Knot invariants derived from the equivariant linking pairing - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Knot invariants derived from the equivariant linking pairing

Christine Lescop

Résumé

Let M be a closed oriented 3-manifold with first Betti number one. Its equivariant linking pairing may be seen as a two-dimensional cohomology class in an appropriate infinite cyclic covering of the configuration space of ordered pairs of distinct points of M. We show how to define the equivariant cube Q(M,K) of this Blanchfield pairing with respect to a framed knot K that generates H_1(M;Z)/Torsion. We present the invariant Q(M,K) and some of its properties including a surgery formula. Via surgery, the invariant Q is equivalent to an invariant Q' of null-homologous knots in rational homology spheres, that is conjecturally equivalent to the two-loop part of the Kontsevich integral, that is often called the 2-loop polynomial. We generalize the construction of Q' to obtain a topological construction for an invariant that is conjecturally equivalent to the whole Garoufalidis and Kricker rational lift of the Kontsevich integral for null-homologous knots in rational homology spheres.
Fichier principal
Vignette du fichier
betabonnhal.pdf (307.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00450203 , version 1 (25-01-2010)
hal-00450203 , version 2 (27-07-2010)
hal-00450203 , version 3 (10-09-2010)

Identifiants

Citer

Christine Lescop. Knot invariants derived from the equivariant linking pairing. 2010. ⟨hal-00450203v1⟩
79 Consultations
121 Téléchargements

Altmetric

Partager

More