Cohomologie de Chevalley des graphes ascendants
Résumé
The space $T_{poly}(\mathbb R^d)$ of all tensor fields on $\mathbb R^d$, equipped with the Schouten bracket is a Lie algebra. The subspace of ascending tensors is a Lie subalgebra of $T_{poly}(\mathbb R^d)$. In this paper, we compute the cohomology of the adjoint representations of this algebra (in itself and $T_{poly}(\mathbb R^d)$), when we restrict ourselves to cochains defined by aerial Kontsevitch's graphs like in our previous work (Pacific J of Math, vol 229, no 2, (2007) 257-292). As in the vectorial graphs case, the cohomology is freely generated by all the products of odd wheels.
Domaines
Algèbres quantiques [math.QA]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...