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Abstract
This paper is devoted to the maximum pseudo-likelihood estimator of a vector θ

parametrizing a stationary marked Gibbs point process which is not necessarily a
locally stable exponential family model. Sufficient conditions, expressed in terms of
the local energy function, to establish strong consistency and asymptotic normality
results of this estimator depending on a single realization are presented. These
results constitute an extension of the ones obtained in Billiot et al. (2008) where
the local energy function was assumed to be parametrically linear and stable. By
applying these tools, we finally obtain the main results: consistency for both the
Lennard-Jones model and the finite range Lennard-Jones model and asymptotic
normality for the finite range Lennard-Jones model.

Keywords: stationary marked Gibbs point processes, maximum pseudo-likelihood, Lennard-
Jones model

1 Introduction

The class of Gibbs point processes is interesting because it allows us to introduce and study
interactions between points through the modelling of an associated energy function. Historical
aspects of the mathematical theory are covered briefly in Kallenberg (1983). Among many
models, a very well-known model coming from statistical physyics is the Lennard-Jones model
Lennard-Jones (1931). This model is a stationary pairwise interaction Gibbs point process where
the local energy to insert a point x (of R

2) into a configuration of points ϕ is parametrized as
follows

V LJ (x|ϕ; θ) := θ1 +HLJ (x|ϕ; θ) with HLJ (x|ϕ; θ) :=
∑

y∈ϕ

gLJ(||x − y||; θ) (1)

where gLJ(·; θ) is defined for r > 0 as

gLJ(r; θ) := 4θ2

((
θ3
r

)12

−
(
θ3
r

)6
)
,
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where θ2, θ3 > 0. This simple mathematical potential is a tool for modelling a pair of neutral
atoms or molecules subject to two distinct forces in the limit of large separation and small
separation: an attractive force at long ranges (van der Waals force, or dispersion force) and a
repulsive force at short ranges (the result of overlapping electron orbitals, referred to as Pauli
repulsion from Pauli exclusion principle). The parameters θ2 and θ3 are often referred to as the
depth potential and the (finite) distance at which the interparticle potential is zero. From a
probabilistic point of view, the Lennard-Jones model if of major interest since it constitutes the
main example of superstable, regular1 and lower regular potentials studied by Ruelle (1970) who
has proved the existence of ergodic measures for such models. In this paper, we also consider the
finite range Lennard-Jones model which is defined by replacing the pairwise interaction function
gLJ(·,θ) in (1) by the following one

gLJ(r; θ) := 4θ2

((
θ3
r

)12

−
(
θ3
r

)6
)

1[0,D](r), (2)

where D is a positive real representing the range of the model. Once you know that the model
exists, you may be interested in estimating its parameters based on a single observation in a
bounded window. One among many other methods of estimation is the maximization of the
pseudo-likelihood. This paper aims at proving the following result:

Theorem 1 The maximum pseudo-likelihood estimate based on a single observation in a bounded
window (assumed to grow to R

2) is consistent for both the Lennard-Jones model and the finite
range Lennard-Jones model. The asymptotic normality holds only for the finite range Lennard-
Jones model.

Many proposals tried to estimate the energy function from the available point pattern data
generated by some marked Gibbs point processes. If the energy belongs to a parametric fam-
ily model, the most well-known methodology is the use of the likelihood function, see e.g.
Møller and Waagepetersen (2003) and the references therein. The main drawback of this ap-
proach is that the likelihood function contains an unknown scaling factor whose value depends
on the parameters and which is difficult to calculate. An alternative approach relies on the use of
the pseudo-likelihood. This idea originated from Besag (1974) in the study of lattice processes.
Besag et al. (1982) further considered this method for pairwise interaction point processes, while
Jensen and Møller (1991) generalized it to the general class of marked Gibbs point processes.

In order to underline our theoretical contributions, let us present the different papers dis-
cussing the asymptotic properties of the maximum pseudo-likelihood estimator. Let us discuss
the main two works: Billiot et al. (2008) obtained consistency and asymptotic normality for expo-
nential family models of marked Gibbs point processes. In particular, they concentrate on models
such that the local energy function has a finite range and is locally stable. This paper extends
several papers (Jensen and Møller (1991), Jensen and Künsch (1994)) and includes a large class
of examples of practical interest: area-interaction point process, Multi-Strauss marked point pro-
cess based on the complete graph or the k-nearest-neighbors graph, or the Geyer’s triplet point
process to name a few. Another work has been undertaken by Mase. The consistency for super-
stable and lower regular potentials (introduced by Ruelle (1970)) is obtained in Mase (1995) for
specific models with two parameters -the chemical potential and the inverse temperature- which
can be viewed as particular exponential family models. Mase (2000) extended his work to the
context of marked point processes and provided asymptotic normality by adding the assumption
of finite range.

1A pairwise potential Ψ is said to be regular if
R

R2 |1 − eβΨ(x)|dx < +∞ for some β > 0.

2



For convenience, a LJ-type model designates either the Lennard-Jones model or the finite
range Lennard-Jones model. Let us underline that the previous studies do not allow us to derive
asymptotic results for the maximum pseudo-likelihood estimate of the parameters of a LJ-type
model since

• the model is superstable, regular and lower regular but not locally stable.

• the local energy function has a parametrically nonlinear form, not considered by Mase
(1995, 2000). Actually, his results can be applied to obtain the same results as Theorem 1
in the very restrictive case where θ3 is known.

Note that even if one linearizes the model by setting λ2 := 4θ2θ
12
3 and λ3 := 4θ2θ

6
3, the results

of Billiot et al. (2008) are not well-suited to the estimation of the parameter vector (θ1, λ2, λ3)
due to the local stability requirement.

Based on this literature, the aim of this paper is to propose asymptotic results for non locally
stable exponential family models. We keep the generality of Billiot et al. (2008) in the sense that
sufficient conditions ensuring consistency and asymptotic normality are expressed in terms of the
local energy. Finally, the main result of this paper is to fullfill the different assumptions for the
LJ-type model.

The rest of the paper is decomposed as follows. Section 2 introduces some background and
notation on marked Gibbs point processes and on the maximum pseudo-likelohood method.
Asymptotic results are proposed in Section 3. The main part of this paper is Section 4 devoted
to the proof of Theorem 1 which consists in verifying general assumptions described in Section 3
for the LJ-type model. Proofs have been postponed until Section 5.

2 Background and notation

2.1 Background on marked Gibbs point processes

For the sake of simplicity, the framework of this paper is restricted to two-dimensional marked
Gibbs point processes. However, all the results must remain valid in the general d-dimensional
(d ≥ 1) case. Define B2 the Borel σ-algebra on R

2, B2
b the set of bounded Borel subssets of

R
2 and λ2 the Lebesgue measure on R

2. Denote also by M, M and λm the mark space and
its corresponding σ-algebra and probability measure. Let S := R

2 ×M, B := B2 ⊗ M and
µ := λ2 ⊗ λm denote respectively the state space and its corresponding σ-algebra and measure.

For short, let us denote xm = (x,m) for any x ∈ R
2 and any mark m ∈M and |Λ| := λ2(Λ)

for any Λ ∈ B2. In addition, |I| designates the number of elements of some countable set I,
Λc is the complementary of some set Λ in R

2 and || · || is the ℓ2-norm . Let us define for all
i = (i1, i2) ∈ Z

2, d > 0 and ρ ≥ 0 ∆i(d) :=
{
z ∈ R

2, d
(
ij − 1

2

)
≤ zj ≤ d

(
ij + 1

2

)
, j = 1, 2

}
andB (i, ρ) := {k ∈ Z

2 : |k − i| ≤ ρ} with |i| := max(|i1|, |i2|).
Let Ω̃ denote the set of so-called configurations -of marked points- ϕ := {xmi

i }i∈I where I is

a subset of N and ((xi,mi))i∈I is a sequence of elements of S. In particular, any element ϕ ∈ Ω̃
has the following representation ϕ =

∑
i∈I δxmi

i
as an integer-valued measure on S such that for

every F ∈ B2
b , ϕ(F ) ∈ N, where δxm is the Dirac measure at some element xm ∈ S. The subset of

Ω̃ with elements ϕ satisfying |ϕ| := ϕ(S) < +∞ is denoted by Ω̃f . The space Ω̃ is equipped with

the σ-algebra F generated by the family of sets
{
ϕ ∈ Ω̃ : ϕ(F ) = n

}
with n ∈ N and F ∈ B2

b . For

every F ∈ B2 and ϕ ∈ Ω̃ represented as ϕ =
∑
i∈I δxmi

i
, one introduces ϕF :=

∑
i∈I,x

mi
i

∈F δxmi
i

which can be viewed as the configuration of marked points of ϕ restricted to F . Furthermore,
for every Λ ∈ B2

b , ϕΛ conveniently denotes ϕΛ×M.
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A marked point process is a Ω̃-valued random variable, denoted by Φ, with probability dis-
tribution P on (Ω̃,F). The intensity measure NP of P is defined as a measure on B2 such that
for any F ∈ B2

b :

NP (F ) =

∫

eΩ
ϕ(F )P (dϕ) := E(Φ(F )).

In the stationary case, NP (F ) = νPλ
2(F ) where νP is called the intensity of P . A marked Gibbs

point process is usually defined using a family of local specifications with respect to a weight
process (often a stationary marked Poisson process with distribution Q and intensity λQ = 1).
Let Λ be a bounded region in R

2. For such a process, given some configuration ϕΛc on Λc, the
conditional probability on Λ is of the form, for any F ∈ F

ΠΛ(ϕ, F ) =

{
1

ZΛ(ϕ)

∫

eΩΛ

e−V (ψ|ϕΛc )1F (ψ ∪ ϕΛc)QΛ(dψ)

}
1RΛ(ϕ),

with the partition function

ZΛ(ϕ) =

∫

eΩΛ

e−V (ψ|ϕΛc)QΛ(dψ)

and RΛ = {ϕ ∈ Ω̃ : 0 < ZΛ(ϕ) < +∞} where

∫
f(ψ)QΛ(ψ) := e−µ(Λ×M)

+∞∑

n=0

1

n!

∫
f({xm1

1 , . . . , xmn
n }︸ ︷︷ ︸

ψ

)dµ⊗n(xm1
1 , . . . , xmn

n ).

Let us define the subset of all admissible configurations Ω :=
{
ϕ ∈ Ω̃ : ϕ ∈ ∩Λ∈B2

b
RΛ

}
and denote

by Ωf := Ω̃f ∩ Ω. Whereas the finite energy function V (ϕ) (for any ϕ ∈ Ωf ) measures the cost
of any configuration, the local energy V (ψ|ϕ) (for any ϕ, ψ ∈ Ωf ) represents the energy required
to add the points of ψ in ϕ:

V (ψ|ϕ) = V (ψ ∪ ϕ) − V (ϕ) .

Let us notice that when ψ is a singleton {xm}, we denote by a slight abuse V (xm|ϕ) instead of
V ({xm}|ϕ). It is well-known that the collection of probability kernels (ΠΛ)Λ∈B2

b
satisfies the set

of compatibility and measurability conditions which define a local specification in the Preston’s
sense (Preston (1976)). The main condition is the consistency :

ΠΛΠΛ′ = ΠΛ for Λ
′ ⊂ Λ.

Notice that some conditions are needed to ensure the existence of a probability measure P related
to any local energy V and some weight process that satisfies the so-called Dobrushin-Lanford-
Ruelle (D.L.R.) equations :

P (F |FΛc)(ϕ) = ΠΛ(ϕ, F ) for P a.e. ϕ ∈ Ω for any Λ ∈ B2
b and F ∈ F .

For the general theory of Gibbs point processes, the reader may refer to Kallenberg (1983);
Stoyan et al. (1995) and the references therein.

For some finite configuration ϕ (resp. some set G) and for all x ∈ R
2, ϕx (resp. Gx) denotes

the configuration ϕ (resp. the set G) translated of x. Finally, in this work a non-marked point
process can be viewed as a particular case of marked point processes with M = {0}.

The framework of this paper is restricted to stationary marked Gibbs point processes based
on an energy function invariant by translation, V (ϕ; θ), parametrized by some θ ∈ Θ, where Θ
is some compact set of R

p. The following assumption [Mod] describes the general assumption
on the models considered
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[Mod-E] Our data consist in the realization of a point process with energy function V (·; θ⋆) such
that the associated Gibbs measure Pθ⋆ exists. The vector θ

⋆ is thus the true parameter to

be estimated, assumed to be in Θ̊.

[Mod-L] There exists D ≥ 0 such that for all (m,ϕ) ∈M× Ωf

V (0m|ϕ; θ) = V
(
0m|ϕB(0,D); θ

)
,

where B(x, r) denotes the ball centered at x ∈ R
2 with radius r > 0.

We do not want to discuss here general assumptions ensuring the existence of an ergodic measure,
i.e. [Mod-E].

2.2 Maximum pseudo-likelihood method

The idea of maximum pseudo-likelihood is due to Besag (1974) who first introduced the concept
for Markov random fields in order to avoid the normalizing constant. This work was then widely
extended and Jensen and Møller (1991) (Theorem 2.2) obtained a general expression for marked
Gibbs point processes. Using our notation and up to a scalar factor, the pseudo-likelihood defined
for a configuration ϕ and a domain of observation Λ is denoted by PLΛ (ϕ; θ) and given by

PLΛ (ϕ; θ) = exp

(
−
∫

Λ×M e−V (xm|ϕ;θ)µ(dxm)

) ∏

xm∈ϕΛ

e−V (xm|ϕ\xm;θ). (3)

It is more convenient to define (and work with) the log-pseudo-likelihood, denoted by LPLΛ (ϕ; θ).

LPLΛ (ϕ; θ) = −
∫

Λ×M e−V (xm|ϕ;θ)µ(dxm) −
∑

xm∈ϕΛ

V (xm|ϕ \ xm; θ) . (4)

For a practical point of view, the point process is assumed to be observed in a domain
Λn ⊕ D∨ = ∪x∈Λn

B(x,D∨) for some D∨ < +∞. For the asymptotic normality result, it is
also assumed that Λn ⊂ R

2 can de decomposed into ∪i∈In
∆i where In = B (0, n) and for

i = (i1, i2) ∈ Z
2, ∆i = ∆i(D̃) for some D̃ > 0 fixed from now on. As a consequence, as n→ +∞,

Λn → R
2 such that |Λn| → +∞ and

|∂Λn|
|Λn|

→ 0.

Define for any configuration ϕ, Un (ϕ; θ) = − 1
|Λn|LPLΛn

(ϕ; θ). The maximum pseudo-

likelihood estimate (MPLE) denoted by θ̂n(ϕ) is then defined by

θ̂n(ϕ) = arg max
θ∈Θ

LPLΛn
(ϕ; θ) = arg min

θ∈Θ
Un (ϕ; θ) .

We will also need the following basic notation:

• Gradient vector of Un: U (1)
n (ϕ; θ) := −|Λn|−1LPL

(1)
Λn

(ϕ; θ) where for any bounded Borel

set Λ,
(
LPL

(1)
Λ (ϕ; θ)

)

j
is defined for j = 1, · · · , p by

(
LPL

(1)
Λ (ϕ; θ)

)

j
=

∫

Λ×M ∂V

∂θj
(xm|ϕ; θ) e−V (xm|ϕ;θ)µ(dxm) −

∑

xm∈ϕΛ

∂V

∂θj
(xm|ϕ \ xm; θ)

5



• Hessian matrix of Un: U (2)
n (ϕ; θ) := −|Λn|−1LPL

(2)
Λn

(ϕ; θ) where for any bounded Borel

set Λ,
(
LPL

(2)
Λ (ϕ; θ)

)

j,k
is defined for j, k = 1, · · · , p by

(
LPL

(2)
Λ (ϕ; θ)

)

j,k
=

∫

Λ×M( ∂2V

∂θj∂θk
(xm|ϕ; θ) − ∂V

∂θj
(xm|ϕ; θ)

∂V

∂θk
(xm|ϕ; θ)

)
e−V (xm|ϕ;θ)µ(dxm)

+
∑

xm∈ϕΛ

∂V

∂θj
(xm|ϕ \ xm; θ)

∂V

∂θk
(xm|ϕ \ xm; θ)

Finally, note that from the decomposition of the observation domain Λn, one has

U (1)
n (ϕ; θ) = |Λn|−1

∑

i∈In

LPL
(1)
∆i

(ϕ; θ) and U (2)
n (ϕ; θ) = |Λn|−1

∑

i∈In

LPL
(2)
∆i

(ϕ; θ) .

3 Asymptotic results of the MPLE

In the rest of the paper, let M be a random variable with distribution λm.

3.1 Consistency of the MPLE

The assumption [C] gathers the following four assumptions:

[C1] For all θ ∈ Θ,

E
(
e−V (0M |Φ;θ)

)
< +∞ and E

(∣∣V
(
0M |Φ; θ

)∣∣ e−V (0M |Φ;θ⋆
)
)
< +∞.

[C2] Identifiability condition : there exists A1, . . . , Aℓ, ℓ ≥ p events in B2 and Am1 , . . . , Amℓ events
in M such that:

– the ℓ events Bi := Ami ×Ai (i = 1, . . . , ℓ) are disjoint and satisfy λm ⊗ Pθ⋆(Bi) > 0

– for all ((m1, ϕ1), . . . , (mℓ, ϕℓ)) ∈ B1 × · · · ×Bℓ
{
D(0mi |ϕi; θ) = 0
i = 1 . . . , ℓ

⇒ θ = θ⋆

where D(0mi |ϕi; θ) := V (0mi|ϕi; θ) − V (0mi |ϕi; θ⋆)

[C3] The function Un(ϕ; ·) is continuous for Pθ⋆−a.e. ϕ.

[C4] For all (m,ϕ) ∈ M × Ωf V (0m|ϕ; θ) is continuously differentiable in θ and for all j =
1, . . . , p

E

(
max
θ∈Θ

(∣∣∣∣
∂V

∂θj

(
0M |Φ; θ

)∣∣∣∣ e
−V (0M |Φ;θ)

)2
)

< +∞.

Theorem 2 Under the assumptions [Mod-E] and [C], for Pθ⋆−almost every ϕ, the maximum

pseudo-likelihood estimate θ̂n(ϕ) converges towards θ⋆ as n tends to infinity.
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3.2 Asymptotic normality of the MPLE

For establishing the asymptotic normality of the MPLE we need to assume the four additional
following assumptions:

[N1(k)] For all (m,ϕ) ∈M× Ωf , V (0m|ϕ; θ) is differentiable in θ = θ⋆ and for all k′ ≤ k and for

all λ1, . . . , λk′ k
′ positive integers such that

∑k′

i=1 λi = k

E




∫

(∆×M)k′

k′∏

i=1

∣∣∣∣
∂V

∂θj

(
0M |Φ; θ⋆

)∣∣∣∣
λi

e−V ({x1,...,xk′}|Φ;θ⋆
)µ(dxmi

i )



 < +∞.

[N2] There exists a neighbourhood V(θ⋆) of θ⋆ such that for all (m,ϕ) ∈ M × Ωf V (0m; θ) is
twice continuously differentiable in θ ∈ V and, for all j, k = 1, . . . , p and θ ∈ V(θ⋆),

E

(∣∣∣∣
∂2V

∂θj∂θk

(
0M |Φ; θ

)∣∣∣∣ e
−V (0M |Φ;θ)

)
< +∞, E

(∣∣∣∣
∂2V

∂θj∂θk

(
0M |Φ; θ

)∣∣∣∣ e
−V (0M |Φ;θ⋆

)
)
< +∞,

and

E

((∣∣∣∣
∂V

∂θj

(
0M |Φ; θ

)∣∣∣∣ e
−V (0M |Φ;θ)

)2
)
< +∞.

[N3] There exists A1, . . . , Aℓ, ℓ ≥ p events in B2 and Am1 , . . . , Amℓ events in M such that:

– the ℓ events Bj := Amj ×Aj are disjoint and satisfy λm ⊗ Pθ⋆(Bj) > 0

– for all ((m1, ϕ1), . . . , (mℓ, ϕℓ)) ∈ B1×· · ·×Bℓ the (ℓ, p) matrix with entries ∂V
∂θj

(0mi |ϕi; θ⋆)
is injective.

[N4] For some D > 0 and some Λ := ∪i∈B(0,⌈D

D
⌉), there exists A0, . . . , Aℓ, ℓ ≥ p disjoint

subevents of Ω :=
{
ϕ ∈ Ω : ϕ∆i(D) = ∅, 1 ≤ |i| ≤ 2

⌈
D
D

⌉}
such that

– for j = 0, . . . , ℓ, Pθ⋆(Aj) > 0.

– for all (ϕ0, . . . , ϕℓ) ∈ A0×· · ·×Aℓ the (ℓ, p) matrix with entries
(
LPL

(1)

Λ
(ϕi; θ

⋆)
)

j
−

(
LPL

(1)

Λ
(ϕ0; θ

⋆)
)

j
is injective.

The assumptions [N3] and [N4] will ensure (see Section 5 for more details) that the matrices

U (2)(θ⋆) and Σ(̃,θ⋆) respectively defined by

(
U (2)(θ⋆)

)

j,k
:= E

(
∂V

∂θj

(
0M |Φ; θ⋆

) ∂V
∂θk

(
0M |Φ; θ⋆

)
e−V (0M |Φ;θ⋆

)
)

(5)

and

Σ(D̃,θ⋆) = D̃−2
∑

i∈B(0,⌈D
fD⌉)

E

(
LPL

(1)
∆0

(Φ; θ⋆)LPL
(1)
∆i

(Φ; θ⋆)
T
)
, (6)

are definite positive. Let us note that the matrix Σ(D̃,θ⋆) is actually independent of D̃. There-

fore, one may note in the following Σ(θ⋆) = Σ(D̃,θ⋆) = Σ(1,θ⋆).
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Remark 1 Let us make a little summary on the different notation. The real D denotes the range
of the local energy function. The real D̃ is associated to the geometry of the observation domain
Λn and is chosen by the user independently of the value of D. Finally, the parameter D occurs
only in the verification of the assmuption [N4]. It can be chosen independently of D̃. For the

sake of simplicity, it is often chosen such that D̃ > D.

Observe also that, when the energy function is linear, the expressions of the assumptions
[N1(k)] and [N2] are clearly simpler (see Billiot et al. (2008)) and that [C2] and [N3] are
similar.

Theorem 3 Under the assumptions [Mod], [C], [N1(3)] [N2] and [N3], we have, for any

fixed D̃, the following convergence in distribution as n→ +∞

|Λn|1/2 U (2)(θ⋆)
(
θ̂n(Φ) − θ

⋆
)
→ N (0,Σ(θ⋆)) , (7)

where Σ(θ⋆) = Σ(1,θ⋆). In addition under the assumptions [N1(4)] and [N4]

|Λn|1/2 Σ̂n(Φ;D∨, D̃, θ̂n(Φ))−1/2 U (2)
n (Φ; θ̂n(Φ))

(
θ̂n(Φ) − θ⋆

)
→ N

(
0, Ip

)
, (8)

where for some θ and any configuration ϕ, the matrix Σ̂n(ϕ;D∨, D̃,θ) is defined by

Σ̂n(ϕ;D∨, D̃,θ) = |Λn|−1
∑

i∈In

∑

j∈B(i,⌈D∨

fD ⌉)∩In

LPL
(1)
∆i

(ϕ; θ)LPL
(1)
∆j

(ϕ; θ)
T
. (9)

In the following the assumption [N] will gather the assumptions [N1(4)], [N2], [N3] and
[N4].

Remark 2 As noted, previously the matrix Σ(D̃,θ⋆) does not depend on D̃, whereas its estima-

tion depends strongly on D̃.

4 Applications to the LJ-type model

This Section is devoted to the proof of Theorem 1. The LJ-type model is defined for some
D ∈]0,+∞] by

V LJ (x|ϕ; θ⋆) := θ⋆1 +HLJ (x|ϕ; θ⋆)

HLJ (x|ϕ; θ⋆) :=
∑

y∈ϕ

gLJ(||y − x||; θ⋆)

and gLJ(r; θ⋆) := 4θ⋆2

((
θ⋆3
r

)12

−
(
θ⋆3
r

)6
)

1[0,D](r),

where θ⋆2 , θ
⋆
3 > 0 and θ⋆1 ∈ R. Recall that the casesD = +∞ andD < +∞ respectively correpond

to the Lennard-Jones model and the Lennard-Jones model with finite range.
Let us first discuss the assumption [Mod-E]. Ruelle (1970) has proved the existence of an

ergodic measure for superstable, regular and lower regular potentials. The Lennard-Jones model
is known to be the characteristic example of such a family of models. Of course, [Mod-E] is also
satisfied for the finite range Lennard-Jones model.

Thus, from Theorem 2 and 3, the proof of Theorem 1 consists in verifying Assumptions [C]
for the LJ-type model and [N] only for the finite range Lennard-Jones model. In the following,
we will deal with two types of assumptions:
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• Integrabilility type assumptions, i.e. Assumptions [C1], [C4], [N1(4)] and [N2].

• Identifiability type assumptions, i.e. Assumptions [C2], [N3] and [N4].

Note that [C3] is obvious since gLJ(r, ·) is continuous. For the integrability type assumptions,
the following Lemma will be widely used.

Lemma 4 Let Φ be a stationary pairwise interaction Gibbs point process with Hamiltonian H (·)
assumed to be superstable, regular and lower regular. Let Hi (x|ϕ) =

∑
y∈ϕ gi(||x−y||) for i = 1, 2.

Assume that there exists ε > 0 such that there exists a positive and decreasing function g(·) such

that gε(r) := g2(r)− ε|g1(r)| ≥ −g(r) for all r > 0 and
∫ +∞

0 rg(r)dr < +∞. Then for all k ≥ 0,

E
(
|H1 (0|Φ)|k e−H2(0|Φ)

)
< +∞.

Proof. For all finite configuration ϕ

|H1 (0|ϕ)|k e−H2(0|ϕ) = |H1 (0|ϕ)|k e−ε|H1(0|ϕ)| e−(H2(0|ϕ)−εH1(0|ϕ))

≤ c(ε, k)e−(H2(0|ϕ)−εH1(0|ϕ)), with c(ε, k) =

(
k

εe

)k

≤ c(ε, k)e−Hε(0|ϕ),

where
Hε (0|ϕ) :=

∑

x∈ϕ

gε(||x||).

Now, the assumptions made on the function gε ensure that the potential associated to the local
hamiltonian Hε (0|ϕ) is lower regular. We may now apply the same argument as in Lemma 3
of Mase (1995) to prove the integrability of the random variable e−Hε(0|Φ).

Let us denote by

θinf
i := inf

θ∈Θ
θi θsup

i := sup
θ∈Θ

θi θinf := min(θinf
2 , θinf

3 ) and θsup := max(θsup
2 , θsup

3 )

Since Θ is a compact set of R × (]0,+∞[)2 then θinf > 0 and θsup < +∞.

4.1 Assumptions [C]

4.1.1 Assumption [C1]

The first part is a direct application of Lemma 4. For the second part, one has to prove that for
all θ ∈ Θ

E
(
HLJ (0|Φ; θ) e−H

LJ(0|Φ;θ⋆
)
)
< +∞

Let gε(r) = gLJ(r; θ⋆) − ε|gLJ(r; θ)|. We have

gε(r) :=





4θ⋆2

(
(θ⋆

3)12−ε
θ2
θ⋆
2
θ123

r12 −
(θ⋆

3)6−ε
θ2
θ⋆
2
θ63

r6

)
if r ≤ θ3

4θ⋆2

(
(θ⋆

3)12+ε
θ2
θ⋆
2
θ123

r12 −
(θ⋆

3)6+ε
θ2
θ⋆
2
θ63

r6

)
if r ≥ θ3

which satisfies the assumptions of Lemma 4 as soon as ε <
(
θ⋆
3

θ3

)12
θ⋆
2

θ2
, that is, as soon as

ε <
(
θinf

θsup

)13

.
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4.1.2 Assumption [C2]

Let us denote for n ≥ 1, Cn = B(0, n) \ B(0, n − 1) and define for m,n ≥ 1 the following
configuration sets

Um,n = {ϕ ∈ Ω : |ϕCn
| ≤ m|Cn|}

Um = ∩n≥1Um,n.

In order to prove [C2], we need the following Lemma.

Lemma 5 Let R ∈ R
+, θ ∈ Θ and ϕ ∈ Um, let us denote by

Z(ϕ,R; θ) :=
∑

x∈ϕB(0,R)c

gLJ(||x||; θ),

then for all δ > 0 there exists R0 such that for all R ≥ R0, |Z(ϕ,R; θ)| ≤ δ.

Proof.

Z(ϕ,R; θ) =
∣∣ ∑

x∈ϕB(0,R)c

gLJ(||x||; θ)
∣∣ ≤

∑

n≥⌈R⌉

∑

x∈ϕCn

∣∣gLJ(||x||; θ)
∣∣

≤
∑

n≥⌈R⌉

|ϕCn
| × sup

x∈Cn

∣∣gLJ(||x||; θ⋆)
∣∣ .

There exists a constant k = k(R) such that for all n ≥ ⌈R⌉, supx∈Cn

∣∣gLJ(||x||; θ⋆)
∣∣ ≤ kn−6.

Therefore,

∣∣ ∑

x∈ϕB(0,R)c

gLJ(||x||; θ)
∣∣ ≤ km

∑

n≥⌈R⌉

|Cn| × n−6 = O




∑

n≥⌈R⌉

n−5



 ,

which leads to the result since the previous series is convergent.
Let θ ∈ Θ \θ⋆ and consider the following configuration sets defined for k ≥ 1 and for η small

enough by

A0 = {ϕ ∈ Ω : ϕ (B(0, D)) = 0}

Ak(η) =

{
ϕ ∈ Ω : ϕ (B(0, D)) = ϕ

(
B
((

0,
D

k1/12

)
, η

))
= 1

}
,

where D is any positive real for the Lennard-Jones model and corresponds to the range of the
function gLJ(·) for the finite range Lennard-Jones model. There exists m ≥ 1 such that for all
η > 0 and for k = 2, 4

Pθ⋆ (A0 ∩ Um) > 0 and Pθ⋆ (Ak(η) ∩ Um) > 0.

Now, let ϕ0 ∈ A0 ∩ Um, ϕ2 ∈ A2(η) ∩ Um and ϕ4 ∈ A4(η) ∩ Um. First,

D(0|ϕ0; θ) = θ1 − θ⋆1 + Z(ϕ0, D; θ) − Z(ϕ0, D; θ⋆) = 0.

For the Lennard-Jones model, according to Lemma 5 one has, for D large enough,

|Z(ϕ0, D; θ) − Z(ϕ0, D; θ⋆)| ≤ 1

2
|θ1 − θ⋆1 | .

10



Hence for η small enough, and for both models

0 = |D(0|ϕ0; θ)|
≥ |θ1 − θ⋆1 | − |Z(ϕ0, D; θ) − Z(ϕ0, D; θ⋆)|

≥ 1

2
|θ1 − θ⋆1 |,

which leads to θ1 = θ⋆1 . Moreover,

D(0|ϕ2; θ) = 4θ2

(
2

(
θ3
D

)12

−
√

2

(
θ3
D

)6
)

− 4θ⋆2

(
2

(
θ⋆3
D

)12

−
√

2

(
θ⋆3
D

)6
)

+f2(ϕ2) + Z (ϕ2, D; θ) − Z (ϕ2, D; θ⋆)

D(0|ϕ4; θ) = 4θ2

(
4

(
θ3
D

)12

− 2

(
θ3
D

)6
)

− 4θ⋆2

(
4

(
θ⋆3
D

)12

− 2

(
θ⋆3
D

)6
)

+f4(ϕ4) + Z (ϕ4, D; θ) − Z (ϕ4, D; θ⋆) ,

where for any ϕk ∈ Ak(η) (k = 2, 4), there exists a positive function f̃k(η) converging towards

zero as η → 0 such that |fk(ϕk)| is bounded by f̃k(η). Now, we have

2D(0|ϕ2; θ) −D(0|ϕ4; θ) =
4(2 − 2

√
2)

D6

(
θ2θ

6
3 − θ⋆2θ

⋆
3
6
)

+ 2f(ϕ2) − f4(ϕ4) + Z ′(ϕ2, ϕ4, D; θ,θ⋆)

= 0

with

Z ′(ϕ2, ϕ4, D; θ,θ⋆) := 2 (Z(ϕ2, D; θ) − Z(ϕ2, D; θ⋆)) − (Z(ϕ4, D; θ) − Z(ϕ4, D; θ⋆)) .

For η small enough, we have, for any ϕk ∈ Ak(η) (k = 2, 4),

|2f(ϕ2) − f4(ϕ4)| ≤ 2f̃2(η) + f̃4(η) ≤
1

4

∣∣∣∣∣
4(2 − 2

√
2

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|.

For the finite range Lennard-Jones model, Z ′(ϕ2, ϕ4, D; θ,θ⋆) = 0. For the Lennard-Jones model,
according to Lemma 5, one has for D large enough

|Z ′(ϕ2, ϕ4, D; θ,θ⋆)| ≤ 1

4

∣∣∣∣∣
4(2 − 2

√
2

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|.

Hence for η small enough, and for both models

0 =

∣∣∣∣∣
4(2 − 2

√
2)

D6

(
θ2θ

6
3 − θ⋆2θ

⋆
3
6
)

+ 2f(ϕ2) − f4(ϕ4) + Z ′(ϕ2, ϕ4, D; θ,θ⋆)

∣∣∣∣∣

≥
∣∣∣∣∣
4(2 − 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6| − |2f(ϕ2) − f4(ϕ4)| − |Z ′(ϕ2, ϕ4, D; θ,θ⋆)|

≥ 1

2

∣∣∣∣∣
4(2 − 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|

leading to θ2θ
6
3 = θ⋆2θ

⋆
3
6. By considering the combination

√
2D(0|ϕ2; θ) −D(0|ϕ4; θ) and using

similar arguments as previously, one obtains: θ2θ
12
3 = θ⋆2θ

⋆
3
12. By computing the ratio of the two

last equations, one obtains θ3 = θ⋆3 and then θ2 = θ⋆2 .
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4.1.3 Assumption [C4]

For all ϕ ∈ Ωf and for any θ ∈ Θ, V LJ (0|ϕ; θ) is clearly differentiable in θ. First, note that
[C4] is trivial for j = 1. For j = 2, 3, let us define:

Xj(ϕ; θ) :=
∣∣∣∂V

LJ

∂θj
(0|ϕ; θ)

∣∣∣ e−V
LJ(0|ϕ;θ).

Our aim will be to prove that for j = 2, 3 and for all k > 0

E

(
max
θ∈Θ

Xj(Φ; θ)k
)
< +∞. (10)

In particular, the Assumption [C4] corresponds to (10) with k = 2. Let us notice that for all
ϕ ∈ Ω and for all θ ∈ Θ

V LJ (0|ϕ; θ) ≥ V inf(0|ϕ) := θinf +
∑

x∈ϕ

ginf(||x||),

with for some r > 0, ginf(r) := 4θinf

(
(θinf )12

r12 − (θsup)6

r6

)
. Let us also underline that for j = 2, 3

∂gLJ

∂θj
(r; θ) ≥ g̃inf

j (r) with g̃inf
j (r) :=





4

(
(θinf )

12

r12 − (θsup)6

r6

)
if j = 2,

4m

(
12(θinf )11

r12 − 6(θsup)5

r6

)
if j = 3.

Therefore, by defining Ṽ inf
j (0|ϕ) :=

∑
x∈ϕ g̃

inf
j (||x||), the result (10) will be ensured by proving

E
(
Ṽ inf
j (0|Φ)e−V

inf (0|Φ)
)
< +∞.

According to Lemma 4, in order to prove this, let us denote by gj,ε(·) the function defined for
j = 2, 3, for some ε > 0 and for r > 0 by gj,ε(r) = g̃inf

j (r)− ε
∣∣ginf(r)

∣∣. On the one hand, one has

g2,ε(r) =






4

(
(θinf )13

−ε(θinf )12

r12 − θinf (θsup)6−ε(θsup)6

r6

)
if r ≤ (θinf )2

θsup ,

4

(
(θinf )13

+ε(θinf )12

r12 − θinf (θsup)6+ε(θsup)6

r6

)
if r ≥ (θinf )2

θsup ,

which satisfies the assumptions of Lemma 4 as soon as ε < θinf . On the other hand

g3,ε(r) =






4θinf

(
(θinf )12

−12ε(θinf )11

r12 − (θsup)6−6ε(θsup)5

r6

)
if r ≤

(
2
(θinf )11

(θsup)5

)1/6

4θinf

(
(θinf )

12
+12ε(θinf )

11

r12 − (θsup)6+6ε(θsup)5

r6

)
if r ≥

(
2
(θinf )

11

(θsup)5

)1/6

,

which satisfies the assumptions of Lemma 4 as soon as ε < θinf /12, which ends the proof.
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4.2 Assumptions [N]

4.2.1 Assumption [N1(4)]

Actually, the LJ-type model satisfies [N1(k)] for any k ≥ 1. In order to prove this, let us first
present two auxiliary lemmas.

Lemma 6 Let Φ a stationary pairwise interaction point process with local energy function defined
by

V (x|ϕ; θ) = θ1 +H (x|ϕ; θ) with H (x|ϕ; θ) =
∑

y∈ϕ

g(||y − x||; θ).

Let K < +∞ and let x1, . . . , xK ∈ R
2 \ ϕ, xi 6= xj for i, j = 1, . . . ,K (where K < +∞), then

H ({x1, . . . , xK}|ϕ; θ) =

K∑

k=1

H (xk|ϕ; θ) +H ({x1, . . . , xK}; θ)

V ({x1, . . . , xK}|ϕ; θ) =

K∑

k=1

V (xk|ϕ; θ) +H ({x1, . . . , xK}; θ)

This result comes from the definition of the local energy.

Lemma 7 Using the same notation and under the same assumptions of Lemma 6, assume that
there exists gmin such that for all r > 0 and any θ ∈ Θ, g(r; θ) ≥ gmin, then

e−V ({x1,...,xK}|ϕ;θ) ≤ cK

K∏

k=1

e−V (xk|ϕ;θ) with cK = e−
K(K−1)

2 gmin

Proof. The proof is immediate since

H ({x1, . . . , xK}; θ) =
∑

i<j

g(||xi − xj ||; θ) ≥ K(K − 1)

2
gmin.

Let k ≥ 1, k′ ≤ k and let λ1, . . . , λk′ k
′ positive integers such that

∑k′

i=1 λi = k and define
the random variable

A(Φ) :=

∫

(∆×M)k′

k′∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V ({x1,...,xk′}|Φ;θ⋆
)dxi.

From Lemma 7, we have

E (A(Φ)) ≤ E


ck′

∫

(∆×M)k′

k′∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V (xi|Φ;θ
⋆
)dxi




= ck′

∫

(∆×M)k′

E




k′∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V (xi|Φ;θ⋆
)


 dx1 . . . dxk′

≤ ck′
k′∏

i=1

∫

(∆×M)k′

∣∣∣∣
∂V

∂θj
(x|Φ; θ⋆)

∣∣∣∣
k

e−
λi
k
V (x|Φ;θ⋆

)dx,

by using Hölder’s inequality. The result is then a simple consequence of (10) and Lemma 4.
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4.2.2 Assumption [N2]

For all ϕ ∈ Ωf , it is clear that for all θ ∈ Θ, V (0|ϕ; θ) is twice continuously differentiable in θ.
According to Lemma 4 and the fact that [N1(4)] is satisfied, it is sufficient to prove that for all
j, k = 1, 2, 3

E

(∣∣∣∣
∂2V LJ

∂θj∂θk
(0|Φ; θ)

∣∣∣∣ e
−V LJ(0|Φ;θ)

)
< +∞.

This is obvious when either j or k equals 1 and when j = k = 2 (since ∂2gLJ

(∂θ2)2
(r; ·) = 0). Now, for

the other cases, define for θ ∈ Θ gj,k,ε(r) := gLJ(r; θ) − ε
∣∣∣ ∂

2gLJ

∂θj∂θk
(r; θ)

∣∣∣. We have

g2,3,ε(r) = g3,2,ε(r) =





4
(
θ2θ

12
3 −12εθ113

r12 − θ63−6εθ53
r6

)
if r ≤ 21/6

4
(
θ2θ

12
3 +12εθ113

r12 − θ63+6εθ53
r6

)
otherwise

which satisfies the assumptions of Lemma 4 as soon as ε < θ2θ3
12 , that is, as soon as ε <

(θinf )
2

12 .
Finally,

g3,3,ε(r) =





4
(
θ2θ

12
3 −132εθ103

r12 − θ2θ
6
3−30εθ43
r6

)
if r ≤

(
132
30

)1/6
θ3

4
(
θ2θ

12
3 +132εθ103

r12 − θ2θ
6
3+30εθ43
r6

)
otherwise

which satisfies the assumptions of Lemma 4 as soon as ε <
θ2θ

2
3

132 , that is, as soon as ε <
(θinf )

3

132 .

4.2.3 Assumption [N3]

Let y = (y1, y2, y3) ∈ R
3 and let us denote for any finite configuration ϕ by g(y, ϕ) :=

yTV
(1)
LJ (0|ϕ; θ⋆). Let ϕ0 ∈ A0 and ϕk(η) ∈ Ak(η) (k = 2, 4) as in the previous section. As-

sume g(y, ϕk) = 0 for k = 0, 2, 4. Since, g(y, ϕ0) = y1, we have y1 = 0. Now,

g(y, ϕ2) = 4y2

(
2

(
θ⋆3
D

)12

−
√

2

(
θ⋆3
D

)6
)

+ 4y3θ
⋆
2

(
2
12θ⋆3

11

D12
−
√

2
6θ⋆3

5

D6

)
+ f2(y, ϕ2)

g(y, ϕ4) = 4y2

(
4

(
θ⋆3
D

)12

− 2

(
θ⋆3
D

)6
)

+ 4y3θ
⋆
2

(
4
12θ⋆3

11

D12
− 2

6θ⋆3
5

D6

)
+ f4(y, ϕ4),

where for any ϕk ∈ Ak(η) (k = 2, 4), there exists a positive function f̃k(y, η) converging towards

zero as η → 0 such that |fk(y, ϕk)| is bounded f̃k(y, η). Now, we have

2g(y, ϕ2) − g(y, ϕ4) = 4(2 − 2
√

2))
θ⋆3

5

D6
(θ⋆3y2 + 6θ⋆2y3) + 2f2(y, ϕ2) − f4(y, ϕ4) = 0.

For η small enough, we have, for any ϕk ∈ Ak(η) (k = 2, 4),

|2f(y, ϕ2) − f4(y, ϕ4)| ≤ 2|f̃2(y, η)| + |f̃4(y, η)| ≤
1

2

∣∣∣∣4(2 − 2
√

2)
θ⋆3

5

D6
(θ⋆3y2 + 6θ⋆2y3)

∣∣∣∣ .

Hence for η small enough,

0 = |2g(y, ϕ2) − g(y, ϕ4)| ≥
1

2

∣∣∣∣4(2 − 2
√

2)
θ⋆3

5

D6
(θ⋆3y2 + 6θ⋆2y3)

∣∣∣∣ ,

leading to the equation θ⋆3y2 + 6θ⋆2y3 = 0. By considering the linear combination
√

2g(y, ϕ2) −
g(y, ϕ4), we may obtain the equation θ⋆3y2 + 12θ⋆2y3 = 0 with similar arguments. Both equations
lead to y2 = y3 = 0.
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4.2.4 Assumption [N4]

The assumption [N4] may be rewritten for all k = 1, · · · , ℓ and for all ϕk ∈ Ak and ϕ0 ∈ A0:
(
∀y ∈ R

3,yT
(
LPL

(1)

Λ
(ϕk; θ

⋆) − LPL
(1)

Λ
(ϕ0; θ

⋆)
)

= yT (L(ϕk; θ
⋆) − R(ϕk; θ

⋆)) = 0
)

=⇒ y = 0.

where for any configuration ϕ ∈ Ω and ϕ0 ∈ A0

L(ϕ; θ⋆) :=

∫

Λ

V
(1)
LJ (x|ϕ; θ⋆) e−V

LJ(x|ϕ;θ⋆
)dx−

∫

Λ

V
(1)
LJ (x|ϕ0; θ

⋆) e−V
LJ(x|ϕ0;θ

⋆
)dx

R(ϕ; θ⋆) :=
∑

x∈ϕ∩Λ

V
(1)
LJ (x|ϕ \ x; θ⋆) −

∑

x∈ϕ0∩Λ

V
(1)
LJ (x|ϕ0 \ x; θ⋆) .

Concerning this assumption, we choose D > D and ϕ0 ∈ A0 =
{
ϕ ∈ Ω : ϕ∆0(D) = ∅

}
. Let

y ∈ R
3 then

∫

Λ

yTV
(1)
LJ (x|ϕ0; θ

⋆) e−V
LJ(x|ϕ0;θ

⋆
)dx = y1e

−θ⋆
1

∣∣Λ
∣∣ and

∑

x∈ϕ0∩Λ

yTV
(1)
LJ (x|ϕ0 \ x; θ⋆) = 0.

Consider the following configuration set defined for η, ε > 0

A2(η, ε) =
{
ϕ ∈ Ω : ϕ∆0(D) = {z1, z2} where z1 ∈ B(0, η), z2 ∈ B((0, 2η + ε), η)

}
.

Note that for z1 ∈ B(0, η), z2 ∈ B((0, 2η + ε), η), ε ≤ ||z2 − z1|| ≤ ε+ 4η. Let ϕ2 ∈ A2(η, ε) and
x ∈ Λ, then one may prove that for j = 2, 3

V LJ (x|ϕ2; θ
⋆) = θ⋆1 + 2gLJ(||x||; θ⋆) + f(x, η, ε)

∂V LJ

∂θj
(x|ϕ2; θ

⋆) = 2
∂gLJ

∂θj
(||x||; θ⋆) + fj(x, η, ε)

where f(x, η, ε) and fj(x, η, ε) are such that

lim
(η,ε)→(0,0)

f(x, η, ε) = lim
(η,ε)→(0,0)

fj(x, η, ε) = 0.

On the one hand, one may prove that there exists a function fL(y, η, ε) such that lim(η,ε)→(0,0) fL(x, η, ε) =
0 and such that

yTL(ϕ2; θ
⋆) = yT I − y1e

−θ⋆
1 |Λ| + fL(y, η, ε)

where

I :=

∫

Λ

h(||x||; θ⋆)e−θ⋆
1−2gLJ (||x||;θ⋆

)dx and h(r; θ⋆) :=

(
1, 2

∂gLJ

∂θ2
(r; θ⋆), 2

∂gLJ

∂θ3
(r; θ⋆)

)T
.

On the other hand, there exists a function fL(y, η, ε) such that limη→0 fL(x, η, ε) = 0

yTR(ϕ2; θ
⋆) = 2y1 + 2y24

((
θ⋆3
ε
−
)12

−
(
θ⋆3
ε

)6
)

+ 2y34θ
⋆
2

(
12θ⋆3

11

ε12
− 6θ⋆3

5

ε6

)
+ fR(y, η, ε).

Since

ε12yT (L(ϕ2; θ
⋆) − R(ϕ2; θ

⋆)) = ε12
(
yT I − y1e

−θ⋆
1 |Λ| + fL(y, η, ε) − fR(y, η, ε)

)

−ε6
(
2y24θ

⋆
3
6 + 2y34θ

⋆
26θ

⋆
35
)

+ 2y24θ
⋆
3
12 + 2y34θ

⋆
212θ⋆3

11.
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For η and ε chosen small enough, one may prove that

0 =
∣∣ε12yT (L(ϕ2; θ

⋆) − R(ϕ2; θ
⋆))
∣∣ ≥ 1

2

∣∣∣2y24θ⋆3
12 + 2y34θ

⋆
212θ⋆3

11
∣∣∣

leading to
2y24θ

⋆
3
12 + 2y34θ

⋆
212θ⋆3

11 = 0 ⇔ θ⋆3y2 + 12θ⋆2y3 = 0. (11)

This means that

yTR(ϕ2; θ
⋆) = 2y1 −

1

ε6

(
2y24θ

⋆
3
6 + 2y34θ

⋆
26θ

⋆
3
5
)

+ fR(y, η, ε).

With similar arguments, we obtain that

2y24θ
⋆
3
6 + 2y34θ

⋆
26θ

⋆
3
5 = 0 ⇔ θ⋆3y2 + 6θ⋆2y3 = 0. (12)

Equations (11) and (12) lead to y2 = y3 = 0. Now consider the following configuration set defined
for some k ≥ 1 and η > 0

Ak(η) =
{
ϕ ∈ Ω : ϕ∆0(D) = ϕ (B(0, η)) = k

}

and let ϕk ∈ Ak(η). Then, one may prove that there exists a function f̃L(y, η) such that

limη→0 f̃L(y, η) = 0 and such that

yT (L(ϕk; θ
⋆) − R(ϕk; θ

⋆)) = y1

∫

Λ

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆
) − 1

)
dx− ky1 + f̃L(y, η) = 0.

Let us denote by Λ1 := B(0,min(θ⋆3 , D)) and Λ2 := B(0, D) \ Λ1 Now let us consider two cases.
Case 1: θ⋆3 ≤ D. First note that for all x ∈ Λ, g(||x||; θ⋆) ≥ 0. Then, for k large enough and for
η small enough, we have

∣∣∣∣
1

k

∫

Λ1

e−θ
⋆
1

(
e−kg(||x||;θ

⋆
) − 1

)
dx

∣∣∣∣ ≤
|Λ1|
k
e−θ

⋆
1 ≤ 1

4
and

∣∣∣∣
1

k
f̃L(y, η)

∣∣∣∣ ≤
|y1|
4
.

Hence for k large enough and for η small enough, we may obtain

0 =
1

k

∣∣yT (L(ϕk; θ
⋆) − R(ϕk; θ

⋆))
∣∣

≥ |y1| −
∣∣∣∣y1

1

k

∫

Λ1

e−θ
⋆
1

(
e−kg(||x||;θ

⋆
) − 1

)
dx+

1

k
f̃L(y, η)

∣∣∣∣

≥ |y1| −
|y1|
4

− |y1|
4

=
|y1|
2
,

which leads to y1 = 0.
Case 2: θ⋆3 ≥ D. First note that for all x ∈ Λ2,

g(||x||; θ⋆) ≤ gm := g(D; θ⋆) = 4θ⋆2

((
θ⋆3
D

)12

−
(
θ⋆3
D

)6
)
< 0.

On the one hand, for k large enough and for η small enough, we may have
∣∣∣∣
1

k
y1

∫

Λ1

e−θ
⋆
1

(
e−kg(||x||;θ

⋆
) − 1

)
dx +

1

k
f̃L(y, η) − y1

∣∣∣∣ ≤
|y1|
2

+ |y1| ≤
3

2
|y1|.
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On the other hand, we have for k large enough

1

k

∣∣∣∣y1
∫

Λ2

e−θ
⋆
1

(
e−kg(||x||;θ

⋆
) − 1

)
dx

∣∣∣∣ =
|y1|
k

∫

Λ2

e−θ
⋆
1

(
e−kg(||x||;θ

⋆
) − 1

)
dx

≥ |y1|
k
e−θ

⋆
1 |Λ2|

(
e−kgm − 1

)
= |y1|e−θ

⋆
1
ek|gm| − 1

k
≥ 2|y1|.

Therefore for k large enough and for η small enough, we have

0 =
1

k

∣∣yT (L(ϕk; θ
⋆) − R(ϕk; θ

⋆))
∣∣ ≥ 2|y1| −

3

2
|y1| =

|y1|
2
,

which leads to y1 = 0.

5 Annex: proofs

5.1 Tools

Let us start by presenting a particular case of the Campbell Theorem combined with the Glötz
Theorem that is widely used in our future proofs.

Corollary 8 Assume that the (marked) point process Φ with probability measure P is station-
ary. Let Λ be a bounded Borel set, let ϕ ∈ Ω and let g be a function satisfying g(xm, ϕx) =
g(0m, ϕ) for all xm ∈ S. Define M a random variable with its distribution λm and f(m,ϕ) =
g(0m, ϕ)e−V (0m|ϕ) and assume that f ∈ L1(λm ⊗ P ). Then,

E

(
∑

xm∈ΦΛ

g(xm,Φ \ xm)

)
= |Λ| E

(
g
(
0M ,Φ

)
e−V (0M |Φ)

)
(13)

Proof. see Corollary 3 of Billiot et al. (2008)
Let us now present a version of an ergodic theorem obtained by Nguyen and Zessin (1979)

and widely used in this paper. Let ∆0 a fixed bounded domain

Theorem 9 (Nguyen and Zessin (1979)) Let {HG, G ∈ Bb} be a family of random variables,
which is covariant, that for all x ∈ R

2,

HGx
(ϕx) = HG(ϕ), for a.e. ϕ

and additive, that is for every disjoint G1, G2 ∈ Bb,

HG1∪G2 = HG1 +HG2 , a.s.

Let I be the sub−σ−algebra of F consisting of translation invariant (with probability 1) sets.
Assume there exists a nonnegative and integrable random variable Y such that |HG| ≤ Y a.s. for
every convex G ⊂ ∆0. Then,

lim
n→+∞

1

|Gn|
HGn

=
1

|∆0|
E(H∆0 |I), a.s.

for each regular sequence Gn → R
2.
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5.2 Proof of Theorem 2

Due to the decomposition of stationary measures as a mixture of ergodic measures (see Preston
(1976)), one only needs to prove Theorem 2 by assuming that Pθ⋆ is ergodic. From now on, Pθ⋆

is assumed to be ergodic. The tool used to obtain the almost sure convergence is a convergence
theorem for minimum contrast estimators established by Guyon (1992).
We proceed in three stages.
Step 1. Convergence of Un(Φ; θ).

Decompose Un(ϕ; θ) = 1
|Λn| (H1,Λn

(ϕ) +H2,Λn
(ϕ)) with

H1,Λn
(ϕ) =

∫

Λn×M e−V (xm|ϕ;θ)µ(dxm) and H2,Λn
(ϕ) =

∑

xm∈ΦΛn

V (xm|ϕ \ xm; θ) .

Under the assumption [C1], one can apply Theorem 9 (Nguyen and Zessin (1979)) to the process
H1,Λn

. And from Corollary 8, we obtain Pθ⋆−almost surely as n→ +∞
1

|Λn|
H1,Λn

→ E
(∫M e−V (0m|Φ;θ)λm(dm)

)
= E

(
e−V (0M |Φ;θ)

)
. (14)

Now, let G ⊂ ∆0, we clearly have

|H2,G(ϕ)| ≤
∑

xm∈ϕG

|V (xm|ϕ \ xm; θ) | ≤
∑

xm∈ϕ∆0

|V (xm|ϕ \ xm; θ) |.

Under the assumption [Mod] and from Corollary 8, we have

E




∑

xm∈Φ∆0

|V (xm|Φ \ xm; θ) |


 = |∆0|E

(
|V
(
0M |Φ; θ

)
|e−V (0M |Φ;θ⋆

)
)
< +∞

This means that for all G ⊂ ∆0, there exists a random variable Y ∈ L1(Pθ⋆) such that |H2,G| ≤
Y . Thus, under the ssumption [C1] and from Theorem 9 (Nguyen and Zessin (1979)) and from
Corollary 8, we have Pθ⋆−almost surely

1

|Λn|
H2,Λn

→ 1

|∆0|
E
( ∑

xm∈Φ∆0

V (xm|Φ \ xm; θ)
)

= E
(
V
(
0M |Φ; θ

)
e−V (0M |Φ;θ⋆

)
)
. (15)

We have the result by combining (14) and (15): Pθ
⋆−almost surely

Un(·; θ) → U(θ) = E
(
e−V (0M |Φ;θ) + V

(
0M |Φ; θ

)
e−V (0M |Φ;θ⋆

)
)

(16)

Step 2. Un(·; θ) a contrast function
Recall that Un(·; θ) is a contrast function if there exists a function K(·,θ⋆) (i.e. nonnegative

function equal to zero if and only if θ = θ⋆) such that Pθ⋆−almost surely Un(ϕ; θ)−Un(ϕ; θ) →
K(θ,θ⋆). From Step 1, we have

K(θ,θ⋆)=E
(
e−V (0M |Φ;θ⋆

)
(
eV (0M |Φ;θ)−V (0M |Φ;θ⋆

)−
(
1+V

(
0M |Φ; θ

)
−V

(
0M |Φ; θ⋆

) )))
. (17)

Since the function t 7→ et − (1 + t) is nonnegative and is equal to zero if and only if t = 0,
K(θ,θ⋆) ≥ 0 and

K(θ,θ⋆) = 0 ⇔ eV (0m|ϕ;θ)−V (0m|ϕ;θ⋆
) −

(
1 + V (0m|ϕ; θ) − V (0m|ϕ; θ⋆)

)
= 0

⇔ D (0m|ϕ; θ) := V (0m|ϕ; θ) − V (0m|ϕ; θ⋆) = 0
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for λm×Pθ⋆ − a.e. (m,ϕ). Let us consider the ℓ events Bj (j = 1, . . . , ℓ) defined in Assumption
[C2]. The previous Equation is at least true for (mj , ϕj) ∈ Bj , which leads under Assumption
[C2] to θ = θ⋆. Therefore, K(θ,θ⋆) = 0 ⇒ θ = θ⋆. The converse is trivial.

Before ending this step, note that the assumption [C3] asserts that for any ϕ, Un(ϕ; ·) and
K(·,θ⋆) are continuous functions.
Step 3. Modulus of continuity.

The modulus of continuity of the contrast process defined for all ϕ ∈ Ω and all η > 0 by

Wn(ϕ, η) = sup
{∣∣∣Un(ϕ; θ) − Un(ϕ; θ′)

∣∣∣ : θ,θ′ ∈ Θ, ||θ − θ′|| ≤ η
}

is such that there exists a sequence (εk)k≥1, with εk → 0 as k → +∞ such that for all k ≥ 1

P

(
lim sup
n→+∞

(
Wn

(
Φ,

1

k

)
≥ εk

))
= 0. (18)

Let us start to write Wn

(
ϕ, 1

k

)
≤W1,n

(
ϕ, 1

k

)
+W2,n

(
ϕ, 1

k

)
with

W1,n

(
ϕ,

1

k

)
:= sup

{
W ′

1,Λn
(ϕ; θ,θ′) : θ,θ′ ∈ Θ, ||θ − θ

′|| ≤ 1

k

}

W2,n

(
ϕ,

1

k

)
:= sup

{
W ′

2,Λn
(ϕ; θ,θ′) : θ,θ′ ∈ Θ, ||θ − θ′|| ≤ 1

k

}
.

and

W ′
1,Λn

(ϕ; θ,θ′) :=
1

|Λn|

∫

Λn×M ∣∣∣e−V (xm|ϕ;θ) − e−V (xm|ϕ;θ′

)
∣∣∣µ(dxm)

W ′
2,Λn

(ϕ; θ,θ′) :=
1

|Λn|
∑

xm∈ϕΛn

∣∣∣V (xm|ϕ \ xm; θ) − V
(
xm|ϕ \ xm; θ′

) ∣∣∣.

Let k ≥ 1 and let θ,θ′ ∈ Θ such that ||θ − θ′|| ≤ 1
k , then under the assumption [C1] and from

Theorem 9 and Corollary 8, we have Pθ⋆−almost surely as n→ +∞

W ′
1,Λn

(Φ; θ,θ′) −→ E
(∣∣∣e−V (0M |Φ;θ) − e−V (0M |Φ;θ′

)
∣∣∣
)

W ′
2,Λn

(Φ; θ,θ′) −→ E
(∣∣V

(
0M |Φ; θ

)
− V

(
0M |Φ; θ′

)∣∣ e−V (0M |Φ;θ⋆
)
)

Under Assumption [C4], one may apply the mean value theorem in R
p as follows: there exist

ξ(1), . . . , ξ(p) ∈ ∏p
j=1

[
min(θj , θ

′
j),max(θj , θ

′
j)
]

such that for all (m,ϕ) ∈M× Ωf

e−V (0m|ϕ;θ) − e−V (0m|ϕ;θ′

) =

p∑

j=1

(
θj − θ′j

) ∂V
∂θj

(
0m|ϕ; ξ(j)

)
e
−V

“
0m|ϕ;ξ(j)

”

.

This leads, under Assumption [C4], to the following inequality

E
(∣∣∣e−V (0M |Φ;θ) − e−V (0M |Φ;θ′

)
∣∣∣
)2

≤ E

(∣∣∣e−V (0M |Φ;θ) − e−V (0M |Φ;θ′

)
∣∣∣
2
)

≤ E



||θ − θ′||2
p∑

j=1

∣∣∣∣
∂V

∂θj

(
0M |Φ; ξ(j)

)
e
−V

“
0M |Φ;ξ

(j)
”∣∣∣∣

2

.





≤
(

1

k

)2

γ2
1 ,
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with γ1 := E

(∑p
j=1 maxθ∈Θ

∣∣∣ ∂V∂θj

(
0M |Φ; θ

)
e−V (0M |Φ;θ)

∣∣∣
2
)
< +∞. In such a way, one may

also prove that

E
(∣∣V

(
0M |Φ; θ

)
− V

(
0M |Φ; θ′

)∣∣ e−V (0M |Φ;θ
⋆
)
)2

≤
(

1

k

)2

γ2
2 ,

with γ2 := E

(∑p
j=1 maxθ∈Θ

∣∣∣ ∂V∂θj

(
0M |Φ; θ

)
e−V (0M |Φ;θ⋆

)
∣∣∣
2
)

. Hence, for all k ≥ 1 and for all

θ,θ′ ∈ Θ such that ||θ − θ′|| ≤ 1
k there exists n0(k) ≥ 1 such that for all n ≥ n0(k), we have

W ′
1,Λn

(
ϕ; θ,θ′

)
≤ 2

k
γ1 and W ′

2,Λn

(
ϕ; θ,θ′

)
≤ 2

k
γ2, for Pθ⋆ − a.e. ϕ.

Since γ1 and γ2 are independent of θ and θ′, we have for all n ≥ n0(k)

Wn

(
ϕ,

1

k

)
≤W1,n

(
ϕ,

1

k

)
+W2,n

(
ϕ,

1

k

)
≤ 2

k
(γ1 + γ2) :=

c

k
, for Pθ⋆ − a.e. ϕ.

Finally, since

lim sup
n→+∞

{
Wn

(
ϕ,

1

k

)
≥ c

k

}
=
⋂

m∈N

⋃

n≥m

{
Wn

(
ϕ,

1

k

)
≥ c

k

}
⊂

⋃

n≥n0(k)

{
Wn

(
ϕ,

1

k

)
≥ c

k

}

for Pθ⋆−a.e. ϕ, the expected result (18) is proved.
Conclusion step. The Steps 1, 2 and 3 ensure the fact that we can apply Property 3.6 of Guyon
(1992) which asserts the almost sure convergence for minimum contrast estimators.

5.3 Proof of Theorem 3

Step 1. Asymptotic normality of U (1)
n (Φ; θ⋆)

The aim is to prove that for any fixed D̃, the following convergence in distribution as n→ +∞

|Λn|1/2 U (1)
n (Φ; θ⋆) → N

(
0,Σ(D̃,θ⋆)

)
(19)

where the matrix Σ(D̃,θ⋆) is defined by (6).

The idea is to apply to U (1)
n (Φ; θ⋆) a central limit theorem obtained by Jensen and Künsch

(1994), Theorem 2.1. The following conditions have to be fulfilled to apply this result. For all
j = 1, . . . , p

(i) For all i ∈ Z
2, E

((
LPL

(1)
∆i

(Φ; θ⋆)
)

j
|Φ∆c

i

)
= 0.

(ii) For all i ∈ Z
2, E

(∣∣∣∣
(
LPL

(1)
∆i

(Φ; θ⋆)
)

j

∣∣∣∣
3
)
< +∞.

(iii) The matrix Var
(
|Λn|1/2U (1)

n (Φ; θ⋆)
)

converges to the matrix Σ(D̃,θ⋆).

Condition (i) : From the stationarity of the process, it is sufficient to prove that

E

((
LPL

(1)
∆0

(Φ; θ⋆)
)

j
|Φ∆c

0

)
= 0.
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Recall that for any configuration ϕ
(
LPL

(1)
∆0

(ϕ; θ⋆)
)

j
= −

∫

∆0×M ∂V

∂θj
(xm|ϕ; θ⋆) e−V (xm|ϕ;θ⋆

)µ(dxm)+

∫

∆0

∂V

∂θj
(xm|ϕ \ xm; θ⋆)ϕ(dxm).

(20)
Denote respectively by G1(ϕ) and G2(ϕ) the first and the second right-hand term of (20) and
by Ei = E

(
Gi(Φ)|Φ∆c

0
= ϕ∆c

0

)
. From the definition of Gibbs point processes,

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω∆0

Q(dϕ∆0)

∫S ϕ∆0(dx
m)1∆0(x)

∂V

∂θj
(xm|ϕ \ xm; θ⋆) e

−V
“
ϕ∆0 |ϕ∆c

0
;θ⋆

”

.

Denote by ϕ′ = (ϕ∆0 , ϕ
′
∆c

0
). Since Q is a Poisson process we can write

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ′)

∫S ϕ′(dxm)1∆0(x)
∂V

∂θj
(xm|ϕ \ xm; θ⋆) e

−V
“
ϕ∆0 |ϕ∆c

0
;θ⋆

”

=
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ′)

∫S ϕ′(dxm)1∆0(x)
∂V

∂θj

(
xm|ϕ′

∆0
∪ ϕ∆c

0
\ xm; θ⋆

)
e
−V

“
ϕ′

∆0
|ϕ∆c

0
;θ⋆

”

Now, from Campbell Theorem (applied to the Poisson measure Q)

E2 =
1

Z∆0(ϕ∆c
0
)

∫

∆0×M µ(dxm)

∫

Ω

Q!
xm(dϕ′)

∂V

∂θj

(
xm|ϕ′

∆0
∪ ϕ∆c

0
; θ⋆
)
e
−V

“
ϕ′

∆0
∪xm|ϕ∆c

0
;θ⋆

”

.

Since from Slivnyak-Mecke Theorem (see e.g. Møller and Waagepetersen (2003)), Q = Q!
x, one

can obtain

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ′)

∫

∆0×M µ(dxm)
∂V

∂θj

(
xm|ϕ′

∆0
∪ ϕ∆c

0
; θ⋆
)
e
−V

“
ϕ′

∆0
∪xm|ϕ∆c

0
;θ⋆

”

=
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ∆0)

∫

∆0×M µ(dxm)
∂V

∂θj
(xm|ϕ; θ⋆) e−V (xm|ϕ;θ⋆

)e
−V

“
ϕ∆0 |ϕ∆c

0
;θ

⋆
”

= −E1

Condition (ii) : For any bounded domain ∆ and any finite configuration ϕ, one may write
for j = 1, . . . , p

∣∣∣∣
(
LPL

(1)
∆ (ϕ; θ⋆)

)

j

∣∣∣∣
3

≤ 4

∣∣∣∣
∫

∆×M ∂V

∂θj
(xm|ϕ; θ⋆) e−V (xm|ϕ;θ⋆

)µ(dxm)

∣∣∣∣
3

+4

∣∣∣∣∣
∑

xm∈ϕ∆

∂V

∂θj
(xm|ϕ \ xm; θ⋆)

∣∣∣∣∣

3

.

The assumption [N1(3)] ensures the integrability of the first right-hand term. For the second
one, note that

T2 :=

∣∣∣∣∣
∑

xm∈ϕ∆

∂V

∂θj
(xm|ϕ \ xm; θ⋆)

∣∣∣∣∣

3

≤
∑

x
m1
1 ,x

m2
2 ,x

m3
3 ∈ϕ∆

x
m1
1 6=x

m1
1 ,x

m2
2 6=x

m3
3 ,x

m2
2 6=x

m3
3

∣∣∣∣
∂V

∂θj
(xm1

1 |ϕ \ xm1
1 ; θ⋆)

∣∣∣∣
∣∣∣∣
∂V

∂θj
(xm2

2 |ϕ \ xm2
2 ; θ⋆)

∣∣∣∣
∣∣∣∣
∂V

∂θj
(xm3

3 |ϕ \ xm3
3 ; θ⋆)

∣∣∣∣

+3
∑

x
m1
1 ,x

m2
2 ∈ϕ∆,x

m1
1 6=x

m2
2

∣∣∣∣
∂V

∂θj
(xm1

1 |ϕ \ xm1
1 ; θ⋆)

∣∣∣∣
2 ∣∣∣∣
∂V

∂θj
(xm2

2 |ϕ \ xm2
2 ; θ⋆)

∣∣∣∣

+
∑

x
m1
1 ∈ϕ∆

∣∣∣∣
∂V

∂θj
(xm2

2 |ϕ \ xm1
1 ; θ⋆)

∣∣∣∣
3

.
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The result is obtained by using the assumption [N1(3)] and iterated versions of Corollary 8.

Condition (iii): let us start by noting that from the assumption [Mod-L], the vector LPL
(1)
∆i

(ϕ; θ⋆)

depends only on ϕ∆j
for j ∈ B(i, ⌈DeD⌉). Let Ei,j := E

(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T
)

.

Based on our definitions, we have

Var
(
|Λn|1/2U (1)

n (Φ; θ⋆)
)

= |Λn|−1
Var

(
∑

i∈In

LPL
(1)
∆i

(Φ; θ⋆)

)

= |Λn|−1
∑

i,j∈In

Ei,j

= |Λn|−1
∑

i∈In




∑

j∈In∩B(i,⌈D
fD ⌉)

Ei,j +
∑

j∈In∩B(i,⌈D
fD⌉)c

Ei,j


 .

Let j ∈ In∩B(i, ⌈DeD⌉)c, since LPL
(1)
∆i

(ϕ; θ⋆) is a measurable function of ϕ∆c
i

we have by using

condition (i):

E

(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T
)

= E

(
E

(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T
|Φ∆c

i

))

= E

(
E
(
LPL

(1)
∆i

(Φ; θ⋆) |Φ∆c
i

)
LPL

(1)
∆j

(Φ; θ⋆)
T
)

= 0

Denote by Ĩn the following set

Ĩn = In ∩
(
∪i∈∂In

B(i,⌈D
D̃

⌉))
.

We now obtain

Var
(
|Λn|1/2U (1)

n (Φ; θ⋆)
)

= |Λn|−1
∑

i∈In

∑

j∈In∩B(i,⌈D
fD ⌉)

Ei,j

= |Λn|−1




∑

i∈In\eIn

∑

j∈In∩B(i,⌈D
fD ⌉)

Ei,j +
∑

i∈eIn

∑

j∈In∩B(i,⌈D
fD⌉)

Ei,j




Using the stationarity and the definition of the domain Λn, one obtains

|Λn|−1
∑

i∈In\eIn

∑

j∈In∩B(i,⌈D
fD ⌉)

Ei,j = |Λn|−1|In \ Ĩn|
∑

j∈B(0,⌈D
fD⌉)

E0,j → Σ(D̃,θ⋆) as n→ +∞

and

|Λn|−1

∣∣∣∣∣∣∣

∑

i∈eIn

∑

j∈In∩B(i,⌈D
fD⌉)

Ei,j

∣∣∣∣∣∣∣
≤ |Λn|−1|Ĩn|

∑

j∈B(0,⌈D
fD⌉)

|E0,j | → 0 as n→ +∞.
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Hence as n→ +∞

Var
(
|Λn|1/2U (1)

n (Φ; θ⋆)
)

= |Λn|−1
∑

i∈In

∑

j∈In∩B(i,⌈D
fD ⌉)

Ei,j

n→+∞−→ |In||Λn|−1

︸ ︷︷ ︸
eD−2

∑

k∈B(0,⌈D
fD ⌉)

E0,k = Σ(D̃,θ⋆). (21)

Step 2. Domination of U (2)
n (Φ; θ) in a neighborhood of θ⋆ and convergence of U (2)

n (Φ; θ⋆) Let

j, k = 1, . . . , p, recall that
(
U (2)
n (ϕ; θ)

)

j,k
is defined in a neighborhood V(θ⋆) of θ⋆ for any

configuration ϕ by

(
U (2)
n (ϕ; θ)

)

j,k
= − 1

|Λn|

∫

Λn×M ∂2V

∂θj∂θk
(xm|ϕ; θ) exp (−V (xm|ϕ; θ))µ(dxm)

+
1

|Λn|

∫

Λn×M ∂V

∂θj
(xm|ϕ; θ)

∂V

∂θk
(xm|ϕ; θ) exp (−V (xm|ϕ; θ))µ(dxm)

+
1

|Λn|
∑

xm∈ϕΛn

∂2V

∂θj∂θk
(xm|ϕ \ xm; θ) . (22)

Under the assumption [N1(3)] and [N2], from Theorem 9 (Nguyen and Zessin (1979)) and from
Corollary 8, there exists n0 ∈ N such that for all n ≥ n0

∣∣∣∣
(
U (2)
n (ϕ; θ)

)

j,k

∣∣∣∣ ≤ 2E

((∣∣∣∣
∂2V

∂θj∂θk

(
0M |Φ; θ

)∣∣∣∣+
∣∣∣∣
∂V

∂θj

(
0M |Φ; θ

) ∂V
∂θk

(
0M |Φ; θ

)∣∣∣∣
)
e−V (0M |Φ;θ)

)

+2 × E

(∣∣∣∣
∂2V

∂θj∂θk

(
0M |Φ; θ

)∣∣∣∣ e
−V (0M |Φ;θ⋆

)
)

Note that from Theorem 9 (Nguyen and Zessin (1979)), U (2)
n (·; θ⋆) converges almost surely as

n → +∞ towards U (2)(θ⋆) defined by (5). Note that U (2)(θ⋆) is a symmetric positive matrix
since for all y ∈ R

p

yTU (2)(θ⋆)y = E

((
yTV (1)(0M |Φ; θ⋆)

)2

e−V (0M |Φ;θ⋆
)
)

≥ 0,

where for j = 1, . . . , p, (m,ϕ) ∈M× Ωf and for θ ∈ V(θ⋆)
(
V (1)(xm|ϕ; θ⋆)

)

j
:= ∂V

∂θj
(xm|ϕ; θ)

and it is a definite matrix under the assumption [N3].
Conclusion Step Under the assumptions [Mod] and [Ident], and using Steps 1 and 2, one can
apply a classical result concerning asymptotic normality for minimum contrast estimators e.g.
Proposition 3.7 de Guyon (1992) in order to obtain (7).

It remains to prove (8). The proof is strictly similar to the one of Billiot et al. (2008) (p. 261)
except that the assumption [SDP] is now replaced by the more general one assumption [N4].
We keep it for a better understanding. The final result is proved in three substeps :

(i) We first prove that the matrix Σ(θ⋆) = Σ(D,θ⋆) is a symmetric definite positive matrix.

From Equation (21), it is sufficient to prove that the matrix Var(|Λn(D)|−1/2LPL
(1)

Λn(D)
(Φ; θ⋆))

is definite positive for n large enough. Let y ∈ R
p \ {0}, the aim is to prove that

V := yTVar
(
|Λn(D)|−1/2LPL

(1)

Λn(D)
(Φ; θ⋆)

)
y > 0.
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Let Λ = ∪|i|≤B(i,⌈D

D
⌉)∆i(D), using the same argument of Jensen and Künsch (1994) (Equation

(3.2)), one can write

V ≥ |Λn(D)|−1 E

(
Var

(
yTLPL

(1)

Λn(D)
(Φ; θ⋆) |Φ∆k(D), k /∈ (2

⌈
D

D

⌉
+ 1)Z2

))
.

Note that for i 6= j ∈ In, Cov(y
TLPL

(1)

∆i(D)
(ϕ; θ⋆) ,yTLPL

(1)

∆j(D)
(ϕ; θ⋆) |Φ∆k(D), k /∈ (2

⌈
D
D

⌉
+

1)Z2) = 0 due to the independence of LPL
(1)

∆i(D)
(ϕ; θ⋆) and LPL

(1)

∆j(D)
(ϕ; θ⋆) condition-

ally on Φ∆k(D), k /∈ (2
⌈
D
D

⌉
+ 1)Z2 when i, j ∈ In ∩ (2

⌈
D
D

⌉
+ 1)Z2 and LPL

(1)

∆i(D)
(ϕ; θ⋆) or

LPL
(1)

∆j(D)
(ϕ; θ⋆) is constant when either i or j /∈ In ∩ (2

⌈
D
D

⌉
+ 1)Z2. As a direct consequence,

V ≥ |Λn(D)|−1
E

 

Var

 

y
T
X

i∈In

LP L
(1)

∆i(D)
(Φ; θ⋆)

˛

˛Φ∆k(D), k /∈ (2

‰

D

D

ı

+ 1)Z2

!!

= |Λn(D)|−1
X

i∈In

E

„

Var

„

y
T
LP L

(1)

∆i(D)
(Φ; θ⋆)

˛

˛Φ∆k(D), k /∈ (2

‰

D

D

ı

+ 1)Z2

««

= |Λn(D)|−1
X

ℓ∈In∩(2
l

D

D

m
+1)Z2\eIn

E

0

B

@
Var

0

B

@
y

T
X

i∈In∩B“
ℓ,

l
D

D

m”
LP L

(1)

∆i(D)
(Φ; θ⋆)

˛

˛Φ∆k(D), k /∈ (2

‰

D

D

ı

+ 1)Z2

1

C

A

1

C

A

+|Λn(D)|−1
X

ℓ∈(2
l

D

D

m
+1)Z2∩eIn

E

0

B

@
Var

0

B

@
y

T
X

i∈In∩B“
ℓ,

l
D

D

m”
LP L

(1)

∆i(D)
(Φ; θ⋆)

˛

˛Φ∆k(D), k /∈ (2

‰

D

D

ı

+ 1)Z2

1

C

A

1

C

A

Following the proof of Step 1, condition (iii) one may prove that the second right-hand term
tends to 0 as n→ +∞. Therefore by using the stationarity, we have for n large enough

V ≥
1

2
|Λn(D)|−1

˛

˛

˛

˛

In ∩ (2

‰

D

D

ı

+ 1)Z2

˛

˛

˛

˛

× E

„

Var

„

y
T
LP L

(1)

Λ
(Φ; θ⋆)

˛

˛Φ∆k(D), 1 ≤ |k| ≤ 2

‰

D

D

ı««

=
D

−2

2

In ∩ (2
l

D

D

m

+ 1)Z2|

|In|
× E

„

Var

„

y
T
LP L

(1)

Λ
(Φ; θ⋆)

˛

˛Φ∆k(D), 1 ≤ |k| ≤ 2

‰

D

D

ı««

≥
D

−2

2

0

@

3

4
l

D

D

m

+ 1

1

A

2

× E

„

Var

„

y
T
LP L

(1)

Λ
(Φ; θ⋆)

˛

˛Φ∆k(D), 1 ≤ |k| ≤ 2

‰

D

D

ı««

Assume there exists some positive constant c such that Pθ⋆−a.s. yTLPL
(1)

Λ
(Φ; θ⋆) = c when

the variables Φ∆k(D), 1 ≤ |k| ≤ 2
⌈
D
D

⌉
are (for example) fixed to ∅. By assuming [SDP] it follows

that for any ϕi ∈ Ai for i = 0, . . . , ℓ (with ℓ ≥ p), yT
(
LPL

(1)

Λ
(ϕi; θ

⋆) − LPL
(1)

Λ
(ϕ0; θ

⋆)
)

=

0. Since for all (ϕ0, . . . , ϕℓ) ∈ A0 × . . . × Aℓ, the matrix with entries
(
LPL

(1)

Λ
(ϕi; θ

⋆)
)

j
−

(
LPL

(1)

Λ
(ϕ0; θ

⋆)
)

j
is assumed to be injective, this leads to y = 0 and hence to some contra-

diction. Therefore, when the variables Φ∆k(D), 1 ≤ |k| ≤ 2
⌈
D
D

⌉
are fixed to ∅, the variable

yTLPL
(1)

Λ
(Φ; θ⋆) is almost surely not a constant. Hence, Σ(θ⋆) is a symmetric definite positive

matrix.
(ii) Convergence of Σ̂n(ϕ;D∨, D̃,θ).
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Let us recall that for any ϕ ∈ Ω, D∨ ≥ D and θ ∈ Θ we define

Σ̂n(ϕ;D∨, D̃,θ) =
D̃−2

|In|
∑

i∈In

∑

j∈In∩B(i,⌈D∨

fD ⌉)
LPL

(1)
∆i

(ϕ; θ)
T
LPL

(1)
∆j

(ϕ; θ)

We also define

Xi(ϕ) := Xi(ϕ)k,ℓ =
∑

j∈In∩B(i,⌈D∨

fD ⌉)

(
LPL

(1)
∆i

(ϕ; θ)
)

k

(
LPL

(1)
∆j

(ϕ; θ)
)

ℓ
,

Yi(ϕ) := Xi(ϕ) − E(Xi(Φ)) and Y n(ϕ) = |In|−1
∑

i∈In
Yi(ϕ). Since one may notice that

E(Xi(Φ)) = D̃2
(
Σ(D̃,θ)

)

k,ℓ
, we have

Y n(ϕ) = D̃2
(
Σ̂(ϕ;D∨, D̃,θ) − Σ(D̃,θ)

)

k,ℓ
.

Thus, the aim is to prove Y n(ϕ) → 0 for Pθ⋆−a.e. ϕ. Since the process {Yi, i ∈ Z
2} is stationary,

from Property 3.1 p.96 of Guyon (1992), it is sufficient to prove

• (a) E
(
Y0(Φ)2

)
< +∞

• (b) E
(
|In|Y n(Φ)2

)
< +∞.

(a) We leave the reader to verify that [N1(4)] ensures this integrability condition.

(b) Note that Yi(ϕ) depends only on ϕ∆j
for j ∈ B(i, ⌈D∨

eD

⌉
+
⌈
D
eD

⌉)
. Hence, by choosing

j ∈ In ∩B (i, 2αD∨,D)
c

with αD∨,D = αD∨,D(D̃) :=
⌈
D∨

eD

⌉
+
⌈
D
eD

⌉
, then the covariance between

Yi(Φ) and Yj(Φ) is zero. Indeed, let A = ∪i∈B(i,αD∨,D)∆i

E (Yi(Φ)Yj(Φ)) = E (E (Yi(Φ)Yj(Φ)|ΦA))

= E (Yi(Φ)E (Yj(Φ)|ΦA))

= 0.

Then, we obtain

E
(
|In|Y n(Φ)2

)
=

1

|In|
∑

i,j∈In

E (Yi(Φ)Yj(Φ))

=
1

|In|
∑

i∈In




∑

j∈In∩B(i,2αD∨ ,D)

E (Yi(Φ)Yj(Φ)) +
∑

j∈In∩B(i,2αD∨ ,D)
c

E (Yi(Φ)Yj(Φ))




=
1

|In|
∑

i∈In

∑

j∈In∩B(i,2αD∨,D)

E (Yi(Φ)Yj(Φ))

n→+∞−→
∑

k∈B(0,2αD∨,D)

E (Y0(Φ)Yk(Φ)) ≤ cE
(
Y0(Φ)2

)
,

where c is a constant depending only on D, D̃,D∨. Therefore, for all D∨ ≥ D and for all θ ∈ Θ,
we have for Pθ⋆−a.e. ϕ as n→ +∞

Σ̂n(ϕ;D∨, D̃,θ) → Σ(D̃,θ) = Σ(θ). (23)
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(iii) Since for any ϕ, the functions U (2)
n (ϕ; ·) and Σ̂n(ϕ;D∨, D̃, ·) are continuous, it follows

from Step 2 and (23) that one obtains for Pθ⋆−a.e. ϕ, as n→ +∞

U (2)
n (ϕ; θ̂) → U (2)(θ⋆) and Σ̂n(ϕ;D∨, D̃, θ̂) → Σ(θ⋆).

Finally, note that the previous convergence also implies that for n large enough Σ̂n(Φ;D∨, D̃, θ̂)
is almost surely a symmetric definite positive matrix.
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