Pré-Publication, Document De Travail Année : 2010

Cohomologie de Chevalley des graphes ascendants

Résumé

The space $T_{poly}(\mathbb R^d)$ of all tensor fields on $\mathbb R^d$, equipped with the Schouten bracket is a Lie algebra. The subspace of ascending tensors is a Lie subalgebra of $T_{poly}(\mathbb R^d)$. In this paper, we compute the cohomology of the adjoint representations of this algebra (in itself and $T_{poly}(\mathbb R^d)$), when we restrict ourselves to cochains defined by aerial Kontsevitch's graphs like in our previous work (Pacific J of Math, vol 229, no 2, (2007) 257-292). As in the vectorial graphs case, the cohomology is freely generated by all the products of odd wheels.
Fichier principal
Vignette du fichier
graphesascendants.pdf (238.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00465530 , version 1 (19-03-2010)

Identifiants

Citer

Walid Aloulou, Didier Arnal, Ridha Chatbouri. Cohomologie de Chevalley des graphes ascendants. 2010. ⟨hal-00465530⟩
106 Consultations
115 Téléchargements

Altmetric

Partager

More