Upper bound on the density of Ruelle resonances for Anosov flows
Résumé
Using a semiclassical approach we show that the spectrum of a smooth Anosov vector field V on a compact manifold is discrete (in suitable anisotropic Sobolev spaces) and then we provide an upper bound for the density of eigenvalues of the operator (-i)V, called Ruelle resonances, close to the real axis and for large real parts.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...