Maximum pseudo-likelihood estimator for general marked Gibbs point processes and applications to the Lennard-Jones model - Archive ouverte HAL
Autre Publication Scientifique Année : 2009

Maximum pseudo-likelihood estimator for general marked Gibbs point processes and applications to the Lennard-Jones model

Résumé

This paper is devoted to the maximum pseudo-likelihood estimator of a vector $\Vect{\theta}$ parametrizing a stationary marked Gibbs point process which is not necessarily a locally stable exponential family model. Sufficient conditions, expressed in terms of the local energy function, to establish strong consistency and asymptotic normality results of this estimator depending on a single realization are presented. These results constitute an extension of the ones obtained in \cite{Billiot08} where the local energy function was assumed to be parametrically linear and stable. By applying these tools, we finally obtain the main results: consistency for both the Lennard-Jones model and the finite range Lennard-Jones model and asymptotic normality for the finite range Lennard-Jones model.
Fichier principal
Vignette du fichier
mpleGenHAL.pdf (341.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00442750 , version 1 (22-12-2009)
hal-00442750 , version 2 (12-07-2010)

Identifiants

  • HAL Id : hal-00442750 , version 1

Citer

Jean-François Coeurjolly, Rémy Drouilhet. Maximum pseudo-likelihood estimator for general marked Gibbs point processes and applications to the Lennard-Jones model. 2009. ⟨hal-00442750v1⟩
252 Consultations
154 Téléchargements

Partager

More