)

Estimate (B.4) has been proved in [14]. To prove (B.H) we first note that
according to [[14], it holds

1L ogn S oy (3.7)

It is then not too hard to be convinced that (B.5) is a consequence of the
following estimate:

([ 2+ 2Py Qu(e(@oavs P2 )

N>4 L<N3

N3
/
ey + (X X @8 21evQeslz] )" 39

N>4 L=N3/2



To prove (B.§) and (B.§) we proceed as in [[4]. Using the z-Fourier expansion
and setting w(t) = U(—t)f(t) it is easy to derive that

citT (t—=[thk* _ o—[t|k?

Z za:k/ P @(T,kﬁ)dT] .

kEZ

Lf(t,x)

In particular by Plancherel and Minkowski,

SItT o(t=[tk> _ o—|t|k?

1075 = 0 0L g < (S forente e 0

2 1/2
L2L<><>) ’

Now for k € Z fixed and v € S(R) we set

SItT o (t=[tk> _ o—|t|k?

Ke(o)(®) = n(0hon (k) [

A P v(T)dr.

We thus are reduced to show that for any k € 7Z,

e )

(3.9)

1

and

Z (L + N2>1/2\|PL(Kk(‘I)22N3U))||L§
L<N3

NS
> on(k)L+ N |opvl 2. (3.10)
L=N3/2

1

<[5,

where we set ®=on3 = ~qys @L. To prove (B.9) it suffices to notice that

[o(7)]

K o < oo k —
1K)l % Illeonh) [ 22T dr

which gives the result for £ # 0. In the case k = 0 we use a Taylor expansion
to get

|v(7)] 1 [7]"|v(7)]
Ko(v)|| o0 S on(k)[||n Loo/ dr + t"n|| - dr
H ( )H ¢ ( ){H H o1 ’T‘ 321 n,” H - ’T‘

I7I<
o = Ly
0 ) 2, ilt"nle

AN

10



which is acceptable since [|t"n||pe~ < 2™.
To get (B.1() we first rewrite Kj(®>on3v) as

3 et 6—|t\k2
n(t)e(t |t)k280N(k)/Rm‘bzz]\[i’;(T)’U(T)dT—T](t)QON(k)/];m@ZQNS(T)’U(T)dT

The contribution of the second term is easily controlled by the first term of
the right-hand side of (B.10) since, according to 4],

S LA+ NV oy (k) PL(n(t)e ™) 12 < 1.
L

To treat the contribution of the first one, we set 0(t) = 77(75)6(’5*“‘)"?2 and
rewrite this contribution as ), - ys I, with

v(1)

—_— . A1
it + k2 (3.11)

I = <L+N2>1/2H<PN(]€)‘PL(T) <‘/9\(7J)* [@>2n3(7") L2

)|

For L < N3 /4, by support considerations we may replace é\(T,) by X‘T/|>L3§(T,)
Z73
in (B.I1). Since it is not too hard to check that two integrations by parts
~ 2
yield |0(7)] < {5)” . this ensures that

SAGEE

~ v
SIS 3 LN Pen Bl |
L<N3/4 L<N3/4 o
_ v
S (L+NAHAN 5/2¢N(k)Hm‘Ll
L<N3/4

S v ——|
~ PN (it + k%) izt

Now, for L = N3 (Note that the case L = N3/2 can be treated in exactly
the same way), we use that ¢; = n(-/2L)¢;, and that by the mean value
theorem, |or(7) —pr(7")| < L7 |7 —7'|. Substituting this in (B.11]) we infer
that

Dopns (T"v(r’) /

< (N3 2\1/2 (- — !
s § (N + N2V ()| [ B = s () 22251

12

Y /
+<N3+N2>1/2¢N(k)Hn(7-/4N3)N_3/ e — )7 — 2 g
R ”LT/+k2‘

12

= 1]1\73 + 1]2\73

11



Applying Plancherel theorem, Holder inequality in ¢ and then Parseval the-
orem, the first term can be easily estimated by

-
o S (N N gy (0] | 220U

S (N2 (k) s ()o(7) 12
which is acceptable. Finally, note that H9||Loo <10z < Inllzr < 1and that

integrating by parts one time, it is not too hard to check that |6(7)| < <
This ensures that the second term can be controlled by

‘U(T/)’ /
d
T—T> liT! + k2| T

L2

Ins S (VY2 (k) (/4NN - /

~3/2 3|1z [ 2
SN v (R)ln(r /ANl || 5|

L2

<
~ PN HiT—i—ka L

4 Bilinear estimate

In this section we provide a proof of the following crucial bilinear estimate.

Proposition 4.1. Let 0 < £ < 1/12. Then for all u,v € S=* it holds

[0 (wv)[| \m1 S Null g llvll g1 (4.1)
We will need the following sharp estimates proved in [I7].

Lemma 4.1. Let u; and us be two real valued L? functions defined on R x Z
with the following support properties

(1, k) € suppu; = |k| ~ Ny, (t — k3) ~ Lj, i = 1,2.
Then the following estimates hold:

max(Ll, L2)1/4

N1/4 + 1>HU1HL2HU2HL2

Hu1 * UQHLZL2(“9|2N) S min(Ll, L2)1/2(
and if N1 > N,

max (L, Ly)'/?

HU1 * u2HL2 S min(Ll, L2)1/2(
N

1)l e szl .

12



Proof of Proposition [[.]. First we remark that because of the Li struc-
ture of the spaces involved in our analysis we have the following localization

property
/ /
s ~ (S IPwrI2-) " and (7l ~ (S IEwII2)
N N

Performing a dyadic decomposition for u,v we thus obtain
2 1/2
102 (1) [ -1 ~ (Z H 3 PNﬁx(PNluPNQU)HN_1> L (42)
N  N1,N2 £

We can now reduce the number of case to analyze by noting that the right-
hand side vanishes unless one of the following cases holds:

e (high-low interaction) N ~ Ny and N1 S N,
e (low-high interaction) N ~ Ny and Ny < N,
e (high-high interaction) N < Nj ~ Nj.

The former two cases are symmetric. In the first case, we can rewrite the

right-hand side of (l.9) as
1/2
10z (wv) || ym1 ~ (Z ||PN3;B(P5NUPNU)||]2\[E_1> ,
N

and it suffices to prove the high-low estimate
| Px0 (PenuPxo)lly1 S g | Pl (HL)
for any dyadic N. If we consider now the third case, we easily get
102 (o)l 1 S D 1Py Py uPpvy )|y
N1

and it suffices to prove for any N7 the high-high estimate
[Py O (Pry uPny v)l =1 S 1Py vl g1 | vy vl -1 (HH)

since the claim follows then from Cauchy-Schwarz.
Finally, since the S-!-norm only sees the size of the modulus of the space-
time Fourier transform we can always assume that our functions have real-
valued non negative space-time Fourier transform.
Before starting to estimate the different terms we recall the resonance rela-
tion associated with the KdV equation that reads

(Tl—k%)—{—(Tg—kﬁg’)—F(Tg—kg) = 3k1koks whenever (11, k1)+ (72, k2)+(73, k3) = 0.
(4.3)

13



4.1 High-Low interactions

We decompose the bilinear term as

PN Oz (P<yuPyv) = Z Z PnQr0xz(PnyQr,uPNQL,v).
N1 SN L,L1,La

Note first that we can always assume that N1 > 1, since otherwise, by using
Sobolev inequalities and (R.7), it holds

ZHPNax(PNluPNU)HY_l,_% S Y (NN Py (PyyuPyo)ll g

Ni<1 N <1
S D IPwullpzpe | Pavl e
N <1
< N2 p P
S ) NPyl || Pyl e
N <1
S ullg 1Pyoll g (4.4)

as soon as € < 1/2. We now separate different regions. It is worth noticing
that () ensures that max(L, Ly, Ls) 2 N2Njy.

4.1.1 L > N2N

1.1
We set L ~ 2!N2N;. Taking advantage of the X Lol Nz L=z part of

. . 1,1 “1-5.1 1
N1 as well as the continuous embedding X 1 3l ey X, ¥ nzth é,
by using Lemma [£.1 we get

L:= Y > 1PN QLOx(Pry QL uPNQLy0) 134

1<NI<SN >0
Ly,L2

Z Z 2*1/2]\771]\71_1/2HPNQL(PNlQLIUPNQL2U)”L2

1<NI<SN >0
Ly,L2

SN AN INT AL AL2)1/2<M n 1)

N1/4
1<N1<N >0
Li,L2

X || Pny Qry vl 2| PN Qryv|| 2

N

A

Noticing that for any 0 < o < 1 it holds

Ly V Ly)Y/* o
BV 1) S (v 8-

3—2«
4

LiALy) /2 Li+N2)Y2(Ly+N2)/2,
1

14



we deduce that

B B Nl 57204
ns Y N L) () P Quull oz g PN Qv oy
1<NISN 1>0
Ly,Lo
Taking o > 0 small enough this proves with (B.§) that
I S lullg-r 1Py ol g

whenever € < 1/8.

4.1.2 I, 2N2N1 and L<<N2N1

We can set L1 ~ 2!N2N; with [ > 0. By duality, it is equivalent to show
that []
I S lull g1 [[Proll g1 Pywl]

Xl 2 ,00
where
IQ = E E ‘(P]\TQL’LU7 ax(PNlelAﬂNluPNQLQ’U))LQ
1<N SN >0
Lo, L& N2N;

—~—— —
= g E ‘(PN1Q2lN2N1u7 axPNQLw*PNQLQU)>L2‘
1<N SN >0
L2, LLN2N;

and (7, k) = 0(—7, —k). According to Lemma 1] we get

d
L2

_ _1Ar—1/2 12
IQ SJ Z Z 2 Z/ZN 1N1 / ( / HPN1Q2lN2N1u”L2)
1<N1SN >0
Lo, L<N2N;

— — —-1/2,71/2
< Y Y 2NN P Quie g ull2)

1«N1SN >0
Ly, L<N2N,

(LV Ly)V/*

X(L/\L2)1/2 71
Gy

+1) 110 PyQruwll 2| Py Qrovll 2.

!The space X12° js endowed with the norm

s 2\ 1/2
el g1, o 2= (2 sup [(N)*{L 4+ M%) | Py @l e, | )
N

15



Since for any € > 0 we have the estimate

(LV Ly)'/*

1/2
(AL (=
1

_3
+1> 5 (L\/L2)—8/2N1 4+E(L+N2)1/2(L2+N2)1/2,

it follows that

1
—1/2 —e/4 A7 13E
L s D > 27V2(LLy) /4N, 7
1<N1 SN >0
Lo, L<N2N;

1 IPNQrLy|

X[ Py Qai v vy u| 1allPNQrwll 1y

x-l-e X—l—s,%,l

which is acceptable whenever € < 1/12.

4.1.3 Ly > N?N;and LV L < N2N;

In this region thanks to the resonance relation ([£3) one has Ly ~ N2Nj.
We proceed as in the preceding subsection. We get

I3 = Z Z ‘(PNQLU}’ 33:(PNQN2N10PN1QL1U))

1<«N1 SN LVL1<N2N;
—1a—1/2,71/2
s S NN P Que vle)
1<<N1§N LVL1§N2N1
(LV Ly)Y*
N1/4

L2

x (LA L2 ( +1) 10 Py Quuwll 2| Py, Quy = (4.5)

On the other hand, we clearly have

LV L)'/4
(paLy () N1/14)

Inserting this into (f£F) we deduce

_3
+1) S (LV L) 2N] (L NV (Ly + N

- —3+2
LS D > (L) NP Quen vl g
1<<N15N LVL1§N2N1

X [[PNQrwll 1,3 00 [1Pn Qryul| (4.6)

Xl’% Xfl*f’%’l'

Now either Ny < N or N1 ~ N. In the first case we have HPNQN2N1UHX—1,%,1 =

[PN@n2n, vl 3.0 Which shows that (B.8) is acceptable for 0 < & < 1/8.
X%

In the second case, we have Nf":||PNQNQNIvHXﬂ’%’1 < HPNQN?vaHXfl,%,l

which shows that ([.6) is acceptable for 0 < & < 1/12.

€
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4.2 High-High interactions
We perform the decomposition
Pen,0x(PyuPyv) = > Y PNQLOx(Pry Qr,uPn, Qrov).
N<Ny L,L1,L2

By symmetry we can assume that L; > L. Then ([.3) ensures that
max(L, L) > NN?.

4.21 N2N <Ly <N,

We can set Ly ~ 2!N?N with [ > 0. Using the y-1-z part of N-'1, we
want to estimate

Iy = H Z Py 0y (P, Qo y2yuPn, v)

N<N;
1>0

1/2
S ( Z HPN(PNleleNUPNlU)||%ng)

1
y~b—z2

NNy
1>0
< 1/2 2\ /2
S (X2 INY2 P, Qunavullez | Pr ol 12)2)
NN
1>0
According to (R.7) and (R.§), this leads for ¢ < 1/2 to
_ _1,1/2 1/2
ns (Y2t Y VLI Quul ) Pyl
NNy L1~2IN2N<N3
1>0
_ _1,1/2 1/2
S 2 Y LM Quulle?) I Pa vl g
L1<N} N~2-ULiNT2

1>0

A

_1.1/2 1/2
(X N L IP Qi) P vl o
L <N}

S PNl 1P ol 51

4.2.2 L > N3}

We can set L; = 2lNi5 with { > 0. We proceed by duality as in Subsection
to get

_1
LS Y 32 AN RN LY P Quipul 1)

ISN<N; 120
La,L

0. PNQrw*Pn, Qr,v

2’
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By virtue of Lemma [L.T], we have the bound

-5 12 ( (L V L)t/
‘ O PNQrw * Py, QLyv ‘L2 S (LA L) <T + 1) 102 PN Qrwl| 2[| P, Qr, vl 2
1
_ 142
S LV Ly) ANF TPy Qrwll o g 1P Qravll o1 g

Thus it is enough to check that

S 2Ly N T <

ISN<N; 120
L3,L

but this is easily verified for e < 1/12.

4.2.3 L2 N?N and NiN'=¢ <[, <L; < NN

Then, by the resonance relation (.J) we must have L ~ NZN. We set
Lo ~ 2‘1]\712]\71_8 and L1 = 2PLy with ¢ > 0 and p > 0. Since N <« N we
are in the region L > N3. However since X-b 3l ey xlmemaln Zil’fé,
it suffices to show that

1/2
Is 5 | Pwul s 1 Proll s (2 1P Quznwl? )
N

where
Ige= > > ‘(PNQNIQNU)7ax(PNlQLluleQLgv))LQ‘-
NNy p20,g20
Using Lemma [.1 we get

Is < Z Z ”PNlQLlu”LQNl_l“PNQNwa”XL%,ooHPN1QL2UHX0,%,1
N<N1p20,g20

1
S Z Z 2—q/22—p/2N—§+§ ||PN1Q2PQQN12N1—5Q§NISUHX—1,%,1
NNy p20,420
X HPNQNIQNWHXL%,OO [Py Q2‘1N12N1_5QSNi3U||X—1,%,I

which is acceptable as soon as € < 1.
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424 L2 N{N,L < NN and Ly < N}N'=*

Since N < Nj we are in the region L > N3. It thus suffices to estimate both
the X175~ 3! and the Z~1~2 norms. Let us start by estimating the first
one. Note that in this region we can replace Py,u and Pn,v by Py, Q< N3U
and P, Q< N3O Taking into account the gain of € in the definition of the
space, we get

10c ()l ey D NTENTINTVZ PN (P Qg P Qangv) 12
1SN<EN;
< Z N’ENflHPNlQSN?UPNngNlSUHLgL;
1SN<EN;
< Z N_e(Nfl||PN1Q§N§UHL§°L§)HPNlQSNf’UHL?’
1SN Ny

which is acceptable as soon as € > 0. It remains to estimate the Z “L-3.
norm. By duality we have to estimate

I; = Z NfQN_l‘ <PNU)X<U)~N12N’ PNlQSNfu*PNlQSN%Nl_EU>L2‘
N<N

where w only depends on k and with o = 7 — k3 (recall that we can assume
that the space-time Fourier transforms of v and w are non negative real-
valued functions). We follow an idea that can be found in [H]. First we
notice that for any fixed k,

1
X(o)~L S X(oymr *r (T X(0)<L)

and thus the above scalar product can be rewritten as

—_— 1
‘ (PNwX<a)~N12N ) PNIQSNISU * PNngNle—sU *r (WX<U)§N12N)) 12
1

where F~1 [PNngNle—EU *r (WINX@T)SNfN) is of the form Py, Q<y2 v’
with

HPN1Q§N12NU/”L2 S N7€/2HPN1Q§N12N1*EU”L2 : (4.7)
Indeed the linear operator Tx g, : v — %v(')X{<->§K2} * X{()<K} is a con-
tinuous endomorphism of L'(R) and L*(R) with

1
1Tk ryvll o)y < sup E‘/ V(Y)X{ () <Kz} X{(z—1) <K} DY
rz€R R

min(K, Ky
S %”U”LW(R)
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and 1
1Tk vl < vl Ixeo <yl < vl )

Therefore, by Riesz interpolation theorem Tk f, is a continuous endomor-
phism of L?(R) with

) KoNl/
1T sl S min(1,22) Vel -
Hence, by Sobolev in k and ([£7),

—_—
I; S Y NUNTINY2|Pywxgyone w2 1P Q@enptell e 2 [ Pvy Qonz vl 2
N<M

N Z N_a/ZHPNwHH(T)(Nl_lHPN1Q§N§UHL§°L§)HPN1UHL27
NNy

which is acceptable as soon as € > 0. O

5 Well-posedness

In this section, we prove the well-posedness result. The proof follows exactly
the same lines as in [14]. Using a standard fixed point procedure, it is clear
that the bilinear estimate ([.]) allows us to show local well-posedness but
for small initial data only. This is because H ! appears as a critical space
for KdV-Burgers. Indeed, on one hand, we cannot get any contraction factor
by restricting time. On the other hand, a dilation argument does not work
here since the reduction of the H!'-norm of the dilated initial data would
be exactly compensated by the diminution of the dissipative coefficient in
front of ug, (that we take equal to 1 in ([[.1))) in the equation satisfied by
the dilated solution. In order to remove the size restriction on the data, we
change the metric on our resolution space.

For 0 < e < 1/12 and 3 > 1, let us define the following norm on Sz !,

lulz, = inf 4l = + = sl
ulizg = Uf\léll+u2~ 1 St /8 u2 S

u1 €Ss 1 ,U2 GSQ

Note that this norm is equivalent to || - H — . Now we will need the following

modification of Proposition [L.1. This new proposmon means that as soon
as we assume more regularity on u we can get a contractive factor for small
times in the bilinear estimate.
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Proposition 5.1. There exists v > 0 such that for any 0 < e < 1/12 and
all (u,v) € 82 x 81, with compact support (in time) in [—T,T), it holds

102 (o) o1 S T [Jullso o]l -1 (5.1)

Proof. Tt suffices to slightly modify the proof of Proposition [£.1] to make use
of the following result that can be found in [[[L1], Lemma 3.1] (see also [[L],
Lemma 3.6]): For any 6 > 0, there exists u = p(f) > 0 such that for any
smooth function f with compact support in time in [T, 77,

_ f T,k
& (%)

According to (R.§) this ensures, in particular, that for any w € Sg /8 with

ST fll 22 - (5.2)

2
Lt,x

compact support in [T, T it holds

1 1
lwllpzpss S lwll o325 T“(g)HwHXo,%g S T“(g)Hstg/S : (5.3)
3/8 3/8
It is pretty clear that the interactions between high frequencies of v and high
or low frequencies of v can be treated by following the proof of Proposition
and using (.3). The region that seems the most dangerous is the one
of interactions between low frequencies of v and high frequencies of v in the
proof of Proposition [L.]. But actually in this region, except in the subregion
N1 < 1, we can notice that we may keep some powers of L1 or Ls in the
estimates and thus (f.3) ensures that (5.1) holds (one can even replaced SY
by S-1) . Finally, in the subregion Ny < 1, (B.T]) follows directly by applying
(p-3) in the next to the last line in (£.4). O

We are now in position to prove that the application
T 1 2
FJ su s ()| W (09 — 5L£0:rru)?].

where £ is defined in (B.2), is contractive on a ball of Zz for a suitable
£ >0 and T > 0 small enough. Assuming this for a while, the local part of
Theorem [[.]] follows by using standard arguments. Note that the uniqueness

will hold in the restriction spaces Sc1(7) endowed with the norm

= inf_{jv]

vesSt

Huﬂg:_l(ﬂ sy v=uon [0,7]} .

Finally, to see that the solution u can be extended for all positive times
and belongs to C(R%; H*) it suffices to notice that, according to (2.7),
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u € S-1(7) = L?(]0,7[xT) . Therefore, for any 0 < 7/ < 7 there exists
to €]0,7[, such that u(tg) belongs to L?(T) . Since according to [15], ([L.1)
is globally well-posed in L?(T) with a solution belonging to C(R*; H*>(T)),
the conclusion follows.

In order to prove that F¢T is contractive, the first step is to establish the
following result.

Proposition 5.2. For any 8 > 1 there exists 0 <T = T() < 1 such that
for any u,v € Zg with compact support in [=T,T] we have

1£0: (uv) |2, < llullzs]lv]l 2, (5.4)

Assume for the moment that (f.4) holds and let ug € H~' and o > 0.
Split the data ug into low and high frequencies:

up = P<nyup + Ps nug

for a dyadic number N. Taking N = N(«) large enough, it is obvious to
check that ||Ps nuolg-1 < a. Hence, according to (B.)),

()W () Psnuollz, S e

Using now the :S:Ea—part of Zg, we control the low frequencies as follows:

1 N
HU(')W(')PSNUOH:g‘g < B”PSNUO”L2 S —luol -1

Thus we get

N (27 -1
mOW () Peyuollz, S a for 5z ol
Since « can be chosen as small as needed, we conclude with (5.4) that Fg
is contractive on a ball of Zg of radius R ~ a as soon as 8 2 Nl|ug||y-1/c
and T =T(5).

Proof of Proposition [5.4. By definition on the function space Zg, there exist

u, v € S-!and ug, vy € 80 such that u = uy + ug, v = v; + vy and

1
] o= + EHWIIgg

1
HWHSEN_l + 2 llvallgs <2llvlz,-

B

§2Hu||25’

22



Thus one can decompose the left-hand side of (5.4) as
1£0z (o)l 2, S 10z (urv1) ]| =3 + 1 £0 (urve + uzvr) || =5 + | L0 (uzv2)| o=
=I+11+4+1II.
From the estimates (B.3) and ([£1)) we get
LS50 (urv) -1 S llunllgorlforllgor S Nlullzg ol 2,
On the other hand, we obtain from (p.J) that
I11 S T Juslsollvallso S 82T lullz, |l 2,
and

IS T(Jluallg-rllvallso + lluzllsollorlls-1)

S
S BT ||ullzs]lvll 2,

We thus get
1£8: (w2, S (14 (B + B°)T)[lullz, 0]l 2,

This ensures that (5.4) holds for T ~ g=2/¥ < 1. O
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