Classification(s) of Danielewski hypersurfaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Classification(s) of Danielewski hypersurfaces

Résumé

The Danielewski hypersurfaces are the hypersurfaces $X_{Q,n}$ in $\mathbb{C}^3$ defined by an equation of the form $x^ny=Q(x,z)$ where $n\geq1$ and $Q(x,z)$ is a polynomial such that $Q(0,z)$ is of degree at least two. They were studied by many authors during the last twenty years. In the present article, we give their classification as algebraic varieties. We also give their classification up to automorphism of the ambient space. As a corollary, we obtain that every Danielewski hypersurface $X_{Q,n}$ with $n\geq2$ admits at least two non-equivalent embeddings into $\mathbb{C}^3$.
Fichier principal
Vignette du fichier
StForms.pdf (190.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00441601 , version 1 (16-12-2009)

Identifiants

Citer

Pierre-Marie Poloni. Classification(s) of Danielewski hypersurfaces. 2009. ⟨hal-00441601⟩
79 Consultations
238 Téléchargements

Altmetric

Partager

More