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CLASSIFICATION(S) OF DANIELEWSKI HYPERSURFACES
P.-M. POLONI

ABSTRACT. The Danielewski hypersurfaces are the hypersurfaces X , in C* defined by an
equation of the form z"y = Q(x, z) where n > 1 and Q(z, z) is a polynomial such that Q(0, z)
is of degree at least two. They were studied by many authors during the last twenty years.
In the present article, we give their classification as algebraic varieties. We also give their
classification up to automorphism of the ambient space. As a corollary, we obtain that every

Danielewski hypersurface Xg , with n > 2 admits at least two non-equivalent embeddings into
Cs.

1. INTRODUCTION

The story of Danielewski hypersurfaces goes back to 1989, when Danielewski [[]] showed that,
if T,, denotes the hypersurface in C* defined by the equation 2"y — z(z — 1) = 0, then W,, x C
and W, x C are isomorphic algebraic varieties for all n,m > 1, whereas the surfaces W; and
Wy are not isomorphic. He discovered the first counterexamples to the Cancellation Problem.
Then, Fieseler [[j] proved that W, and W,, are not isomorphic if n # m.

Since these results appeared, complex algebraic surfaces defined by equations of the form
2"y — Q(z,z) = 0 (now called Danielewski hypersurfaces) have been studied by many different
authors (see [[0], [, B, [@, [[l, @), leading to new interesting examples as byproducts. Let
us mention two of them.

In their work on embeddings of Danielewski hypersurfaces given by 2"y = p(z), Freuden-
burg and Moser-Jauslin [[] discovered an example of two smooth algebraic surfaces which are
algebraically non-isomorphic but holomorphically isomorphic.

More recently, the study of Danielewski hypersurfaces of equations 2%y — 22 — xq(z) = 0 pro-
duced the first counterexamples to the Stable Equivalence Problem [P]; that is two polynomials
of C[Xy, X5, X3] which are not equivalent (i.e. such that there exist no algebraic automorphism
of C[X1, Xy, X3] which maps one to the other one) but, when considered as polynomials of
C[X1, Xa, X3, X4, become equivalent.

The purpose of the present paper is to classify all Danielewski hypersurfaces, both as algebraic
varieties, and also as hypersurfaces in C3. More precisely, we will give necessary and sufficient
conditions for isomorphism of two Danielewski hypersurfaces; and, on the other hand, we
will give necessary and sufficient conditions for equivalence of two isomorphic Danielewski
hypersurfaces. Recall that two isomorphic hypersurfaces Hy, Hy C C" are said to be equivalent
if there exists an algebraic automorphism ® of C" which maps one to the other one, i.e. such
that (I)(Hl) = HQ.

We know indeed that isomorphic classes and equivalence classes are distinct for Danielewski
hypersurfaces. This was first observed by Freudenburg and Moser-Jauslin, who showed in [[]
that the Danielewski hypersurfaces defined respectively by the equations f = z%y — (1 +x)(2% —
1) =0 and g = 2%y — 22 + 1 = 0 are isomorphic but non equivalent. (One way to see that they
are not equivalent is to remark that the level surfaces f~!(c) are smooth for every constant
¢ € C, whereas the surface g7'(1) is singular along the line {z = z = 0}.)

Several papers already contain the classification, up to isomorphism, of Danielewski hyper-
surfaces of a certain form. Makar-Limanov proved in [§] that two Danielewski hypersurfaces
of equations ™y — pi(z) = 0 and 2"y — pa(z) = 0 with ny,ny > 2 and py,ps € C[z]
are isomorphic if and only if they are equivalent via an affine automorphism of the form
(x,y,2) — (ax,by,cz + d) with a,b,c € C* and d € C. Then, Daigle generalized in [ this
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result to the case ny,ny > 1. Next, Wilkens has given in [[[J the classification of Danielewski
hypersurfaces of equations 2™y — 2% — h(z)z = 0 with n > 2 and h(z) € C[z].

Finally, Dubouloz and the author showed in [[J] that every Danielewski hypersurface X, of
equation z"y = Q(z, z), where Q(z, z) is such that (0, z) has simple roots, is isomorphic to
a one defined by an equation of the form z"y = [[,(z — o;(x)), where {oy(z),...0q4(z)} is a
collection of polynomials in C[z] so that ¢;(0) # ¢;(0) if i # j. In the same paper, we classified
these last ones and called them standard forms. This effectively classifies, up to isomorphism,
all Danielewski hypersurfaces of equations 2"y = Q(z, z), where (0, z) has simple roots.

In the present paper, we generalize the notion of Danielewski hypersurface in standard form
and we prove that every Danielewski hypersurface is isomorphic to a one in standard form
(which can be found by an algorithmic procedure). Then, we are able to classify all Danielewski
hypersurfaces. The terminology standard form is relevant since every isomorphism between two
Danielewski hypersurfaces in standard form — and every automorphism of such a Danielewski
hypersurface — extend to a triangular automorphism of C3.

We also give a criterion (Theorem [£.]) to distinguish isomorphic but not equivalent Danielewski
hypersurfaces.

As a corollary, we obtain that every Danielewski hypersurface defined by an equation of the
form 2"y — Q(x,2) = 0 with n > 2 admits at least two non equivalent embeddings into C3.

Most of these results are based on a precise picture of the sets of locally nilpotent derivations
of coordinate rings of Danielewski hypersurfaces, obtained using techniques which were mainly
developed by Makar-Limanov in [J.

The paper is organized as follows. Section 1 is the introduction. In section 2, we fix some nota-
tions and definitions. In section 3, we study the locally nilpotent derivations on the Danielewski
hypersurfaces in order to get information on what an isomorphism between two Danielewski
hypersurfaces looks like. Section 4 is devoted to the classification of Danielewski hypersurfaces
up to equivalence, whereas sections 5 and 6 contain their classification up to isomorphism and
the study of the Danielewski hypersurfaces in standard form.

2. DEFINITIONS AND NOTATIONS

In this paper, our base field is C, the field of complex numbers. If n > 1, then CI" will
denote a polynomial ring in n variables over C.

Definition 2.1. Two hypersurfaces X; and X, of C" are said to be equivalent if there exists
a (polynomial) automorphism ® of C™ such that ®(X;) = Xo.

This notion is related to the notion of equivalent embeddings in the following sense. If X;
and X, are two isomorphic hypersurfaces of C" which are not equivalent, then X; admits two
non-equivalent embeddings into C". More precisely, let ¢ : X; — X5 be an isomorphism and
denote 7; : X7 — C" and i3 : Xy — C” the inclusion maps. Then, i¢; and iy o ¢ are two
non-equivalent embeddings of X; into C", since ¢ does not extend to an automorphism of C".

Definition 2.2. A Danielewski hypersurface is a hypersurface Xg,, C C* defined by an
equation of the form z"y — Q(x,z) = 0, where n € N and Q(z,2) € Clz, 2] is such that

deg (Q(0,2)) > 2.
We will denote by Sg.,, the coordinate ring of a Danielewski hypersurface Xg,, i.e. Sg, =

ClXqnl = Cla,y, 2]/(«"y — Q(x, 2)).

It can be easily seen that every Danielewski hypersurface is equivalent to a one of the form
Xgn with deg, Q(z, z) < n.

Lemma 2.3. Let X¢,, be a Danielewski hypersurface and R(x,z) € Clz,z] be a polynomial.
Then X¢ ., is equivalent to the Danielewski hypersurface of equation x™y — Q(z, z) — 2" R(x, z).

Proof. Tt suffices to consider the triangular automorphism of C* defined by (z,y,2) — (2,9 +
R(z,2), z). O
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3. USING LOCALLY NILPOTENT DERIVATIONS

One important property of Danielewski hypersurfaces is that they admit nontrivial actions
of the additive group C,. For instance, we can define a C,-action g, : C x Xg, — Xg,n, on
a hypersurface Xg ,, by posing

Son (b, (2,y,2) = (z,y + 27" (Q (z, 2 + ta") — Q (x,2)) , 2 + ta") .

Since a C,-actions on an affine complex surface S induces a C-fibration over an affine curve,
affine complex surfaces with C, -actions split into two cases. Either there is only one C-fibration
on S up to an isomorphism of the base, or there exists a second one. In other words, either
the surface has a Makar-Limanov invariant of transcendence degree one, or its Makar-Limanov
invariant is trivial. Recall that algebraic C -actions on an affine variety SpecA correspond
to locally nilpotent derivations on the C-algebra A (for example, the action ¢, on a surface
Xg.n corresponds to the locally nilpotent derivation Ag,, = x"% + %a% on the coordinate
ring C[X.]), and that the Makar-Limanov invariant ML(A) of an algebra A is defined as
the intersection of all kernels of locally nilpotent derivations of A. Equivalently, ML(A) is the
intersection of all invariant rings of algebraic C -actions on Spec(A).

Applying Makar-Limanov’s techniques, one can obtain the first important result concerning
Danielewski hypersurfaces: the Makar-Limanov invariant of a Danielewski hypersurface Xg ,,

is non-trivial if n > 2.

Theorem 3.1. Let Xq, be a Danielewski hypersurface. Then ML(Xg,) = C if n = 1 and
ML(Xg.) = Clz] if n > 2.

Proof. Let Xg,, be a Danielewski hypersurface.

If n = 1, the result is easy. Indeed, we can suppose that Q(z,z) = p(z) € C|z] (see Lemma
R.3). Then, it suffices to consider the following locally nilpotent derivations on the coordinate
ring Sp1 = Clz, y, 2]/ (xy — p(2)).

o = x% —|—p’(z)§y and  y = y% +p'(z)g.
Since Ker(d;) NKer(dy) = C, this shows that the Makar-Limanov invariant of every Danielewski
hypersurface X ; is trivial.

Suppose now that n > 2 and let § be a non-zero locally nilpotent derivation on the coordinate
ring Sg.» = C[Xg,]. Without loss of generality, we can suppose that the leading term of (0, 2)
is 24 with d > 2.

Then, the proof given by Makar-Limanov in [§] for hypersurfaces of equation 2"y = p(z) still
holds. This proof goes as follows.

The main idea is to consider Sg,, as a subalgebra of Clz, 7!, 2] with y = 27"Q(z, z) and to
choose a Z-filtration on Sg ,, such that the corresponding graded algebra Gr(Sg ) is isomorphic
to the subalgebra C[z, x7"2%, z].

Recall that Makar-Limanov has proved that any non-zero locally nilpotent derivation D on
an algebra A with a Z-filtration induces a non-zero locally nilpotent derivation gr(D) on the
graded algebra Gr(A). In our case, he proved in [§] that Ker(gr(9)) = C[z].

Recall also that we can define a degree function associated to a locally nilpotent D € LND(A)
by posing deg(0) = —oo and degp(a) := max{n € N | D"(a) # 0} if a € A\ {0}. Moreover, if A
has a Z-filtration, then deg,,p)(g97(a)) < degp(a) for any element a € A. (Here gr : A — Gr(A)
denote the natural function from A to Gr(A).)

This implies that Ker(6) = C[z]. Indeed, if p € Sg,, \ C[z], then we can choose a filtration
on Sg, such that gr(p) belongs to Gr(Sg,) \ Clz]. Then Ker(d) C C[z] follows from the
inequalities 1 < deg,, (5 (97(p)) < degs(p). Since Ker(d) is of transcendence degree one and is
algebraically closed, we obtain that = € Ker(9).

Thus, Ker(d) = C[z] for any non-zero locally nilpotent derivation on Sg,. In particular,

ML(Xg..) = Cla]. O
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Using this result, we can obtain a precise picture of the set of locally nilpotent derivations
on rings Sg , when n > 2.

Theorem 3.2. Let Xg, be a Danielewski hypersurface with n > 2 and let S, denote its
coordinate ring. Then

LND (Sq.) = {h () (x"a% + %%) , where h(z) € (C[x]} .

In particular, Ker(§) = C[x] and Ker(6%) = Clz]z + Clz] for every non-zero locally nilpotent
derivation 6 € LND(Sg ).

Proof. Let 6 be a non-zero locally nilpotent derivation on Sg, with n > 2. In the proof of
Theorem B.1], we showed that Ker(d) = Clz]. Then, due to Lemma 1.1 in [J], there exist
polynomials a(z),b(x) € Clz] such that a(x)d = b(x)Ag., where Ag,, € LND(Sg,,) is the
derivation defined by Ag, = 2”2 4 24&2) a%'

The theorem will follow easily. First note that a(z)d(z) = 2"b(z). Also a(z) divides 2"b(x).
Therefore, in order to prove that a(z) divides b(x), it is enough to show that a(0) = 0 implies
b(0) = 0. This holds since 6(y) € Clz, 2] and a(0)d(y)(0, z) = b(0)(Q(0, 2)) (2).

The theorem is proved. O

This theorem gives us a very powerful tool for classifying Danielewski hypersurfaces. Indeed,
note that an isomorphism ¢ : A — B, between two algebras A and B, conjugates the sets

LND(A) and LND(B) of locally nilpotent derivations on A and B, i.e. LND(A) = ¢ 'LND(B)¢
if ¢ : A — B is an isomorphism. In turn, we obtain the following result.

Corollary 3.3.

(1) Let v : Xgynm — XQom, be an isomorphism between two Danielewski hypersurfaces with
ni,ny > 2. Then, there exist two constants a,a € C* and a polynomial 3(z) € C[z]
such that ©*(z) = ax and p*(z) = az + [(x).

(2) If Xg,m, and Xg,n, are two isomorphic Danielewski hypersurfaces, then ny = ny and
deg(@l(07 Z)) = deg(@2(07 Z))

(3) Suppose that X¢, » and Xg,n are two equivalent Danielewski hypersurfaces with n > 2,
and let ® : C* — C3 be an algebraic automorphism such that ®(Xg, ») = Xg,n. Then,
there exist constants a, oo € C*, 3 € C and a polynomial B € C? such that ®*(x) = ax
and *(2) = az + 0+ xB(x, 2"y — Q1(x, 2)).

Proof. For (1) and (2), we follow the ideas of a proof given by Makar-Limanov in [§.

Let ¢ : Xg,my, — X0, be an isomorphism between two Danielewski hypersurfaces with
ny,ne > 2. Let x;,v;, 2z denote the images of x,y,2 in the coordinate ring S; = Sg,n, =
C[XQmm]'

If 6 € LND(S;), then (p*)"t o6 o¢* € LND(S;). Thus, Theorem implies 6%(z;) = 0
and 62 (¢*(22)) = 0 for any locally nilpotent derivation 6 € LND(S;). Therefore, p*(z5) =
a(xy)z1 + B(z1) for some polynomials o and 3. Since ¢ is invertible, & must be a nonzero
constant a € C*.

On the other hand, ¢* induces an isomorphism ML(Sy) = C[zs] — ML(S;) = Clx;]. Conse-
quently, ©*(z3) = ax; + b for some constants a € C* and b € C.

In order to prove b = 0, consider the locally nilpotent derivation §y € LND(Sy) defined by

§o = (") to (aj’fa%l + %ﬁi’zl)%) o ¢*. Now, Theorem B.9 implies that dy(z2) is divisible by

xy?. Since dg(22) = aa™(z9 — b)™, we must have b = 0 and n; > ny. This proves the first part
of the corollary.

Moreover, repeating this analysis with ¢! instead of ¢, we also obtain ny, > n; and so
ny = nNg = N.

Since ¢ : X¢, » — X@,.n is @ morphism, we know that ¢* (2"y — Q2(x, 2)) belongs to the ideal
(x"y — Q2(x, 2)). In particular, when x = 0, it implies that Q2 (0,az 4+ 5(0)) = ¢* (Q2(0, 2)) €
(@10, 2)). Thus deg(Qa(0. 2)) > deg(Q1(0, 2)).



CLASSIFICATION(S) OF DANIELEWSKI HYPERSURFACES 5

Working with =1, the same analysis allows us to conclude that deg(Q1(0, 2)) > deg(Q2(0, 2)).
Moreover, it implies that @ (0,az + (5(0)) = u@1(0, z) for a certain constant p € C*.

Since the case n; = ny = 1 was already done by Daigle [J], this suffices to prove the second
part of the corollary.

It remains to prove the third part.

Let Xg,» and Xg, ,, be two equivalent Danielewski hypersurfaces with n > 2, and let ® be
an algebraic automorphism of C? such that ®(Xg, ) = Xg, -

Since the polynomial 2"y — Q1(x, z) is irreducible, there exists a nonzero constant u € C* so
that ®*(z"y — Qa(x, 2)) = p(a"y — Q1(z, 2)).

Thus, ® induces an isomorphism ®. between the Danielewski hypersurfaces of equation
"y — Qq(x, 2) = pe and "y — Q1 (x, z) = ¢ for every ¢ € C.

Since n > 2, the Makar-Limanov invariant of these hypersurfaces is C[z]. By (1), we obtain
now that the image by ®* of the ideal (z, 2"y — Q2(x, z) — pc) belongs to the ideal (z, 2™y —
Q1(x,2) — ¢) = (2,Q1(0, z) + ¢) for each ¢ € C. Tt turns out that

O (x) € ((z,Q1(0,2) +¢) = ().
ceC

Since ® is invertible, this implies that ®*(z) = ax for a certain constant a € C*. Thus

—uQ@1(0,2) = p(z"y — Q1(x, 2)) = P*(2"y — Qa(x, 2)) = —Q2(0,P*(2)) mod (z).

Since deg Q1(0, 2) = deg Q2(0, z) (by the second part of the corollary), this implies that ®*(z) =
az+ [ mod (z) for certain constants a and 3 such that Q2(0, az + 3) = u@1(0, z).

Thus, we can write ®*(z) = az + § + xB(x,y, 2), where B is polynomial of C[x,y, z].

Now, we use again the first part of the corollary. For every ¢ € C, there exist a constant
a. € C* and a polynomial 8, € C!Y such that

O (z) =az+ [+ xB(x,y,2) = a.z + f(xr) mod (z"y — Q1(x, z) — ¢).
Therefore, for every ¢ € C, we have a,. = «a, 5.(0) = 8 and
B(IE,y,Z) E$_1(ﬁc(x) _ﬁ) mod (ZL‘ny—Ql({E,Z)—C)

In particular B has the following property: For infinitely many constants ¢ € C, there exist
polynomials r.(x) € C[z] and s.(z,y, z) € C[z,y, 2] such that

B({L‘,y, Z) - Tc(x) + Sc(xayv Z)(xny - Ql(xa Z) - C)'

We will show that any polynomial with this property must belong to Clx,z"y — Q1(z, 2)].
Remark that it suffices to show that at least one polynomial s. belongs to Clz, 2"y — Q1 (z, 2)].

In order to see this, we define a degree function d on C[z,y, z] by posing, for every f €
Clz,y, 2], d(f) = deg(f(y, 2)), with f(y,z) = f(z,y, 2) € Clz][y, z].

Let B(x,y,z) = ¢ (2) + Seo (2, y, 2)(2™y — Q1(x, 2) — ¢p) for one ¢y € C. Then, s, satisfies
also the above property and its degree d(sg) is strictly less than d(B).

Therefore, the desired result can be obtained by decreased induction on the degree d. 0

4. EQUIVALENCE CLASSES

In this section, we prove the following result.

Theorem 4.1. Two Danielewski hypersurfaces Xq, n, and Xq, n, are equivalent if and only if
n = ny = n and there exist a,a, p € C*, f € C and B € C? such that

Q2(ax,az 4+ 0+ xB(x,Q1(x, 2))) = uQi(x,z) mod (z").

Remark 4.2. We will show in the next section (Proposition p.4) that this theorem implies that
every Danielewski hypersurface X, with n > 2 admits at least two non-equivalent embeddings
into C3.
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Before proving Theorem [.]], let us give another result. Given two Danielewski hypersurfaces,
it is not easy to check if the second condition in Theorem [[]] is fulfilled. Therefore, we also
show that any Danielewski hypersurface is equivalent to another one which is unique up to an
affine automorphism.

Theorem 4.3.

(1) Ewery Danielewski hypersurface is equivalent to a Danielewski hypersurface X (p, {¢;}i=2.. deg(p)> 1)
defined by an equation of the form

deg(p
2"y —p(z —chp 2)gi(x,p(2))  with  deg,(g;) <n — 1.

Moreover, there is an algomthmzc procedure which computes, given a Danielewski hyper-
surface X, a hypersurface X (p,{¢i}i=2. deg(p); ™) which is equivalent to X.

(2) Two such Danielewski hypersurfaces X (p1, {q1,i}i=2.. deg(pr)> 71) and X (P2, {q2,i Fi=2.. deg(ps) 72)
are equivalent if and only if ny = ng, deg(p1) = deg(ps) = d and there exist some con-
stants a, o, p € C*, B € C such that py(az+3) = upa(2) and aa™qy;(ax, ut) = q1(x,t)
for every 2 <1 <d.

Remark 4.4. This result generalizes the classification of Danielewski hypersurfaces of the form
2%y — 2% — xq(2) given by Moser-Jauslin and the author in [f].

Proof of Theorem [[.1. Let Xg,,, and Xg, ., be two equivalent Danielewski hypersurfaces.
Then, the second part of Corollary implies ny = ny = n.

If n = 1, the result is already known. Indeed, by Lemma .3, every Danielewski hypersurface
X1 with n = 1 is equivalent to a one of the form X,; with p(z,z) = p(z) € C[z]. Then,
Daigle [B] has proven that two such hypersurfaces X,, ; and X, ; are isomorphic if and only if
po(az + b) = ppy(z) for some constants a, u € C* and b € C.

Now, assume n > 2 and let ® be an automorphism of C* such that ®(Xg,,) = Xg,n-
Corollary B3, gives us constants a,« € C*, 3 € C and a polynomial B € C? such that &*(z) =
ax and ®*(z) = az+[+xB(z, 2"y—Q1(x, z)). Since the polynomial ™y—Q1(x, z) is irreducible,
there exists a nonzero constant u € C* so that ®*(2"y — Qz(x, 2)) = p(a™y — Q1 (z, 2)). It turns
out that Qq(ax,az + [+ xB(z, —Q1(x, 2))) = puQ1(x,z) mod (z"), as desired.

Conversely, let Xg,, and Xg,, be two Danielewski hypersurfaces with Qs(az,az + 8 +
rB(x,Q1(x,2))) = pQ:(z,2) mod (2") for some a,a, u € C*, 3 € C and B € CH.

We pose

R(l‘, Y, Z) =z " (QQ ((L'L', oz + ﬁ +aB ("L‘a _:L,ny + Ql ("L‘a Z))) - MQl ("L‘a Z)) S C[l‘, Y, Z]

and define an endomorphism of C* by

Remark that ®*(z"y — Q2(z,vy)) = p(z"y — Q1(x,y)). Therefore, the theorem will be proved
if we show that ® is invertible.

It suffices to prove that ®* is surjective, i.e.

Clz,y, 2] € ®*(Clz,y, 2]) = C[®*(z), D" (y), ©*(2)].

We know already that x and Py := 2"y — Q1(z, z) are in the image of ®*.

Then, since z = a~}(®*(z) — 3 — 2B(x, —P;)), we obtain that 2 belongs to ®*(C[z,y, z]).

It remains to show that y belongs to the image of ®*. To do this, we first remark that there
exist polynomials f, g € CPl such that

R(.’L‘, Y, Z) = l’yf(l’, 2 Pl) + g(ﬂf, 2 Pl)

Thus, y(u+af(z, 2z, P1)) = a"®*(y) — g(w, 2, P1) € *(Clz,y, z]). Now, choose some polyno-

mials f and g such that

(n+azf(x,z, P))f(x, 2, P) =1+ a"§(x, 2, P).
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Then, we can write
ylp+zf(z, 2, PO)) f(x, 2, P) = y(1 + 2"§(x, 2, P,))
=y+ (P — Quilz, 2))g(z, 2, P1).

This implies that y belongs to the image of ®* and proves the theorem. O
Proof of Theorem [[.3. Let Xg,, be a Danielewski hypersurface. Let p and ¢ denote the poly-
nomials such that Q(z, z) = p(z) + zq(z, 2).

We can write ¢(z, z) in the following form: ¢(z, z) = Zdeg(p) p(2)q;(z,p(z)) for some poly-
nomials qi, . .., qdaeg(p) € cPk.

By Lemma P.3, we can assume deg, (¢;(x,p(z))) < n — 1 for every index 1 <1i < deg(p).

Now, rewrite
n—1 deg

Q(z, +Zx Zp 2)qik(p(2))

for suitable polynomials ¢; 5 € Cl. Let 1 < k;o <n —1 be a fixed integer. Then,

ko deg(p)

Q ez =m0 () =242 7" 3 P EaspE) = nn ()P () mod (o)

Therefore, we obtain, using Theorem 1], that X is equivalent to a hypersurface of equation

n—1 deg(p

2"y = pl(z +Zx’“2p 2)Gir(p(2))

with ¢, = 0 and G = q;x if (4, k) € [1, ko] x [1, deg(p)] \ {(1,kp)}. Then, it is easy to prove
by induction on k¢ that Xg,, is equivalent to a hypersurface of the desired form.
Now, we will prove the second part of the theorem.

Let X; = X (b, {3 }i=2.dea(ry), 1) 5 = 1,2, and pose Q; = py(2) 4+ 25" p (2) g4 . 93 (2)):
If X, and Xy are equivalent, then, it follows from Theorem @ that ny = n2 = n and that

there exist a, o, p € C*, f € C and B € C? such that
Q2(az,az + B+ 2B(z,Q1(x, 2))) = pQ1(x,z) mod (z").

This implies pa(az + B) = up1(2). Thus deg(p;) = deg(ps) = d.

First, we prove that B(x,-) =0 mod (z"!). In order to do this, suppose that we can write
B(x,t) = b(t)2* for some 0 < k < n — 2 and b(t) € C[t] \ 0. Then, we obtain the following
equalities modulo (zF+2).

pQ1(z,2) = Qy (ax,az + B+ 2B (z,Qy (z,2))) mod (z"?)
= Qs (az, 0z + B+ 2" by (p1 (2)))

= pa (om0 + 5+ 50 mzp (02 + Bai(az, pa(oz + )

= pip1(2) + 20 (p1(2)) (p2) (02 + B) + az Y p§ (az + B)guiaz, upr (2))

=2
= up1(2) + 2 b1 (2))a () +fwza up\? (2)qz,i(az, ppi (2)).

This would imply

o S (P (2wt 21 () — a0 b ()i (0, s (2)) .
o (p1) (D1 (2)) = mod (1),

xk
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what is impossible.

Therefore, B(x,-) = 0 mod (z"'). Since, by hypothesis, deg,(Q;(z,2)) < n for j = 1,2,
it follows that Qa(azx,az + ) = uQ:(x, z). Then, we can easily check that this last equality
implies aa gy ;(ax, ut) = q1i(x,t) for every 2 < i < d, as desired. This concludes the proof. [

5. STANDARD FORMS

In [f, A. Dubouloz and the author proved that every Danielewski hypersurface X ,, where
Q(z, z) is a polynomial such that (0, z) has d > 2 simple roots, is isomorphic to a hypersurface
of a certain type (called standard form) and then classified all these standard forms up to
isomorphism.

In this section, we will generalize these results even when (0, z) has multiple roots. In order
to do this, we first generalize the definition of standard form given in [f].

Definition 5.1. We say that a Danielewski hypersurface Xg,, is in standard form if the poly-
nomial () can be written as follows:

Q(x,2) = p(2) + 2q(z,2), with deg.(q(z,2)) < deg(p).
We also introduce a notion of reduced standard form.

Definition 5.2. A Danielewski hypersurface Xg , is in reduced standard form if deg, (Q (x, 2)) <
n and

Q(z,2) = p(z) + zq(x,2), with deg_(q(x,2)) < deg(p) — 1.
When X; and X, are two isomorphic Danielewski hypersurfaces with X5 in (reduced) stan-
dard form, we say that X, is a (reduced) standard form of X;.

Example 5.3.

(1) Danielewski hypersurfaces defined by equations of the form z"y—p(z) = 0 are in reduced
standard form (These hypersurfaces were studied by Makar-Limanov in [§]);

(2) The Danielewski hypersurfaces, studied by Danielewski []] and Wilkens [[(], defined by
2%y — 2% — h(z)z = 0 are in standard form;

(3) Danielewski hypersurfaces X, defined by equations 2"y = [[\,(z — 0i(z)), where
o = {o;(x)}i=1..q is a collection of d > 2 polynomials, are in standard form; (They are
those we have called in standard form in [{])

(4) If r(z) € Clz] is a non constant polynomial, then a Danielewski hypersurface defined
by ™y —r(x)p(z) = 0 is not in standard form. (They were studied by Freudenburg and
Moser-Jauslin [q].)

We will now prove that every Danielewski hypersurface is isomorphic to a one in reduced
standard form. Our proof will be based on the following lemma which comes from [{].

Remark 5.4. Since every Danielewski hypersurface is isomorphic to a one in reduced standard
form, the notion of reduced standard form is, in some sense, more relevant than the notion of
standard form if we are interested in the classification of Danielewski hypersurfaces. Neverthe-
less, the notion of standard form has an interest too. Indeed, nice properties are true for every
Danielewski hypersurfaces in (not necessarily reduced) standard forms. For example, we will
see that all their automorphisms extend to automorphisms of the ambient space. Recall that
this does not hold for all Danielewski hypersurfaces. (see [f])

Lemma 5.5. Let n > 1 be a natural number and Qy(z, z) and Qz(x, z) be two polynomials of
Clx, 2] such that
Q2(x,2) = (1 4+ zm(z, 2))Q1(x, 2) + 2" R(x, 2)
for some polynomials w(x, z), R(x, z) € Clx, z].
Then, the endomorphism of C3 defined by
O(z,y,2) = (z, 1 +ar (z,2)y + R(z,2), 2)

induces an isomorphism ¢ : Xg, n — Xgyn-
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Proof. Remark that, since ®* (2™y — Q2 (2, 2)) = (1 + o7 (2, 2)) (2™y — Q1 (2, 2)), ¢ induces a
morphism ¢ : Xg, » — Xg,n-

Let f(z, z) and g(z, z) be two polynomials in C[z, 2] so that (1+x7(z, 2)) f(x, 2)+2"g(z, 2) =
1 and define ¥, an endomorphism of C?, by posing

U*(z) ==z
U*(z) = 2

We check easily that
U (z"y — Q1 (7, 2)) = f(2,2) (z"y — Q2 (, 2))

and that
U* o ®*(x) =z ;
Vo @ (y) =y — g(z,y) (¢"y — Q2 (7, 2)) ;
U*o d*(z) = 2.
Therefore, the restriction of U* o ®* to Sp,, = C[Xg,.] is identity. Hence, ¥ induces the
inverse morphism of ¢, and Xq, , ~ Xg, . U

Theorem 5.6. Every Danielewski hypersurface is isomorphic to a Danielewski hypersurface in
reduced standard form. Furthermore, there is an algorithmic procedure which computes one of
the reduced standard forms of a given Danielewski hypersurface.

Proof. Let X = Xg,, be a Danielewski hypersurface and denote Q(z, z) = p(2) + zq(z, z) with
p(z) € C[z] and ¢(z, z) € Clz, z|.

One can construct, by induction on m > 0, two polynomials gs,,(z, 2) and m,,(z, z) so that
deg, (qs(x, 2)) < deg(p) and Q(x, 2) = (1 + 27 (, 2))(p(2) + 2G5 m (2, 2)) mod (z™*).
Indeed, this assertion is obvious for m = 0, whereas, if it is true for a rank m, we can write:

p(2) + xq(x, 2) = (1 + 270 (2, 2)) (p(2) + 2¢sm(x, 2)) mod (z™1)
= (14 zmm (2, 2)(p(2) + 2qsm(, 2)) + 2™ Ry (2, 2)

(14 2T (@, 2) + 211 (2)(P(2) + 2o, 2) + 271 11(2) mod (27
( )

14 271 (2, 2)(p(2) + Tsmia(x,2) mod (v

where R,,,+1(0, 2) = p(2)Tms1(2) + Tma1(2) is the Euclidean division (in C[z]) of R, 41(0, 2) by
p.
Thus, we obtain
p(2) +xq(e, 2) = (14 amn (2, 2)) (p(2) + 2qsm1 (2, 2)) + 2" R (2, 2).

Lemma p.§ allows us to conclude that X is isomorphic to the Danielewski hypersurface in
standard form X defined by the equation 2"y — p(z) — 2qsn—1(z,2) = 0.
In order to obtain a reduced standard form, we rewrite

d i1
p(2) + 2qsn1(z,2) = Z a2+ Z 2 ay(x)
i=0 i=0

and consider the automorphism of C? defined by
®: (z,y,2) — (2,y, 2 — x(dag)  og_1(z)).

One checks that the polynomial ®*(2"y —p(z) —qs »—1(z, 2)) satisfies the second condition in
the definition of Danielewski hypersurface in reduced standard form. Finally, the first condition
can be obtain easily by applying Lemma [.5,.

This proof gives an algorithm for finding a (reduced) standard form of given Danielewski
hypersurface. O
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It should be noticed that a Danielewski hypersurface is in general not equivalent to its
(reduced) standard form given by Theorem [.6. Morover, one can use this fact to construct
non-equivalent embeddings for every Danielewski hypersurface of non-trivial Makar-Limanov
invariant.

Proposition 5.7. Every Danielewsk: hypersurface X¢ ., with n > 2 admits at least two non-
equivalent embeddings into C3.

Proof. Since, by Theorem [, every Danielewski hypersurface is isomorphic to a one in standard
form, it suffices to show that every Danielewski hypersurface in standard form X ,, with n > 2
admits at least two non-equivalent embeddings in C3.

Let X = X, be a Danielewski hypersurface in standard form with n > 2. Then, due to
Lemma p.5, X is isomorphic to the hypersurface Y = X(112)Q(z,2)n- Nevertheless, it turns out
that X and Y are non-equivalent hypersurfaces of C3. Indeed, if they were, Theorem [1] would
give us constants a, a, u € C*, € C and a polynomial B € CP? such that

(1 —ax)Q(ax,az + + xB(x,Q(x,2))) = pQ(x,z) mod ().
21;1 turn, if we denote Q(z, z) = p(z) + zq(x, 2), it would lead the following equalities modulo
(%):
p(p(2) +24(0,2))
= (1 — az)Q(ax, oz + f+ 2B(0,Q(0, 2)))
(1 — az)(p(az + B+ 2B(0,p(2))) + 2q(0, 0z + 3))
= plaz + 3) + z(B(0, p(2))p'(az + B) + q(0, az + §) — ap(ez + §)).

Thus
B(0,p(2))p (az + B) + (0, az + ) — ap(az + §) = pq(0, 2)
which is impossible since deg(¢q(0, z)) < deg(p) by definition of a standard form. O

Remark 5.8. This proof is similar to the proof of Freudenburg and Moser-Jauslin in [ for
hypersurfaces of equation z"y = p(z) with n > 2. In their article, they also have constructed
non-equivalent embeddings into C? for Danielewski hypersurfaces of the form zy —2¢ —1 =0
for some d € N. Nevertheless, we do not know if every Danielewski hypersurface Xy ; admits
non equivalent embeddings into C3. For instance, the following question , which they posed in
[, is still open.

Question 1. Does the hypersurface of equation xy + 2> = 0 admit a unique embedding into
C3?

Remark also that the two non-equivalent embeddings of a Danielewski hypersurface Xg ,
with n > 2 which we construct in Proposition p.q are analytically equivalent. Indeed, it can be
easily seen, as in [i] and [}, that a Danielewski hypersurface is analytically equivalent to its
standard form given by Theorem p.g. In turn, we obtain the following result.

Proposition 5.9. If X; and X5 are two isomorphic Danielewski hypersurfaces, then there is
an analytic automorphism W of C* such that ¥(X;) = X,.

Proof. Let X = Xg, be a Danielewski hypersurface and let X, , be its standard form
given by the theorem p.g. In the proof of this theorem, we have seen that Q(x,z) = (1 +
xm(z, 2))Qs(x, 2) + 2™ R(x, z) for certain polynomials 7 (x, z), R(z,z) € C[z, z]. Now, consider
the following analytic automorphism of C3.

U (z,y,2) — (z,exp(af(z, 2))y —a " (exp(zf(x,2)) — 1 —am(x, 2))Qs(x, 2) + R(x, 2), 2),
where f(z,z) € C[z, 2] is a polynomial so that exp(zf(z,2)) = 1 + zm(x,2z) mod (2™). One
checks that V*(2"y — Q(z,2)) = 2"y — Qs(x, z). Thus, ¥ maps X, to its standard form
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X@.n- Then, the result follows from Proposition p.2, which will be proved at the end of this
paper. O

6. CLASSIFICATION UP TO ISOMORPHISM

Finally, we give the classification of Danielewski hypersurfaces in standard form. Together
with the theorem [.6, this effectively classifies all the Danielewski hypersurfaces up to isomor-
phism of algebraic varieties.

Theorem 6.1.

(1) Two Danielewski hypersurfaces Xg, n, and X, n, in standard form are isomorphic if
and only if the two following conditions are satisfied:
(a) ny =ny =mn;
(b) Ja,a,p € C* 3[(x) € Clx] such that Qs(azx, az + () = p@Q:(x,z) mod (x™).
(2) Two Danielewski hypersurfaces X, n, and Xg, n, in reduced standard form are isomor-
phic if and only if the two following conditions are satisfied:
(a) ny = ny;
(b) Ja,a,p € C* 3B € C such that Qz(ax,az + 3) = pQ:(x, 2).

Proof. Let X1 = Xg,,, and Xy = Xg,n, be two isomorphic Danielewski hypersurfaces in
standard form and let ¢ : X; — X, be an isomorphism. Then Corollary implies that
ny = ng = n. Since the case n = 1 was already done by Daigle [B], we can suppose that n > 2.

Denote by z;,y;, z; the images of z,y, z in the coordinate ring C[X;]| for ¢ = 1,2. Then,
due to Corollary B-3, there exist constants a,« € C* and a polynomial G(z) € Clz] such that
©*(x9) = axy and p*(z2) = az; + B(z1).

Moreover, we have proven in the proof of Corollary B.3, that Q2 (0, aze + 3(0)) = p@1(0, 21)
for a certain constant p € C*.

Thus, viewing C[X;] as a subalgebra of Clx;, ; ", z;] with y; = 2, "Qy(w4, 2;), we obtain

©"(y2) = 0" (13" Q2(x2, 22)) = (ax1) " Qa(azy, azy + B(w1)) = pa™"y1 + (azy) "A(ry, 21),

where A(z1,21) = Qa(azy, az; + B(x1)) — pQ1(x1, z1).

Remark that deg, A(zy,21) < deg,, Q:1(0,2) since X; and X, are in standard form.

It turns out that 27"A(xy, ) € Clzy, 2] since any polynomial of C[X;] C ClzT, 2] with
negative degree in x; has obviously a degree in z; at least equal to deg, Q1(0,z;). Thus,
A(z,z) =0 mod (z") and X; and X, fulfill conditions (1) (a) and (1) (b).

If X; and X5 are in reduced standard form, then we see easily that A(z,z) = 0 mod (z")
is possible only if 3(z) = 3(0) mod (™). If so Qz(axy, az; + (5(0)) = pQ1(x1, z1) and X; and
X, fulfill the conditions (1) (a) and (2) (b).

Conversely, suppose that X; = Xq, , Xo = X¢,, are two Danielewski hypersurfaces which
satisfy the conditions (a) and (b) of part (1). Then the following triangular automorphism of
C? induces an isomorphism between X; and Xs:

(2,9, 2) = (az, pa™"y + (ax) " (Qa(az, az + B(x)) — p(z, 2)), @z + ).
U

As a corollary, we observe that two isomorphic Danielewski hypersurfaces in standard form
are equivalent via a triangular automorphism of C3, and that two isomorphic Danielewski
hypersurfaces in reduced standard form are equivalent via an affine one. In fact, we have even
proven a stronger result in the proof of Theorem [.1].

Proposition 6.2. Every isomorphism between two isomorphic Danielewski hypersurfaces in
standard form can be lifted to a triangular automorphism of C3.
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