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Knot invariants

derived from the equivariant linking pairing

Christine Lescop

Abstract. Let M be a closed oriented 3-manifold with first Betti number one. Its equi-
variant linking pairing may be seen as a two-dimensional cohomology class in an appropriate
infinite cyclic covering of the configuration space of ordered pairs of distinct points of M .
We show how to define the equivariant cube Q(M,K) of this Blanchfield pairing with respect
to a framed knot K that generates H1(M ;Z)/Torsion.

We present the invariantQ(M,K) and some of its properties including a surgery formula.

Via surgery, the invariant Q is equivalent to an invariant Q̂ of null-homologous knots
in rational homology spheres, that is conjecturally equivalent to the two-loop part of the
Kontsevich integral, that is often called the 2–loop polynomial.

We generalize the construction of Q̂ to obtain a topological construction for an invariant
that is conjecturally equivalent to the whole Garoufalidis and Kricker rational lift of the
Kontsevich integral for null-homologous knots in rational homology spheres.

1. Introduction

1.1. Background. The study of 3–manifold invariants built from integrals over config-
uration spaces started after the work of Witten on Chern-Simons theory in 1989 [Wi], with
work of Axelrod, Singer [AS1, AS2], Kontsevich [Ko], Bott, Cattaneo [BC1, BC2, C],
Taubes [T]. In 1999, in [KT], G. Kuperberg and D. Thurston announced that some of these
invariants, the Kontsevich ones, fit in with the framework of finite type invariants of ho-
mology spheres studied by Ohtsuki, Le, J. and H. Murakami, Goussarov, Habiro, Rozansky,
Garoufalidis, Polyak, Bar-Natan [O, GGP, LMO, Å1, Å2, Å3] and others. They showed
that these invariants together define a universal finite type invariant for homology 3-spheres.
I gave specifications on the Kuperberg-Thurston work in [L1] and generalisations in [L2].

Similar studies for the knots and links cases had been performed by many other authors
including Guadagnini, Martellini, Mintchev [GMM], Bar-Natan [B-N], Kontsevich [Ko2],
Polyak, Viro [PV], Bott, Taubes [BT], Altschüler, Freidel [AF], D. Thurston [Th], Poirier [Po].
See also the Labastida survey [La] and the references therein.
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2 CHRISTINE LESCOP

The above mentioned Kuperberg-Thurston work shows how to write the Casson invariant
λ, originally defined by Casson in 1984 as an algebraic number of conjugacy classes of
irreducible SU(2)-representations [AM, GM, M], as

λ(N) =
1

6

∫

(N\{∞})2\diagonal
ω3

for a homology sphere N (a closed oriented 3-manifold with the same integral homology as
S3), a point ∞ in N , and a closed 2-form ω such that for any 2-component link

J ⊔ L : S1 ⊔ S1 → N \ {∞},

the linking number of J and L reads

lk(J, L) =

∫

J×L

ω.

In this sense, 6λ(N) may be viewed as the cube of the linking form of N . It can also be
expressed as the algebraic triple intersection 〈FX , FY , FZ〉 of three codimension 2 cycles FX ,
FY , FZ of (C2(N), ∂C2(N)) (Poincaré dual to the previous ω) for a compactification C2(N)

of
(
(N \ {∞})2 \ diagonal

)
that is a 6–manifold with boundary. Here, for any 2-component

link (J, L) of (N \{∞}) as above, the linking number of J and L is the algebraic intersection
of J × L and FX , (or FY or FZ) in the compactification C2(N). A complete definition of λ
in these terms is described in the appendix.

1.2. Introduction to the results. In the first part of this article, we shall present a
similar construction for an equivariant cube Q(M,K) of the equivariant linking pairing for a
closed 3–manifold M with H1(M ;Q) = Q, with respect to a framed knot K = (K,K‖), that
is a knot K equipped with a parallel K‖, such that H1(M ;Z)/Torsion = Z[K].

Our invariant will live in the field of rational functions

Q(x, y) =
Q(x, y, z)

(xyz = 1)
.

The simplest example of a pair (M,K) as above is the pair (S1 × S2, S1 × u) where S1 ×
u is equipped with a parallel. Note that the choice of the parallel does not affect the
diffeomorphism class of the pair (M,K) in this case. We shall have

Q(S1 × S2, S1 × u) = 0.

Furthermore, if N is a rational homology sphere, and if ♯ stands for the connected sum,

Q(M♯N,K) = Q(M,K) + 6λ(N)

where λ is the Walker generalization of the Casson invariant normalized like the Casson
invariant in [AM, GM, M]. If λW denotes the Walker invariant normalized as in [W], then
λ = λW

2
.

We shall also state a surgery formula in Proposition 1.6 for our invariant, and we shall
determine the vector space spanned by the differences (Q(M,K′) − Q(M,K)) for other
framed knots K′ whose homology classes generate H1(M ;Z)/Torsion, in Proposition 1.8.
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This determination will allow us to define an induced invariant for closed oriented 3-manifolds
with first Betti number one. This latter invariant should be equivalent to a special case
(the two-loop case) of invariants combinatorially defined by Ohtsuki in 2008, in [O3], for
3-manifolds of rank one.

Let MK be the manifold obtained from M by surgery on K: This manifold is obtained
from M by replacing a tubular neighborhood of K by another solid torus N(K̂) whose

meridian is the given parallel K‖ of K. It is a rational homology sphere and the core K̂ of

the new torus N(K̂) is a null-homologous knot in MK.

Our data (M,K) are equivalent to the data (MK, K̂). Indeed, M is obtained fromMK by

0-surgery on K̂. Hence our invariant can be seen as an invariant of null-homologous knots
in rational homology spheres. For these (and even for boundary links in rational homology
spheres), following conjectures of Rozansky [Ro1], Garoufalidis and Kricker defined a ratio-
nal lift of the Kontsevich integral in [GK], that generalizes the Rozansky 2–loop invariant of
knots in S3 of [Ro1, Section 6, 6.9]. The two-loop part of this Garoufalidis and Kricker lift
is often called the two-loop polynomial. Its history and many of its properties are described
in [O2]. Our invariant shares many features with this two-loop polynomial and is certainly
equivalent to this invariant, in the sense that if one of the invariants distinguishes two knots
with equivalent equivariant linking pairing, then the other one does. It should even be equal
to the two-loop polynomial.

In 2005, Julien Marché also proposed a similar “cubic” definition of an invariant equiva-
lent to the two-loop polynomial [Ma].

In terms of Jacobi diagrams or Feynman graphs, the Casson invariant was associated
with the graph θ and our equivariant cube is associated with the graph θ with hair or beads.

All the results of the first part of this article are proved in [L3].
In the second part of this article, we explain how the topological construction of Q(M,K)

generalizes to the construction of an invariant of (M,K) that should be equivalent to the
Garoufalidis-Kricker rational lift of the Kontsevich integral of null-homologous knots in ra-
tional homology spheres.

This article is an expansion of the talk I gave at the conference Chern-Simons Gauge

theory: 20 years after, Hausdorff center for Mathematics in Bonn in August 2009. I thank
the organizers Joergen Andersen, Hans Boden, Atle Hahn and Benjamin Himpel of this great
conference.

The first part of the article and the appendix are of expository nature and do not contain
all the proofs; that first part may be considered as a research announcement for the results
of [L3]. The second part relies on some results of the first part and contains the construction
of a more powerful invariant of (M,K) with the proof of its invariance.

I started to work on this project after a talk of Tomotada Ohtsuki for a workshop at
the CTQM in Århus in Spring 2008. I wish to thank Joergen Andersen and Bob Penner for
organizing this very stimulating meeting, and Tomotada Ohtsuki for discussing this topic
with me.
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1.3. Conventions. All the manifolds considered in this article are oriented. Boundaries
are oriented by the outward normal first convention. The fiber Nu(A) of the normal bundle
N(A) of an oriented submanifold A in an oriented manifold C at u ∈ A is oriented so that
TuC = Nu(A) ⊕ TuA as oriented vector spaces. For two oriented transverse submanifolds
A and B of C, A ∩ B is oriented so that Nu(A ∩ B) = Nu(A) ⊕ Nu(B). When the sum of
the dimensions of A and B is the dimension of C, and when A ∩ B is finite, the algebraic

intersection 〈A,B〉 of A and B in C is the sum of the signs of the points of A∩B, where the
sign of an intersection point u of A ∩B is 1 if and only if TuC = Nu(A)⊕Nu(B) (that is if
and only if TuC = TuA⊕TuB) as oriented vector spaces. It is (−1) otherwise. The algebraic
intersection of n compact transverse submanifolds A1, A2 ..., An of C whose codimensions
sum is the dimension of C is defined similarly. The sign of an intersection point u is 1 if and
only if TuC = Nu(A1)⊕Nu(A2)⊕ · · · ⊕Nu(An) as oriented vector spaces.

1.4. On the equivariant linking pairing. Fix (M,K) as in Subsection 1.2. Let

q : M̃ →M

denote the regular infinite cyclic covering of M , and let θM be the generator of its covering
group that corresponds to the action of the class of K. The action of θM on H1(M̃ ;Q) is
denoted as the multiplication by tM .
The Q[t±1

M ]-module H1(M̃ ;Q) reads

H1(M̃ ;Q) =

k⊕

i=1

Q[t±1
M ]

δi

for polynomials δi of Q[t±1
M ] where δi divides δi+1. Then δ = δ(M) = δk is the annihilator of

H1(M̃ ;Q) and ∆ = ∆(M) =
∏k

i=1 δi is the Alexander polynomial of M .
These very classical invariants are normalised so that ∆(tM ) = ∆(t−1

M ), ∆(1) = 1, δ(tM) =
δ(t−1

M ) and δ(1) = 1. (In order to make δ symmetric, we may have to allow it to belong to(
(t

1/2
M + t

−1/2
M )Q[t±1

M ] ∪Q[t±1
M ]

)
.) Note that ∆ and δ coincide when ∆ has no multiple roots.

Let (J, L) be a two-component link of M̃ such that q(J) ∩ q(L) = ∅. If J bounds a

(compact) surface Σ in M̃ transverse to L, define the equivariant intersection 〈Σ, L〉e as

〈Σ, L〉e =
∑

n∈Z

tnM〈Σ, θnM(L)〉

where 〈Σ, θnM(L)〉 is the usual algebraic intersection. Then the equivariant linking pairing of
J and L is

lke(J, L) = 〈Σ, L〉e.

In general, δ(θM)(J) bounds a surface δ(θM)Σ and

lke(J, L) =
〈δ(θM)Σ, L〉e

δ(tM)
.
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For any two one-variable polynomials P and Q,

lke(P (θM)(J), Q(θM)(L)) = P (tM)Q(t−1
M )lke(J, L).

1.5. The construction of Q(M,K). Consider the infinite cyclic covering of M2

M̃2 =
M̃2

(u, v) ∼ (θM(u), θM(v))

q2
−−−→ M2

with generating covering transformation θ.

θ((u, v)) = (θM(u), v) = (u, θ−1
M (v)).

The diagonal of
(
M̃2

)
projects to a preferred lift of the diagonal of M2 in M̃2.

q−1
2 (diag(M2)) = ⊔n∈Zθ

n
(
diag(M̃2) = diag(M2)

)
= Z× diag(M2).

Definition 1.1. In a smooth n-manifold C, a tubular neighborhood of a compact m-
submanifold A locally reads asRn−m×U for some open U ⊂ A, where Rn−m = (]0,∞[×Sn−m−1)∪
{0} stands for the fiber of the normal bundle of A, and Sn−m−1 stands for the fiber of the
unit normal bundle of A. In this article, the manifold C(A) obtained by blowing-up A in C
is obtained by replacing A by its unit normal bundle in A. Near U , Rn−m×U is replaced by
[0,∞[×Sn−m−1 × U . The blown-up manifold C(A) is homeomorphic to the complement of
an open tubular neighborhood of A in C, but it has a canonical smooth projection onto C
and a canonical smooth structure. When C and A are compact, C(A) is a compactification
of C \ A.

Our configuration space C̃2(M) is obtained from M̃2 by blowing up q−1
2 (diag(M2)) in

this sense. The transformation θ of M̃2 naturally lifts to a transformation of C̃2(M) that is
still denoted by θ.

Since the normal bundle of the diagonal is canonically equivalent to the tangent bundle
TM of M via

(u, v) ∈
TM2

diag(TM2)
7→ (v − u) ∈ TM,

the unit normal bundle of q−1
2 (diag(M2)) is Z × ST (M) where ST (M) is the unit tangent

bundle of M so that
∂C̃2(M) = Z× ST (M).

A trivialisation τ : TM →M × R3 of TM identifies ST (M) to M × S2.
Like any oriented closed 3-manifold, M bounds an (oriented compact) 4-dimensional

manifold W 4 with signature 0. Then TW 4
|M = R⊕ TM . A trivialisation τ of TM induces a

trivialisation of TW 4⊗C on M . The first Pontrjagin class p1(τ) of such a trivialisation τ of
the tangent bundle of M is the obstruction p1(W

4; τ) to extend this trivialisation to W 4. It
belongs to H4(W 4,M ; π3(SU(4))) = Z. We use the notation and conventions of [MS], see
also [L1, Section 1.5].

Now, the construction of Q(M,K) is given by the following theorem.
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Theorem 1.2. Let τ : TM → M × R3 be a trivialisation of TM and let p1(τ) be its

first Pontrjagin class. Assume that τ maps the oriented unit tangent vectors of K to some

fixed W ∈ S2. Then τ induces a parallelisation of K. Let KX , KY , KZ be three disjoint

parallels of K, on the boundary ∂N(K) of a tubular neighborhood of K, that induce the same

parallelisation of K as τ .
Consider the continuous map

Ǎ(K) : (S1 = [0, 1]/(0 ∼ 1))× [0, 1] → C2(M)
(t, u ∈]0, 1[) 7→ (K(t), K(t+ u)),

and its lift A(K) : S1 × [0, 1] → C̃2(M) such that the lift of (K(t), K(t + ε)) is in a small

neighborhood of the canonical lift of the diagonal, for a small positive ε. Let A(K) also

denote the 2–chain A(K)(S1 × [0, 1]).
For V ∈ S2, let

sτ (M ;V ) = τ−1(M × V ) ⊂ ST (M) = {0} × ST (M) ⊂ ∂C̃2(M).

Let

I∆(t) =
1 + t

1− t
+
t∆′(t)

∆(t)

where ∆ = ∆(M). Let X, Y , Z be three distinct points in S2 \ {W,−W}.
There exist three rational 4–dimensional chains GX , GY and GZ of C̃2(M) whose bound-

aries are

∂GX = (θ − 1)δ(θ)
(
sτ (M ;X)− I∆(θ)ST (M)|KX

)
,

∂GY = (θ − 1)δ(θ)
(
sτ (M ; Y )− I∆(θ)ST (M)|KY

)
and

∂GZ = (θ − 1)δ(θ)
(
sτ (M ;Z)− I∆(θ)ST (M)|KZ

)

and such that the following equivariant algebraic intersections in C̃2(M) vanish

〈GX , A(K)〉e = 〈GY , A(K)〉e = 〈GZ , A(K)〉e = 0.

Define the equivariant algebraic triple intersection in C̃2(M)

〈GX , GY , GZ〉e =
∑

(i,j)∈Z2

〈GX , θ
−i(GY ), θ

−jGZ)〉C̃2(M)y
izj ∈ Q[y±1, z±1].

Then

Q(M,K) =
〈GX , GY , GZ〉e

(x− 1)(y − 1)(z − 1)δ(x)δ(y)δ(z)
−
p1(τ)

4
∈

Q(x, y, z)

(xyz = 1)

only depends on the isotopy class of the knot K and on its parallelisation. Furthermore,

δ(x)δ(y)δ(z)Q(M,K) ∈
Q[x±1, y±1, z±1]

(xyz = 1)
,

Q(M,K)(x, y, z) = Q(M,K)(y, x, z) = Q(M,K)(z, y, x) = Q(M,K)(x−1, y−1, z−1)

and Q(M,K) does not depend on the orientation of K.
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Of course, the theorem above contains a lot of statements. Let us explain their flavour.
Consider the homology of C̃2(M) with coefficients in Q endowed with the structure of

Q[t, t−1]-module where the multiplication by t is induced by the action of θ on C̃2(M).
Set

Λ = Q[t, t−1].

Let K(Λ) be the field of fractions of Λ. Then H∗(C̃2(M);Q) is a graded Λ-module, set

H∗(C2(M);K(Λ)) = H∗(C̃2(M);Q)⊗Λ K(Λ).

Lemma 1.3. Hi(C2(M);K(Λ)) = Hi−2(M ;Q)⊗Q K(Λ) for any i ∈ Z.

H2(C2(M);K(Λ)) = K(Λ)[ST (M)|∗(∼= ∗ × S2)]

H3(C2(M);K(Λ)) = K(Λ)[ST (M)|K(∼= K × S2)]

H4(C2(M);K(Λ)) = K(Λ)[ST (M)|S(∼= S × S2)]

where S is a closed surface of M such that H2(M ;Z) = Z[S].

In particular, the statement of the theorem contains the following lemma:

Lemma 1.4. The homology class in H3(C2(M);K(Λ)) of a global section of ST (M) induced
by a trivialisation of M is I∆[ST (M)|K ].

Therefore, this I∆[ST (M)|K ] cannot be removed from our boundaries. Lemma 1.3 can
be proved by classical means. Observe that since

〈A(K), ST (M)|S〉e = 1− t−1,

the class ofA(K) inH2(C̃2(M), ∂C̃2(M)) detects [ST (M)|S]. Thus, the condition 〈A(K), GX〉e =
0 ensures that if G′

X satisfies the same conditions as GX , (G
′
X −GX) bounds a 5-chain and

〈G′
X , GY , GZ〉e = 〈GX , GY , GZ〉e. Therefore, our algebraic intersection 〈GX , GY , GZ〉e is well-

defined.
The class of FX = GX

(t−1)δ(t)
(that is the same as the class of FY = GY

(t−1)δ(t)
or FZ = GZ

(t−1)δ(t)
)

in H4(C2(M), ∂C2(M);K(Λ)) is dual to [ST (M)|∗]:

〈ST (M)|∗, FX〉e = 1.

For a two-component link (J, L) of M̃ such that q(J) ∩ q(L) = ∅, the class of J × L in
C̃2(M) reads lke(J, L)[ST (M)|∗]. By the above equation, this can be rewritten as

lke(J, L) = 〈J × L, FX〉e

and the chains FV represent the equivariant linking number in this sense.
Recall that all the assertions of this section are proved in details in [L3].
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1.6. A few properties of Q. Recall that λ denotes the Casson-Walker invariant nor-
malised like the Casson invariant. I added the following proposition in order to answer a
question that George Thompson asked me at the conference Chern-Simons Gauge theory :

20 years after in Bonn. I thank him for asking.

Proposition 1.5. Let MK denote the rational homology sphere obtained from M by surgery

along K. Then

Q(M,K)(1, 1, 1) = 6λ(MK).

For a function f of x and y,
∑

S3(x,y,z)
f(x, y) stands for

∑
σ∈S3(x,y,z)

f(σ(x), σ(y)) where

S3(x, y, z) is the set of permutations of {x, y, z}.

Proposition 1.6. Let J be a knot of M that bounds a Seifert surface Σ disjoint from K
whose H1 goes to 0 in H1(M)/Torsion.
Let p/q be a nonzero rational number. Let (ai, bi)i=1,...,g be a symplectic basis of H1(Σ).

Σ
J = ∂Σ

a1b1 a2b2

Let

λ′e(J) =
1

12

∑

(i,j)∈{1,...,g}2

∑

S3(x,y,z)

(
αij(x, y) + αij(x

−1, y−1)
)
∈

Q(x, y, z)

(xyz = 1)

where

αij(x, y) = lke(ai, a
+
j )(x)lke(bi, b

+
j )(y)− lke(ai, b

+
j )(x)lke(bi, a

+
j )(y),

then

Q(M(J ; p/q),K)−Q(M,K) = 6
q

p
λ′e(J) + 6λ(S3(U ; p/q))

where S3(U ; p/q) is the lens space L(p,−q) obtained from S3 by p/q–surgery on the unknot

U .

Since H1(Σ) goes to 0 in H1(M)/Torsion in the above statement, Σ lifts as homeomorphic
copies of Σ and lke(ai, a

+
j ) denotes the equivariant linking number of a lift of ai in M̃ in

some lift of Σ and a lift of a+j near the same lift of Σ. The superscript + means that aj is
pushed in the direction of the positive normal to Σ.

In [L3], we deduce the surgery formula of Proposition 1.6 for surgeries on knots from a
surgery formula for lagrangian-preserving replacements of rational homology handlebodies.

When the above knot J is inside a rational homology ball, λ′e(J) coincides with
1
2
∆′′(J),

where ∆(J) is the Alexander polynomial of J , and the right-hand side is nothing but 6 times
the variation of the Casson-Walker invariant under a p/q–surgery on J . Since any rational
homology sphere can be obtained from S3 by a sequence of surgeries on null-homologous
knots in rational homology spheres with nonzero coefficients, after a possible connected sum
with lens spaces, we easily deduce the following proposition from the above surgery formula.
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Proposition 1.7. Let N be a rational homology sphere, then

Q(M♯N,K) = Q(M,K) + 6λ(N).

Recall I∆(t) =
1+t
1−t

+ t∆′(t)
∆(t)

.

Proposition 1.8. Let K′ be another framed knot of M such that H1(M)/Torsion = Z[K ′].
Then there exists an antisymmetric polynomial V(K,K′) in Q[t, t−1] such that

Q(M,K′)−Q(M,K) =
∑

S3(x,y,z)

V(K,K′)(x)

δ(x)
I∆(y).

Furthermore, for any k ∈ Z, there exists a pair of framed knots (K,K′) such that

V(K,K′) = q(tk − t−k) for some nonzero rational number q.

Proposition 1.9. If K = (K,K‖) and if K′ = (K,K ′
‖), where the difference (K ′

‖ −K‖) is

homologous to a positive meridian of K in ∂N(K), then

V(K,K′)(t) = −
δ(t)

2

t∆′(t)

∆(t)
.

Proposition 1.10. If K and K ′ coincide along an interval, if K ′ −K bounds a surface B
that lifts in M̃ and that does not meet (K ′

‖ ∪K‖), and if (ai, bi)i∈{1,...,g} is a symplectic basis

of H1(B;Z), then

V(K,K′)(t)

δ(t)
=

g∑

i=1

(
lke(ai, b

+
i )− lke(ai, b

+
i )
)
.

1.7. The derived 3-manifold invariant.

Definition 1.11. Definition of an invariant for 3-manifolds of rank one:

Let Qk(δ,∆) =
∑

S3(x,y,z)
xk−x−k

δ(x)
I∆(y) for k ∈ (N \ {0}). For a fixed (δ,∆), define Q(M) in

the quotient of Q(x, y) by the vector space generated by the Qk(δ,∆) for k ∈ (N \ {0}) as
the class of Q(M,K).

Thanks to Proposition 1.8, Q(M) is an invariant of M . This invariant is certainly
equivalent to a special case (the two-loop case) of invariants combinatorially defined by
Ohtsuki in 2008 in [O3], for 3-manifolds of rank one, when δ = ∆. The following proposition
shows that it often detects the connected sums with rational homology spheres with non-
trivial Casson-Walker invariants.

Proposition 1.12. If ∆ has only simple roots, if N is a rational homology sphere such that

λ(N) 6= 0, then Q(M) 6= Q(M♯N).
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2. Construction of more general invariants

The invariant that has been discussed so far corresponds to the graph θ (with hair or
beads), where the two vertices of the graph θ correspond to the two points of a configuration
in C2(M), and the three edges are equipped with FX , FY , and FZ , respectively.

The chains FV that were used in the definition of Q can be used to define invariants
z̃n(M,K) of (M,K) associated to beaded trivalent graphs with 2n vertices, and thus to
configuration spaces C2n(M) of 2n points. We present the construction of these invariants
below. Together, they will form a series (z̃n(M,K))n∈N, that should be equivalent to the
Garoufalidis and Kricker rational lift of the Kontsevich integral for null-homologous knots
in rational homology spheres, described in [GK].

2.1. On the target spaces. Here, a trivalent graph is a finite trivalent graph

• without loops (edges whose two ends coincide),
• each edge of which has two sides, that are respectively called left and right when the
edge is equipped with an orientation, so that reversing the edge orientation reverses
the left and right notion.

Such a graph will be said to be oriented if each of its vertices is equipped with a vertex

orientation, that is a cyclic order of the three edges that meet at this vertex. Such an
oriented graph will be represented by the image of one of its planar immersions so that
the vertex orientation is induced by the counterclockwise order of the edges meeting at this
vertex, and the two sides of an edge are the two sections of the unit normal bundle of the
immersion of this edge.

left
right

LetAh
n be the rational vector space generated by oriented trivalent graphs with 2n vertices

whose edges are equipped with some rational functions of Q(t) on one side of each edge, and
quotiented by the following relations:

(1) Putting P (t) on one side of an edge or putting P (t−1) on the other side gives the
same element in the quotient.

P (t) = P (t−1)

(2) If two graphs only differ by the label of one edge, that is P (t) for one of them and
Q(t) for the other one (on the same side), then the class of their sum is the class of
the same graph with label (P (t) +Q(t)).

P (t) +Q(t) = P (t) + Q(t)
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(3) Multiplying by t the three rational functions on the left sides of the edges adjacent to
a vertex, oriented towards that vertex, does not change the element in the quotient.

P (t)

R(t)

Q(t) =

tP (t)

tR(t)

tQ(t)

(4) (AS) Changing the orientation of a vertex multiplies the element of the quotient by
(−1).

+ = 0

(5) (IHX) The sum of three graphs that coincide outside a disk, where they look as in
the picture below, vanishes in the quotient. (The complete edges of the relation are
equipped with the polynomial 1 that is not written.)

+ + = 0 where 1 = .

For example, there is an injection

ψ : Ah
1 → Q(x, y) =

Q(x, y, z)

xyz = 1

that maps the graph θ with ta above its upper edge, tb above the middle one and tc above
the lower edge to the three-variable monomial xaybzc.

A more general version of this space of diagrams was introduced in [GK, Definition 3.8].

2.2. On compactifications of configuration spaces. We describe the main features
of the Fulton and MacPherson compactifications of configuration spaces [FMcP] that are
used to define configuration space invariants of knots or manifolds. Details can be found in
[L2, Section 3].

Let N be a finite set, and let I be a subset of N with cardinality ♯I greater than 1. Let
∆I(M

N ) = {(mi)i∈N ;mi = mj if {i, j} ⊂ I}. ∆I(M
N ) is a codimension 3(♯I−1)-manifold.

The fiber of its unit normal bundle at (mj)j∈N is the space (Tmi
M I/∆I(Tmi

M I) \ {0})/R+∗

where i ∈ I. It is the space CI(Tmi
M) of I-tuples of points of the tangent space Tmi

M up to
global translation and global homothety with positive ratio. Thus, in the blown-up manifold
MN (∆I(M

N )) (see Definition 1.1), a point P that projects to ∆I(M
N ) under the canonical

projection is equipped with the data of the infinitely small configuration cI(P ) ∈ CI(Tmi
M)

of the points mi indexed by I in Tmi
M (up to translation and dilation).

Of course, the manifold C2(M) reads M2(∆{1,2}(M
2)) with this notation.

Let J be a subset of I, J ( I, ♯J ≥ 2.

∆I(M
N ) ⊂ ∆J(M

N )
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The closure of ∆J (M
N) \∆I(M

N ) in MN (∆I(M
N )) is the submanifold ∆J (M

N )(∆I(M
N )),

and we can blow-up MN (∆I(M
N )) along ∆J(M

N )(∆I(M
N )) to get a manifold with bound-

ary and with corners, where the relative configuration of the possibly coinciding points of
Tmi

M indexed by elements of J in an infinitely small configuration of points cI(P ) of Tmi
M

is known. It is thought of as infinitely smaller.

Definition 2.1. Let Γ be a graph whose vertices are indexed by {1, 2, . . . , 2n}. When
I is a subset of {1, 2, . . . , 2n}, the graph ΓI is the subgraph of Γ made of the vertices
indexed in I and the edges between two of them. The configuration space C2n(M,Γ) is
the smooth compact 6n-manifold with corners obtained by blowing-up successively all the
∆I(M

N ) for which ΓI is connected, inductively, starting with maximal not yet treated I
with this property. The space C2n(M,Γ) is a compactification of the complement of all
the diagonals of M2n that projects to M2n, canonically. The configuration space C2n(M) is
C2n(M,Γc) where Γc is the complete graph with 2n vertices.

Let P0 be a point of C2n(M,Γ), it projects to (mi)i∈{1,2,...,2n}. Consider the maximal
connected subgraphs ΓI of Γ (with ♯I ≥ 2) such that mj = mk whenever j and k are in I.
For each of these subgraphs ΓI , consider the maximal connected subgraphs ΓJ with ♯J ≥ 2
and J ( I such that the points indexed by J coincide in the infinitely small configuration
cI(P0). Iterating the process, the “considered” graphs form a family E(P0) of connected
subgraphs ΓI of Γ such that the intersection ΓI ∩ ΓJ of any two graphs of the family is ΓI ,
ΓJ or ∅. The points P such that E(P ) is empty are the points in the interior of C2n(M,Γ).
If E(P0) 6= ∅, the points P such that E(P ) = E(P0) are in the boundary of C2n(M,Γ) and
they form a codimension ♯E(P0) face of C2n(M,Γ). In particular, the codimension 1 faces of
∂C2n(M,Γ) correspond to connected subgraphs ΓI of Γ.

For every oriented edge e of Γ from the vertex v(j) of Γ indexed by j to v(k), there is a
canonical projection

p(Γ, e) : C2n(M,Γ) → C2(M)

that maps a point P that projects to (mi)i∈{1,2,...,2n} to (mj , mk) if mj 6= mk, and to the

infinitely small configuration of (Tmj
M{j,k}/∆{j,k}(Tmj

M{j,k}) \ {0})/R+∗ that can be seen
at some scale in C2n(M,Γ), if mj = mk.

2.3. Definition of the invariants z̃n(M,K). Fix (M,K, τ) as in the first part. Recall
that τ maps the tangent vectors of K to RW , for some W ∈ S2. For any n ∈ N \ {0}, the
invariant z̃n(M,K, τ) is defined as follows. Consider

• a regular 3n-tuple (X1, . . . , X3n) of (S
2 \{W,−W})3n, where regular means in some

open dense subset of (S2 \ {W,−W})3n that will be specified in Subsection 2.4,
• 3n disjoint parallels (K1, . . . , K3n) ofK on ∂T (K), with respect to the parallelisation
of K,

• 3n integral chains (integral combinations of properly C∞–embedded 4-simplices) Hi

in general 3n-position in C̃2(M)
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– whose boundaries are

k(t− 1)δ(t)(sτ (M ;Xi)− I∆(t)ST (M)|Ki
),

respectively, for some positive integer k,
– and such that 〈Hi, A(K)〉e = 0.

The notion of general 3n-position will be specified in Definition 2.2.

The chains Hi will be seen as cycles of (C2(M), ∂C2(M)) (combinations of simplices) with
coefficients in Q[H1(M)/Torsion] by projection as follows. Pick a basepoint ∗ in C̃2(M), and
consider the equivalence relation on the set of paths from the projection p(∗) of ∗ in C2(M)
to some other point in C2(M) that identifies two paths if they lift to paths with identical ends
in C̃2(M). For a point of C2(M) that projects to (m1, m2) ∈ M2, this datum is equivalent
to a rational homology class of paths from m1 to m2. A chain of (C2(M), ∂C2(M)) with

coefficients in Q[H1(M)/Torsion] is a chain every point P of which is equipped with a class
of paths from p(∗) to P as above, in a continuous way (or every simplex (or contractible cell)
of which is equipped with such a class of paths in a way compatible with face identifications).

Let Sn be the set of connected trivalent graphs Γ with 2n vertices numbered from 1 to
2n and with oriented edges numbered from 1 to 3n without loops.

Consider Γ ∈ Sn. Let C2n(M,Γ) be the configuration space of Definition 2.1. Let e = e(i)
be the edge of Γ numbered by i. It goes from the vertex v(j) numbered by j to v(k). Consider
the map

p(Γ, i) = p(Γ, e(i)) : C2n(M,Γ) → C2(M)

that lifts (m1, . . . , m3n) 7→ (mj , mk), continuously. Let Hi(Γ) ⊂ C2n(M,Γ) be the preimage
of Hi under p(Γ, i). This is a chain (here, a combination of manifolds with boundaries) whose
points (that project to) (m1, . . . , m3n) are continuously equipped with rational homology
classes of paths from mj to mk. It is cooriented in C2n(M,Γ) (that is oriented like M2n) by
the coorientation of Hi in C2(M).

Then the intersection of theHi(Γ), for i ∈ {1, 2, . . . , 3n}, is a compact subspace I(Γ, {Hj})
of C2n(M,Γ). Its image p(Γ, i)(I(Γ, {Hj})) in Hi is a compact subset of Hi.

Definition 2.2. The Hi are said to be in general 3n-position if, for any Γ ∈ Sn,

• I(Γ, {Hj}) is finite,
• p(Γ, i)(I(Γ, {Hj})) is made of points in the interiors of the simplices of Hi, for any
i ∈ {1, 2, . . . , 3n} and,

• all the Hi(Γ) intersect transversally at the corresponding points that are in the
interior of C2n(M,Γ).

The fact that such Hi exist will be proved in Subsection 2.5.
Fix Γ ∈ Sn. Under the given asumptions, the cooriented Hi(Γ) only intersect transver-

sally at distinct points in the interior of C2n(M,Γ). We define their equivariant algebraic
intersection IΓ({Hi}) ∈ Ah

n as follows.
Consider an intersection point m, it is equipped with a sign ε(m) as usual, and it is

also equipped with the following additional data: Our intersection point m projects to some
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(m1, . . . , m2n) ∈ M2n. Associate mj with v(j). Since m belongs to Hi(Γ), the edge e(i)
is equipped with a rational homology class of paths from mj to mk. Each edge of Γ is
equipped with a rational homology class of paths between its ends in this way. Choose a
simply connected graph γ (e. g. a spider) in M that contains a basepoint and all the points
mj of M . A path from mj to mk can be composed with paths in the graph γ to become a
loop based at the basepoint whose rational homology class is well-determined by the rational
homology class of the path and γ. It reads n(m, e(i), γ)[K] for some integer n(m, e(i), γ).

Let Γ(m, γ) be the graph obtained from Γ by putting tn(m,e(i),γ)

k(t−1)δ(t)
on the left-hand side of the

oriented edge e(i) for each edge. Orient the vertices of Γ so that the permutation of the half
edges from (first half of first edge, second half of first edge, . . . , second half of last edge) to
(half-edges of the first vertex ordered in a way compatible with the vertex orientation, . . . )
is even.

Note that the class of Γ(m, γ) in Ah
n does not depend on γ. Indeed, changing the path

that goes from mj to the basepoint in γ amounts to add some fix integer to n(m, e, γ) for the
edges e going to mj and to remove this integer from n(m, e, γ) for the edges starting at mj .
Because of Relations 1 and 3, it does not change the class of Γ(m, γ) that will be denoted
by [Γ(m)]. Finally, assign ε(m)[Γ(m)] ∈ Ah

n to m.
Then define IΓ({Hi}) ∈ Ah

n as the sum over the intersection points of the ε(m)[Γ(m)].

Theorem 2.3. Then

z̃n(M,K, τ) =
∑

Γ∈Sn

IΓ({Hi})

23n(3n)!(2n)!
∈ Ah

n

is an invariant of (M,K, τ). Let ξn be the element of Ah
n defined in [L1, Section 1.6]. It is

an element of the subspace of Ah
n generated by the diagrams whose edges are beaded by 1.

Then

z̃n(M,K) = z̃n(M,K, τ) +
p1(τ)

4
ξn

is an invariant of (M,K).

Set z̃0(M,K) = 0. Exponentiating (z̃n(M,K))n∈N should give an invariant equivalent to
the Garoufalidis and Kricker rational lift of the Kontsevich integral.

Note that with the injection ψ of the end of Subsection 2.1 we have

Q(M,K) = 12ψ(z̃1(M,K)).

The properties of the chains Hi that are proved in [L3] will allow us to generalize properties
of Q(M,K) to (z̃n(M,K))n∈N in a future work.

2.4. Regular points of (S2)3n. Let Sj(R
3) be the compactification of the quotient of

((R3)j \ all diagonals) by the homotheties with positive ratio and the global translations,
obtained by successive blow-ups of all the diagonals as in Subsection 2.2. (When R3 is
identified to the tangent space of a point m, Sj(R

3) is the preimage of (m)i=1,...,j in Cj(M).)
It is a compact smooth manifold with corners of dimension (3j − 4). Every graph G with j
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vertices, numbered from 1 to j, and with i oriented edges (with distinct ends), numbered in
a set A, determines a map “direction of the edges”

p(G) : (R3)j \ all diagonals → (S2)A

that factors through the homotheties with positive ratio and global translations and whose
factorisation smoothly extends to define a smooth map

p(G) : Sj(R
3) → (S2)A

still denoted by p(G).
Thus, when j ≤ 2n and when A ⊂ {1, . . . , 3n}, every such graph G determines the map

gG
gG = p(G)× Identity((S2)B) : Sj(R

3)× (S2)B → (S2)A × (S2)B

where B = {1, . . . , 3n} \A. A regular value of this map gG is a point Y of the target (S2)3n

such that for any point y of g−1
G (Y ), the tangent map of gG at y is surjective. Note that when

the dimension of the source is smaller than the dimension of the target, the set of regular
values is the complement of the image.

Lemma 2.4. The set of regular values of gG is open and dense in (S2)3n.

Proof. The density is a direct corollary of the Morse-Sard theorem [Hi, Chapter 3,
Section 1]. Let us check openness. The set where the tangent map is not surjective is closed
in the compact source and therefore compact, so that its image is compact, and the set of
regular values is open. �

Thus the finite intersection of the sets of regular values of such maps gG is also dense
and open.

Definition 2.5. An element of (S2)3n is regular if it is a regular value for all these maps gG.

Lemma 2.6. If (X1, . . . , X3n) is regular, then the Hi(Γ) do not intersect over the small

diagonal of M2n in C2n(M).

Proof. If they did, there would be an intersection point in the small diagonal of C2n(M).
Such a point would be a configuration in the tangent space TmM of M at some point m of
M , where TmM is identified to R3 via τ . Since (X1, . . . , X3n) is regular, it belongs neither
to the (6n − 4)-dimensional image of p(Γ), nor to the (6n− 2)-dimensional image of gΓ\e(i)
for some edge e(i) when m belongs to Ki. �

2.5. Transversality. In this subsection, we prove that there exist Hi in general 3n-
position.

It follows from general transversality properties that the Hi(Γ) can be perturbed so
that they have a finite number of transverse intersection points (see [Hi, Chapter 3]). The
subtleties here are

• that we want simultaneous transversality for all the Γ ∈ Sn,
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• that we would like to perturb the Hi rather than the Hi(Γ)
1.

To prove the existence of Hi in general 3n-position, we proceed as follows.
Choose cycles H0

i , together with their simplicial decompositions, with the given bound-

aries, so that the H0
i are transverse to ∂C̃2(M). (In particular, they read as products

[0, 1]× ∂H0
i near ∂C̃2(M).)

Assume that

• the 4-dimensional simplices of H0
i are C∞ embeddings indexed by elements j of

some finite set S(i)

∆0
j (i) : ∆

4 → Oj(i) ⊂ C2(M)

of the standard 4-simplex ∆4 in open regions Oj(i) of C2(M) such that there are
C∞ embeddings

Φj(i) : Oj(i) → R6

with open image in some intersection of half-spaces in R6,
• there is a set B of 3-dimensional faces of the 4-dimensional simplices that constitute
a simplicial decomposition of ∂Hi,

• there is a bijection bi of the set of the 3-dimensional faces of the ∆0
j (i) that are not

in B to A× {+,−}, for some finite set A, such that
for any a ∈ A, the face labeled by (a,+) has the same image in C2(M) than the face
labeled by (a,−) with opposite boundary orientation and matching local coefficients
(this is the face identification),

• the simplices δr(i) of dimension k (k ≤ 4) of Hi are codimension 0 submanifolds
with boundaries of the preimage of a regular point Ni,r under a constraint map
f(δr(i)) from the intersection of the open sets Oj(i) such that δr(i) is a face of ∆j(i)
to S6−k.

Define M(H0
i ) as the set of deformations Hi = {∆j(i) : ∆

4 → Oj(i)}j∈S(i) of the H
0
i =

{∆0
j (i)}j∈S(i), where the set S(i) of simplices, the face identification and the simplices of ∂Hi

are fixed.
EquipM(H0

i ) with the C∞ topology that is its topology of a subset of
∏

j∈S(i)C
∞(∆4, Oj(i))

where the topology of C∞(∆4, Oj(i)) is defined in [Hi, Chapter 2, Section 1].
Consider the topological space

M =

3n∏

i=1

M(H0
i ).

Define the subset M∗ of M made of the (H1, H2, . . . , H3n) whose simplices satisfy:
For each Γ ∈ Sn, for any 3n-tuple (δji(i) ⊂ Hi)i∈{1,...,3n} of simplices,
∗(Γ, δji(i)): the p(Γ, i)

−1(δji(i)) are transverse in C2n(M,Γ).

1The Hi(Γ) are associated with Hi and Γ, and the face identifications, that will be performed later,
could not be performed without the fact that Hi(Γ) is precisely the preimage of some fixed Hi
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Proposition 2.7. M∗ is open and dense in M. In particular, there exists a (3n)-tuple
(H1, H2, . . . , H3n) in general 3n-position.

Proof. It is enough to prove that the subspace of M made of the (H1, H2, . . . , H3n) that
satisfy ∗(Γ, δji(i)) is open and dense for each Γ ∈ Sn, for any 3n-tuple (δji(i) ⊂ Hi)i∈{1,...,3n}
of simplices.

It is obviously open and we only need to prove that it is dense.
Consider the regions where the δji(i)i∈{1,...,3n} live. The intersection of their preimages

under the p(Γ, i) determines an open subspace of C2n(M,Γ) where the transversality of the

δji(i) reads: (Ni,ji)i∈{1,...,3n} is a regular value of the constraint map
∏3n

i=1 f(δji(i)) ◦ p(Γ, i).
According to the Morse-Sard theorem, the set of regular (Ni)i∈{1,...,3n} is dense. It is further-
more open.

Therefore, if none of the δji(i) touches the boundary, it is easy to slightly move the
simplices by changing the preimage of Ni,ji to the preimage of some closed point. (This can
be done by a global isotopy of C2(M) supported near δji(i) that moves δji(i) to the preimage
of some close point.)

In general, we have a set of simplices in the boundary, with indices in Ib, a set of simplices
that don’t douch the boundary with indices in Ie, and the other ones with indices in It that
have a maximal face Fi in the boundary. Since (X1, . . . , X3n) is regular, the intersection of
the p(Γ, i)−1(∂Hi), for i ∈ Ib ∪ It is transverse in the faces of the boundary of C2n(M,Γ).
Therefore, it is a (6n−2(♯Ib+♯It)−c)–submanifold of the codimension c faces of ∂C2n(M,Γ).
The intersection of the δji(i), for i ∈ Ie will be transverse to this manifold if the restriction
of

∏
i∈Ie

f(δj(i)) ◦ p(Γ, i) to this manifold is regular, and this can be achieved as before2.
Therefore the transversality holds in a neighborhood of the Fi, and we can make it hold
for all the simplices by applying the above argument to (Ib, Ie ∪ It) instead of (Ib ∪ It, Ie),
the openness allowing us to recorrect the δji(i) for i ∈ It near the boundaries without losing
transversality. �

2.6. Proof of invariance. In this section, we prove that we have defined a topological
invariant of (M,K, τ). The only thing that we need to show is that our definition is indepen-
dent of (X1, . . . , X3n) and (H1, . . . , H3n), i.e. that it is independent of (H1, . . . , H3n) when
(X1, . . . , X3n) is not fixed.

Since the invariance is obvious when (H1, . . . , H3n) moves in a neighborhood of (H1, . . . , H3n)
in general 3n-position, it is enough to prove invariance when H1 is changed to some H ′

1 such
that (H ′

1, H2, . . . , H3n) is in general 3n-position.
First pick a C∞-path P (X1, X

′
1) from X1 to X

′
1 in (S2 \ {W,−W}) whose image is some

codimension 0 submanifold with boundary of a submanifold defined by f(x) = 0 for some
smooth map f that is defined in a regular neighborhood of the image of this path and
valued in [−1, 1]. Without loss assume that (0, X2, X3, . . . , X3n) is a regular value for all

2Here, since the sum of codimensions of the δji(i), for i ∈ Ie is greater or equal than (2♯Ie) that is greater
than 6n − 2(♯Ib + ♯It) − 1, this means that the p(Γ, i)−1(δji(i)) for i ∈ Ie can be assumed not to meet the
intersection ∩i∈Ib∪Itp(Γ, i)

−1(∂Hi).
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the compositions of the maps gG by f on the first coordinate. (If it is not the case, use the
Morse-Sard theorem to find a close regular value and move everything slightly.)

Lemma 2.8. There exists a 5-cochain C in general 3n-position with H2, . . . , H3n such that

∂C = H ′
1 −H1 ∪ ±k(t− 1)δ(t)sτ (M ;P (X1, X

′
1)).

Proof. The wanted boundary ∂C is a 4-cycle of C̃2(M) with a zero equivariant in-
tersection with A(K). Therefore it does not meet ∪k∈Zθ

k(A(K)), algebraically, and it can

be moved away from ∂C̃2(M) so that its image does not meet the preimage of K2 in M̃2,

algebraically, and vanishes in H4(M̃2;Q) = Q[S × S], where S is a closed surface dual to

K. See [L3, Proposition 2.6]. Then ∂C bounds a rational 5-chain in M̃2. This chain can be
assumed to meet the preimage of the diagonal along P (θ)S for some polynomial P with ra-
tional coefficients. Then ∂C is homologous to P (θ)(ST (M)|S), and P = 0 since ∂C vanishes
in H4(C2(M);K(Λ)). �

Here the notion of general 3n-position is similar to the previous notion and can be
achieved in the same way.

In particular, the intersection of p(Γ, 1)−1(C) and the Hi(Γ) for i ≥ 2 is some C∞

compact 1-manifold with boundary in C2n(M,Γ). p(Γ, 1)−1(C) is locally seen as the zero
locus of some real function except near p(Γ, 1)−1(∂C) where some additional independent
real function must be positive. Therefore,

∂(p(Γ, 1)−1(C) ∩
3n⋂

i=2

Hi(Γ)) =

H ′
1(Γ) ∩

3n⋂

i=2

Hi(Γ)−H1(Γ) ∩
3n⋂

i=2

Hi(Γ) + p(Γ, 1)−1(C) ∩ ∂C2n(M,Γ) ∩
3n⋂

i=2

Hi(Γ).

Let us check that the first sign is correct. The two other ones are similar. The normal bun-
dle of the one-manifold reads N1

C ⊕
⊕3n

i=2N
i where N1

C is the normal bundle to p(Γ, 1)−1(C)
in C2n(M,Γ). Since H ′

1 is oriented as the boundary of C, C is oriented as the outward
normal No to C, followed by the orientation of H ′

1 along H ′
1. Therefore the normal bundle

of p(Γ, 1)−1(H ′
1) is oriented by N1

C ⊕No. Use the notation 〈1
δ̂
H1(Γ), . . . ,

1

δ̂
H3n(Γ)〉A,C2n(M,Γ),

where δ̂ = k(t − 1)δ(t) and the subscript C2n(M,Γ) will be sometimes forgotten, to denote
IΓ({Hi}), that was defined before the statement of Theorem 2.3. Then with similar notation

IΓ({H
′
i})− IΓ({Hi}) = −〈

1

δ̂
p(Γ, 1)−1(C) ∩ ∂C2n(M,Γ),

1

δ̂
H2, . . . ,

1

δ̂
H3n〉A

where the intersection points in

p(Γ, 1)−1(C) ∩ ∂C2n(M ; Γ) ∩H2(Γ) ∩ · · · ∩H3n(Γ)

only occur inside codimension 1 faces of ∂C2n(M,Γ).
Let us study some point P in this intersection. Its codimension one face corresponds

to some connected subgraph ΓI made of the vertices numbered in a set I and the edges



INVARIANTS DERIVED FROM THE EQUIVARIANT LINKING PAIRING 19

between two of these, as in Subsection 2.2. Define the graph Γ(I) = Γ/ΓI obtained from
Γ by identifying ΓI to a point v(I). The vertices of Γ(I) are the vertices of Γ numbered in
{1, . . . , 2n} \ I and the additional vertex v(I), and the edges of Γ(I) are the edges of Γ that
are not edges of ΓI . The set E(Γ) of edges of Γ is the disjoint union of the sets E(ΓI) and
E(Γ(I)).

Our face F(Γ, I) fibers over the space of configurations of the vertices of Γ(I) that form
the set V (Γ(I)), and our intersection point projects to MV (Γ(I)). The fiber is made of the
infinitesimal configurations of I up to translation and dilation. The dimension of the fiber
is (3♯I − 4) and the dimension of the base is 3(♯V (Γ(I))) = 6n− 3♯I + 3.

Since the intersection is transverse, the edges give (6n − 1) independent constraints on
our intersection point P , where the edge numbered by 1 gives one of these constraints and
each of the other ones gives two constraints.

The constraints coming from the edges of Γ(I) only concern the base, while the constraints
of E(ΓI) only concern the fiber except possibly for one edge (e(j) ∈ E(ΓI)) where the
constraint can read: “The point v(I) ∈ Kj .”

In this case, this constraint is a constraint for the base, and j 6= 1. If we have such an
exceptional constraint “v(I) ∈ Kj”, set χk = 1. Otherwise, set χk = 0.

If the edge e(1) belongs to E(ΓI), set χA = 1, and if it belongs to E(Γ(I)), set χA = 0.
Then we have 2♯E(ΓI)− 2χk − χA constraints on the (3♯I − 4)–dimensional fiber.
The transversality condition tells us that 2♯E(ΓI)− 2χk − χA = 3♯I − 4 that is

4− 2χk − χA = 3♯I − 2♯E(ΓI)

where the right-hand side is the valency of the vertex v(I) in Γ(I) as a count of half-edges
shows. This valency must be 4, 3, 2 or 1.

The transversality also tells us that the map “direction of the edges” from the (3♯I − 4)-
manifold SI(R

3) to the product of the images of the constraint functions must be a local
diffeomorphism.

In particular, unless ♯I = 2, there can be no vertex of valency 1 in ΓI because moving
this vertex in the direction of the unique edge incident to such a vertex would not change
the image of the above map.

Thus, either ΓI is an edge, and this case will be treated by the IHX (or Jacobi) identifica-
tion, or ΓI is connected, all the vertices of ΓI have valency 2 or 3 and there are χ vertices of
valency 2 where 1 ≤ χ ≤ 4, and this case will be treated by the parallelogram identification.

Let us explain how these classical identifications allow us to prove that the sum of the
contributions of all such intersection points P to

∑
Γ∈Sn

(IΓ({H
′
i})− IΓ({Hi})) vanishes in

our setting. We start with the parallelogram case.

Lemma 2.9. Let E be the set of codimension one faces F(Γ, I) of spaces C2n(M,Γ) indexed
by some (Γ, I) where Γ ∈ Sn, I is a subset of {1, 2, . . . , 2n}, ΓI is connected, the vertices of

ΓI have valency 2 or 3 and at least one vertex of ΓI has valency 2. There is an involution ρ̂
of E without fixed point such that the possible intersection points in two faces F1 and ρ̂(F1)
leave the sum z̃n(M,K, τ) invariant.
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Proof. Fix Γ and I as above. Let i be the smallest element of I such that the valency
of v(i) in ΓI is 2. Define the labelled graph ρ(Γ, I) ∈ Sn from Γ by exchanging the labels of
the two edges e(a) and e(b) incident to v(i) in ΓI and by reversing their orientations. Define
ρ̂ so that

ρ̂(F(Γ, I)) = F(ρ(Γ, I), I).

Consider the orientation-reversing involutive diffeomorphism φ(ρ̂) from F(Γ, I) to ρ̂(F(Γ, I))
that maps a point P to the point where the only changed piece of data is the position of v(i)
in the infinitesimal configuration of I where v(i) is mapped to its symmetric with respect
to the middle of the two (possibly coinciding) other ends of e(a) and e(b). The standard
properties of a parallelogram guarantee that for any edge label j, p(Γ, j) = p(ρ(Γ, I), j)◦φ(ρ̂)
on F(Γ, I).

eρ(Γ,I)(b)

eΓ(b)

eρ(Γ,I)(a)
eΓ(a)

v(i)

φ(ρ̂)(v(i))

Consider a point P ofF(Γ, I) that contributes to 〈−1

δ̂
p(Γ, 1)−1(C)∩∂C2n(M,Γ), 1

δ̂
H2, . . . ,

1

δ̂
H3n〉A.

Recall that the chains C and Hi are transverse to ∂C2(M). They are made of two kinds of
pieces there: I∆ST (Ki) and sτ (M ;P (X1, X

′
1)) or sτ (M ;Xi). Since our assumptions imply

that the intersection is transverse, if ♯I > 2, P cannot be in the parts p(Γ, a)−1(ST (M)|Ka
)

or p(Γ, b)−1(ST (M)|Kb
) because in this case the constraint coming from the other edge adja-

cent to P gives the direction of this other edge and stretching this other edge leads to a non
trivial kernel of the constraint map. Therefore, if ♯I > 2, the two edges can be assumed to be

weighted by 1 = k(t−1)δ(t)
k(t−1)δ(t)

. Thus, the point φ(ρ̂)(P ) contributes with the same beaded graph

with the opposite sign to the variation of Iρ(Γ,I)({H}). If ♯I = 2, our assumptions imply
that ΓI is made of two edges between the two elements of I. These two edges are exchanged,
their orientations are reversed, and their associated rational functions are exchanged. Up
to exchanging a and b, P ∈ p(Γ, a)−1(sτ (M ;Xa))∩ I∆p(Γ, b)

−1(ST (M)|Kb
), and the rational

functions are ±1 and ±I∆. Note that the coorientation of p(Γ, a)−1(sτ (M ;Xa)) changes
when the orientation of e(a) is reversed while the coorientation of p(Γ, b)−1(ST (M)|Kb

) is
unchanged. Nevertheless since I∆(t) must be changed to I∆(t

−1) = −I∆(t) under such a
change, we may say that the coorientation of I∆p(Γ, b)

−1(ST (M)|Kb
) is reversed, too, and

we have the same cancellation as before in this case. �

Lemma 2.10. The intersection points of the faces F(Γ, I) where ΓI is an edge do not make

the sum z̃n(M,K, τ) vary, thanks to the IHX relation.

Proof. Let f be the label of the unique edge of ΓI . Like in the previous proof, notice
that an intersection point P in such a face cannot come from the p(Γ, f)−1(ST (M)|Kf

) part.
In particular, the edge e(f) = ΓI is beaded by 1. Consider the graph Γ(I) = Γ/ΓI . Its
vertex v(I) has 4 incident edges e(a), e(b), e(c), e(d), and, with the natural identifications,
in the initial graph Γ, e(f) goes from v(i) to v(j) where v(i) is incident to two edges among
e(a), e(b), e(c), e(d) and v(j) is incident to the two other ones. For g = b, c or d, let Γg be
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the graph of Sn such that Γg(I = {i, j}) = Γ(I), and v(i) is incident to e(a) and e(g). It is
enough to prove that the contributions of the possible intersection points of the three faces
indexed by (Γg, I) cancel in the sum z̃n(M,K, τ). Our intersection point P of C2n(M,Γ) will
give a transverse intersection point in the three faces, with a common sign, and Γb, Γc and
Γd are oriented so that their vertex orientations coincide outside the disk of the following
picture, and they are given by the picture for the two vertices there. Indeed the roles of the
half-edges indexed by b, c and d are cyclically permuted.

Γb:

a

b c

d
v(j) , Γc:

a

b c

d
v(j)

and Γd:

a

b c

d

v(j)

�

2.7. The dependence on the trivialisation. We now compute the variation of z̃n(M,K, τ)
under a change of trivialisation. Let τ ′ be a trivialisation that coincides with τ on a tubu-
lar neighborhood N(K) of K. We want to compute the variation caused by the replace-
ment of the Hi by cycles H ′

i of (C2(M), ∂C2(M)) where ∂H ′
i = k(t − 1)δ(t)(sτ ′(M ;Xi) −

I∆(t)ST (M)|Ki
). There exists a cobordism ci between sτ (M ;Xi) and sτ ′(M ;Xi) in ST (M)

that is supported outside ST (N(K)) [L3, Lemma 5.9], and there is a 5-chain Ci of C2(M)
such that

∂Ci = H ′
i −Hi ∪ k(t− 1)δ(t)ci.

Then

z̃n(M,K, τ ′)− z̃n(M,K, τ) =
∑

Γ∈Sn

3n∑

i=1

V(Γ, i)

where

V(Γ, i) = 〈
1

δ̂
H ′

1, . . . ,
1

δ̂
H ′

i−1,−
1

δ̂
p(Γ, i)−1(Ci) ∩ ∂C2n(M,Γ),

1

δ̂
Hi+1, . . . ,

1

δ̂
H3n〉A,C2n(M,Γ)

like in the previous subsection. Now the proof of the previous subsection can be applied
verbatim to cancel most of the contributions, except for the computation of the valency
of v(I) in Γ(I), because if the tangent space of a point of M is identified to R3 via τ ,
the constraints coming from the chains H ′

j or Ci constrain both the fiber and the base.
Therefore, the valency of v(I) can be zero and this is the only case that is not covered by
the cancellations of the previous subsection. In this case, ΓI = Γ. Then V(Γ, i) reads

±〈sτ ′(M ;X1), . . . , sτ ′(M ;Xi−1), p(Γ, i)
−1(ci), sτ(M ;Xi+1), . . . , sτ (M ;X3n)〉A,F(Γ,{1,...,2n}).

In particular, the variation, that does not involve any coefficient or non-trivial bead, is the
same as the variation in the case of the universal finite type invariant of rational homology
spheres, that was computed in [L1, Section 1.6]. This finishes the proof of Theorem 2.3.
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Appendix: A configuration space definition of the Casson-Walker invariant

For r ∈ R, let B(r) denote the ball of radius r in R3 that is equipped with its standard
parallelisation τs. A rational homology sphere N may be written as BN ∪B(1)\B(1/2)B

3 where
BN is a rational homology ball , that is a connected compact (oriented) smooth 3–manifold
with boundary S2 with the same rational homology as a point, and B3 is a 3-ball. Let
B(N) = BN (3) be obtained from B(3) by replacing the unit ball B(1) of R3 by BN . Equip
B(N) with a trivialisation τN that coincides with τs outside BN .

Let W be a compact connected 4-manifold with signature 0 and with boundary

∂W = BN(3) ∪{1}×∂B(3) (−[0, 1]× ∂B(3)) ∪{0}×∂B(3) (−B(3)).

Define p1(τN ) ∈ (H4(W, ∂W ; π3(SU(4))) = Z) as the obstruction to extend the trivialisation
of TW ⊗C induced by τs and τN on ∂W to W . Again, we use the notation and conventions
of [MS], see also [L1, Section 1.5].

Let C2(B(N)) be the compactification of (B(N)2 \ diagonal) obtained from B(N)2 by
blowing-up the diagonal as in Definition 1.1. Consider a smooth map χ : R → [0, 1] that
maps ]−∞,−2] to 0 and [−1,∞[ to 1. Define

pB(3) : B(3)2 \ diagonal → S2

(U, V ) 7→ χ(‖V ‖−‖U‖)V −χ(‖U‖−‖V ‖)U
‖χ(‖V ‖−‖U‖)V −χ(‖U‖−‖V ‖)U‖

This map extends to C2(B(3)) to a map still denoted by pB(3), that reads as the projection
to S2 induced by τs (see Subsection 1.5) on the unit tangent bundle of B(3). A similar map
pN can be defined on the boundary ∂C2(B(N)): The map pN is the projection to S2 induced
by τN on the unit tangent bundle of B(N), and the map pN is given by the above formula,
where we set ‖ U ‖= 1 when U ∈ BN , for the other points of the boundary that are pairs
(U, V ) of (B(N)2 \ diagonal) where U or V belongs to ∂B(3) (therefore a possible point of
BN is replaced by 0 ∈ R3 in the formula).

The following theorem, that gives a configuration space definition for the Casson-Walker
invariant, is due to Kuperberg and Thurston [KT] for the case of integral homology spheres
(though it is stated in other words). It has been generalised to rational homology spheres in
[L2, Section 6].

Theorem 2.11. Let X, Y and Z be three distinct points of S2. Under the above assumptions,

for V = X, Y or Z, the submanifold p−1
N (V ) of ∂C2(B(N)) bounds a rational chain FN,V in

C2(B(N)), and

λ(N) =
〈FN,X , FN,Y , FN,Z〉C2(B(N))

6
−
p1(τN)

24
.

Note that it is easy to see that 〈FN,X , FN,Y , FN,Z〉C2(B(N)) is a well-defined invariant of
(N, τN). Indeed, C2(B(N)) has the same rational homology as ((R3)2 \ diagonal) that is ho-
motopy equivalent to S2 via the map (x, y) 7→ y−x

‖y−x‖
. Therefore, C2(B(N)) has the same ra-

tional homology as S2. In particular, since H3(C2(B(N));Q) = {0}, the cycle p−1
N (V ) bounds

a rational chain in C2(B(N)) and, since H4(C2(B(N));Q) = {0}, 〈FN,X , FN,Y , FN,Z〉C2(B(N))

only depends on the non-intersecting boundaries of the FN,V .
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