A comparison of statistical learning approaches for engine torque estimation - Archive ouverte HAL
Article Dans Une Revue Control Engineering Practice Année : 2008

A comparison of statistical learning approaches for engine torque estimation

Résumé

Engine torque estimation has important applications in the automotive industry: for example, automatically setting gears, optimizing engine perfor- mance, reducing emissions and designing drivelines. A methodology is described for the on-line calculation of torque values from the gear, the accelerator pedal position and the engine rotational speed. It is based on the availability of input-torque experimental signals that are pre- processed (resampled, filtered and segmented) and then learned by a statistical machine-learning method. Four methods, spanning the main learning principles, are reviewed in a uni- fied framework and compared using the torque estimation problem: linear least squares, linear and non-linear neural networks and support vector machines. It is found that a non-linear model structure is necessary for accurate torque estimation. The most efficient torque model built is a non-linear neural net- work that achieves about 2% test normalized mean square error in nominal conditions.

Domaines

Informatique
Fichier principal
Vignette du fichier
engine.pdf (2.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00439467 , version 1 (07-12-2009)

Identifiants

Citer

A. Rakotomamonjy, Rodolphe Le Riche, David Gualandris, Zaid Harchaoui. A comparison of statistical learning approaches for engine torque estimation. Control Engineering Practice, 2008, 16, pp.43-55. ⟨10.1016/j.conengprac.2007.03.009⟩. ⟨hal-00439467⟩
193 Consultations
675 Téléchargements

Altmetric

Partager

More