Knot invariants derived from the equivariant linking pairing
Résumé
Let M be a closed oriented 3-manifold with first Betti number one. Its equivariant linking pairing may be seen as a two-dimensional cohomology class in an appropriate infinite cyclic covering of the configuration space of ordered pairs of distinct points of M. We show how to define the equivariant cube Q(M,K) of this Blanchfield pairing with respect to a framed knot K that generates H_1(M;Z)/Torsion. We present the invariant Q(M,K) and some of its properties including a surgery formula. Via surgery, the invariant Q is equivalent to an invariant Q' of null-homologous knots in rational homology spheres, that is conjecturally equivalent to the two-loop part of the Kontsevich integral. We generalize the construction of Q' to obtain a topological construction for an invariant that is conjecturally equivalent to the whole Kricker rational lift of the Kontsevich integral for null-homologous knots in rational homology spheres.
Mots clés
Invariants de noeuds
enlacement équivariant
invariants de type fini des variétés de dimension 3
formule de chirurgie
espaces de configurations
théorie de Chern-Simons
diagrammes de Feynman (ou Jacobi)
polynôme à deux boucles
relèvement rationnel de Kricker de l'intégrale de Kontsevich.
relèvement rationnel de Kricker de l'intégrale de Kontsevich
Domaines
Topologie géométrique [math.GT]Origine | Fichiers produits par l'(les) auteur(s) |
---|