Classification(s) of Danielewski hypersurfaces
Résumé
The Danielewski hypersurfaces are the hypersurfaces $X_{Q,n}$ in $\mathbb{C}^3$ defined by an equation of the form $x^ny=Q(x,z)$ where $n\geq1$ and $Q(x,z)$ is a polynomial such that $Q(0,z)$ is of degree at least two. They were studied by many authors during the last twenty years. In the present article, we give their classification as algebraic varieties. We also give their classification up to automorphism of the ambient space. As a corollary, we obtain that every Danielewski hypersurface $X_{Q,n}$ with $n\geq2$ admits at least two non-equivalent embeddings into $\mathbb{C}^3$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...