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Abstract

Engine torque estimation has important applications in the automotive
industry: for example, automatically setting gears, optimizing engine perfor-
mance, reducing emissions and designing drivelines.

A methodology is described for the on-line calculation of torque values from
the gear, the accelerator pedal position and the engine rotational speed. It
is based on the availability of input-torque experimental signals that are pre-
processed (resampled, filtered and segmented) and then learned by a statistical
machine-learning method.

Four methods, spanning the main learning principles, are reviewed in a uni-
fied framework and compared using the torque estimation problem: linear least
squares, linear and non-linear neural networks and support vector machines.
It is found that a non-linear model structure is necessary for accurate torque
estimation. The most efficient torque model built is a non-linear neural net-
work that achieves about 2% test normalized mean square error in nominal
conditions.
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Symbols and abbreviations

ai, ai,j , a parameters of functional forms to be learned
Ap accelerator pedal position
c correlation coefficient
C regularization factor (SVMs)
Cp clutch pedal position (mm)
d distance covered by the vehicle (km)

ḋ vehicle speed (km/h)
Eemp empirical error
Ereg regularized error
f(t) true function dependency between the input signal and the engine torque signal
FR load at the rear axle (kg)
g(t) estimate of f(t), model function
ℓ number of learning examples or data points used in empirical error
ℓV number of validation data points
L loss function

m dimension of the input vector u including delays, m = tdy +
∑N

i=1
tdi + N

N number of input signals used for the model
p input signal power when calculating correlations, polynomial kernel order in SVM
r gear engaged
stop binary indication of stopped vehicle
S1 early stopping parameter (maximal number of learning iterations where stopping

error increases)
S2 early stopping parameter (maximal number of learning iterations)
tdmax maximum time delay
tdi time delay for the i-th signal
tdy time delay for the torque signal y
u , u(t) input vector of the engine torque model (at time t)
xi(t) i-th signal at time t used as a component of u

y net engine torque (N · m)
wi weights from the neurons to the output in neural networks
W signal low-pass filter order
‖ · ‖2

K functional norm in the RKHS defined by the kernel K
ε resolution of the ε-insensitive norm in SVMs
λ regularization weight factor

θ̇ engine speed (rotation/min)

IC internal combustion (engine)
nmse normalized mean square error
NN neural networks
SVM support vector machine
RKHS reproducing kernel Hilbert space
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1 Introduction

Engine torque estimation has been an active field of research in the last decade,
primarily in relation to control apparatus that have become generalized in modern
vehicles for optimizing engine performance, reducing traction wheel slip, reducing
emissions and setting gears. Torque estimates are also needed for sizing gearboxes
and other driveline components because, along with the temperature, they are a key
factor in calculating mechanical damage.

Most previous research on torque estimation has relied on simple1 internal com-
bustion (IC) engine models. The inputs to these models typically include specific
engine measures such as air or fuel mass flows (Chamaillard, et al. 2004, Karlsson &
Fredriksson 1999, Scherer, et al. 1999, Dixon & Heslop 2000, Namba, et al. 1992),
throttle angles (Hohmann, et al. 2000, Jankovic 2002, Scherer et al. 1999), man-
ifold pressures (Sano 1995, Hohmann et al. 2000, Jankovic 2002, Scherer et al.
1999), sparks advances (Chamaillard et al. 2004, Karlsson & Fredriksson 1999) and
crankshaft positions (Rizzoni, et al. 2003, Wang, et al. 1997).

The present work deals with estimating the net IC engine torque from readily
available measures, namely accelerator pedal position, vehicle speed and engine ro-
tational speed. Real torque measures, i.e. those obtained by customers in everyday
driving conditions, interest car manufacturers because they enable a statistical de-
scription of the actual loads transmitted in the power trains. This work has been mo-
tivated by and applied to a car customer survey, in which 40 vehicles were equipped
with a data acquisition system and lent to 40 customers for a month; during that
time the specified signals were recorded in everyday driving conditions. The torque
could not be directly recorded because in case of an accident the car manufacturer
would need to be able to prove that the vehicle had not been significantly altered
for the survey. This condition restricted the recorded signals to the ones considered
here, from which the torque was estimated a posteriori.

This article presents a principled approach for creating torque models. based on
statistical learning strategies that automatically build a model from experimental in-
puts (in this case torque sets). A statistical learning method encompasses a functional
form and a way of tuning it to the data at hand: linear least squares (Ljung 1987),
neural networks (Bishop 1995) and support vector machines (Vapnik 1998) will be
considered here.

The article starts with a review of engine torque modelling, followed by a descrip-
tion and a first analysis of the experimental data available. Then, three important
classes of statistical learning strategies that span most of the existing statistical
learning principles—linear least squares, neural networks (NN) and support vector
machines (SVM)—are introduced and compared for the torque estimation problem.

1Here “simple” means that the model evaluation is sufficiently rapid to allow real time applica-
tions.
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2 Review of engine torque modelling

Many statistically founded methods for learning dynamic systems will be compared
later in this article for an important practical problem, the estimation of engine
torque. Car manufacturers need to know engine torque values in order to size power
train components (such as gearboxes and crankshafts) and to regulate the engine
and gearbox for optimized performance and reduced emissions.

Torque can be mechanically estimated from either of two viewpoints: the internal
combustion engine and the car’s longitudinal dynamics. As detailed in Appendix A,
a car’s longitudinal dynamics cannot properly predict the torque when external in-
fluences such as wind, wheel-on-road friction and slope are unknown. Since those
factors are typically unknown, previous strategies for torque calculation have involved
modelling the engine.

Models of internal combustion engine have various degrees of complexity. The
most complex models are complete multi-physical descriptions of the combustion
chamber (chemical, thermal and compressible gas analyzes) in which the torque
can be obtained by integrating the pressure on the pistons (Heywood 1988, Vitek,
et al. 2003). An example of a complex model is found in (Chalhoub, et al. 1999)
where the effects of structural deformations on the engine friction torque are assessed.
Such physically detailed models are computationally too demanding for control or
pre-design.

Therefore most previous research on torque estimation has relied on simple mod-
els. In (Karlsson & Fredriksson 1999), for example, the validity of simple IC engine
models for control is studied by comparing cylinder-by-cylinder and mean-cylinder
models.

Simple torque models can be classified according to their inputs. Most are directly
based on engine inputs such as the air and fuel mass flows and the ignition timing
(Chamaillard et al. 2004, Karlsson & Fredriksson 1999, Namba et al. 1992). Equiv-
alently, intake and exhaust pressure, engine speed and throttle angle have also been
commonly used for torque estimation (Jankovic 2002, Hohmann et al. 2000, Scherer
et al. 1999). Another engine internal variable, the difference in combustion chamber
pressure, has been correlated to engine torque in (Sano 1995). Finally, crankshaft
dynamics have been used to calculate engine torques in (Rizzoni et al. 2003, Wang
et al. 1997).

Alternatively, simple torque models can be classified by their functional forms. In
(Jankovic 2002) and (Hohmann et al. 2000), analytical relations based on elementary
fluid dynamics yield the intake air flow (and thus the torque). More often, generic
models are identified from time histories of measured engine variables: linear dynamic
equations e.g. (Namba et al. 1992, Scherer et al. 1999), composition of polynomials
(Chamaillard et al. 2004), composition of fuzzy linear dynamic equations (Maertens,
et al. 2004), combination of polynomials (stochastic estimation of the coefficients),
frequency analysis (Rizzoni et al. 2003) and neural networks (Hafner, et al. 2002).

Four statistical learning approaches for building simple torque models are com-
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pared here. All four use as inputs measures available in any conventional vehicle2:
the accelerator pedal’s position, the car’s speed and the engine rotation speed. The
input set is restricted by the application motivating this research; more informative
signals such as air and fuel flows and throttle position cannot be used for legal reasons
in a survey of customers, as mentioned above.

Starting with such data and using no knowledge of the fuel injection controller,
it is possible to build a physically based torque model that uses neither external
car dynamics (since external friction sources are unknown) nor internal combustion
relations (since fuel and air flows—as well as equivalent data such as throttle and
crankshaft angles and manifold pressures—are unknown). This approach to torque
reconstruction, which combines such inputs as accelerator pedal position (an internal
command to the engine through the injection controller) and vehicle speed, is based
on mixed internal and external dynamics.

3 Data description and analysis

3.1 Data description and preprocessing

The measured input signals that are considered here for estimating the net engine
torque are

1. the distance covered by the vehicle, d(t),

2. the vehicle speed, ḋ(t),

3. the instantaneous load at the rear axle, FR(t),

4. a binary indication that the vehicle is stopped, stop(t),

5. the clutch pedal position, Cp(t),

6. the gear engaged, r(t), with r(t) = −2 for gears not engaged, -1 for reverse, 0
for neutral, 1 to 5 for gears 1 to 5,

7. the engine rotation speed, θ̇(t),

8. and the accelerator pedal position, Ap(t).

The signal to predict is the engine torque y(t). Many hours of measured input
and output signals are available. The measured engine torque values were taken
from the automatic gearbox calculator which defines a mapping to the torque value
from the engine rotation speed, the air and fuel flows, various temperatures (cooling
system, oil, outside), the accelerator pedal position and the gear engaged. The load
at the rear axle was estimated by a sensor that measures displacements (in mm)
between the chassis and the car body which are then converted to a load (in kg)

2Except for the load at the rear axle, FR, which is studied here but is not useful in the best
strategies.
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d(t) ḋ(t) stop Cp Ap r θ̇

FR -0.01 0.42 -0.43 0.17 -0.09 0.14 0.25

d(t) - -0.17 0.00 -0.15 -0.21 0.07 -0.25

ḋ(t) - - -0.74 -0.04 0.34 0.41 0.77

stop - - - -0.20 -0.39 -0.14 -0.65

Cp - - - - -0.14 -0.71 0.00

Ap - - - - - 0.18 0.49

r - - - - - - 0.29

Table 1: Correlation coefficients, c, between input signals

by a vehicle-specific multiplier. Figure 1 shows examples of these signals; one can
already see a similarity between the accelerator position and the torque. The signals,
which were recorded independently at various frequencies, have been synchronized
at 32 Hz. Downsampling and oversampling were performed by discarding excess
samples and linear interpolation, respectively. Furthermore, the torque signal which
was perturbed by a quantization noise has been processed by a low-pass mean filter
of order W = 20. It is important to note that the filtering was useful because of the
the quantization nature of the noise—not because of general experimental noises,
which the statistical learning methods take into account. The filter order was chosen
as a compromise between smoothing and preserving the signal extrema’s amplitudes.
Note also that the averaging filter introduces a delay of (W − 1)/2 periods, which
was corrected on the filtered output.

Because the objective of this present work is to estimate the torque of a moving
vehicle with a gear engaged, the stop and Cp signals are used to discard recordings
when the vehicle is idle (stop(t) = 1) or the gear is not completely engaged (Cp(t) >
0.1). The brake pedal position is not needed for torque estimation; indeed, in terms
of net engine torque, braking is treated simply as a case where no acceleration is
applied.

3.2 Data analysis

Before turning to complex statistical learning methods, some intuition about the
data is built by correlating input and output signals.

Firstly, linear correlation coefficients between input signals are calculated in Ta-
ble 1. Some signals are slightly linearly correlated: the vehicle and the engine speeds,
ḋ(t) and θ̇, have c = 0.77, and the vehicle speed and the stop signal stop(t) have
c = −0.75. In both cases, the correlation is physically obvious. Similarly, the clutch
pedal position Cp and the gear engaged r show some correlation (c = −0.71). The
accelerator Ap and the engine rotation speed are also slightly correlated (c = 0.49).

Secondly, the correlation between each input and the unfiltered output (the
torque, y) is studied. In order to investigate possible polynomial relationships, cor-
relations between the input at the power p and the output are calculated in Table 2.
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Figure 1: Examples of signals for a given data acquisition session. d(t), distance
covered by the vehicle, ḋ(t), vehicle speed, FR(t), instantaneous load at the rear
axle, stop(t), binary indication of stopped vehicle, Cp(t), clutch pedal position, r(t),
signal indicating which gear is engaged, θ̇(t), engine speed, Ap(t), accelerator pedal
position, y(t), net engine torque.
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power p FR d ḋ(t) stop Cp Ap r θ̇

1 -0.23 -0.21 0.17 -0.19 -0.13 0.91 0.12 0.30

2 -0.02 -0.23 0.12 -0.19 -0.19 0.95 0.25 0.30

3 -0.15 -0.24 0.09 -0.19 -0.19 0.92 0.11 0.28

4 -0.02 -0.23 0.06 -0.19 -0.19 0.87 0.21 0.26

Table 2: Correlation coefficients, c, between each input at the power p and the output
torque, y(t).

Figure 2 illustrates the relationships by plotting the output against each input. Ta-
ble 2 and Figure 2 show that there is a strong relationship between y and the ac-
celerator position, Ap, with a linear coefficient of correlation c = 0.9. Looking more
closely at the figure, one sees that the relationship is more quadratic than linear for
low torques. The table also supports this conclusion because the correlation between
y and Ap

p is highest for p = 2. The engine speed, θ̇, is also slightly correlated to
the torque (c = 0.3). The input signals other than these two have no significant
polynomial correlation with the torque.

4 Statistical learning methods for engine torque mod-

elling

The previous section has shown that acceleration and its square were highly cor-
related to the engine torque. In order to build a more accurate model of engine
torque, the torque estimation problem will now be formulated to enable time delays
and non-linear dependencies on inputs, in order to fit the general statistical learning
framework.

The output (the torque, y) depends on N inputs xi (e.g., Ap, θ̇, . . . ) and past
values of the torque through

y(t) = f (u(t)) + e(t) (1)

where e(t) represents the modelling error and the input vector u is

u(t) = [x1(t), · · · , x1(t − td1), · · · , xN (t), · · · , xN (t − tdN ), y(t − 1), · · · , y(t − tdy)] .
(2)

tdi is the maximal delay of the input signal xi. It is assumed that the output signal
value at a time t depends on its past values up to the time t− tdy. f is an unknown

function of m = tdy +
∑N

i=1
tdi + N variables.

Building a torque model, denoted g, now consists in approximating f from a
finite set of measured input/output data, (u(t)/y(t)). Such a regression problem,
combining functional analysis and statistics, is the subject of statistical learning
(Vapnik 1998). It is intuitive that g should reasonably fit the data, i.e. have a small
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Figure 2: Net torque, y(t), vs. each input signal. >From left to right and top to
bottom: d(t), ḋ(t), FR(t) ,stop(t) , Cp(t), r(t), θ̇(t), Ap(t).

empirical error

Eemp(g) =
1

ℓ

ℓ
∑

i=1

L(y(ti), g(u(ti))) (3)

where ℓ is the number of samples and L is a loss function, e.g. ||y(ti) − g(u(ti))||
2

or |y(ti) − g(u(ti))|ε as explained later. However, blindly minimizing Eemp over
a large class of functions3 G would make g exactly fit the data but with a poor
prediction ability because i) g would learn data noise, and ii) g would not uniquely be

3Examples of “large” functional spaces are polynomials of a sufficiently high degree or finite
trigonometric sums. Other examples are the functional forms spanned by neural networks or support
vector machines, as seen later in the text.
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determined by the data or, in mathematical terms, ming∈G Eemp would be ill-posed.
Statistical learning theory is therefore concerned with constraining the minimization
of the empirical error to an appropriately small functional space; this is generically
known as regularization (Evgeniou, et al. 2000). Most statistical learning strategies
implement it by minimizing a regularized error, which is the sum of the empirical
error and a functional regularization term

Ereg(g) = Eemp(g) + λ||g||2K . (4)

The functional regularization enforces some smoothness and flatness on the function;
λ is a parameter that controls the trade-off between fitting the data and having
a regular function. It is a functional norm or, more precisely, the norm in the
reproducing kernel Hilbert space (RKHS) defined by the positive definite function
(kernel) K (see (Evgeniou et al. 2000) for further explanation). An example of ||g||2K
when g is a finite dimensional linear function as in Equation (5) is the L2 norm of its
coefficients vector, ‖g‖2

K =
∑m

i=1
a2

i (see also footnote 4 and Section 4.3 on support
vector machines).

Besides functional regularization, there exist computational regularization tech-
niques, the most general example of which is cross-validation (Efron 1983). This
technique aims to estimate the prediction error by dividing the data into subsets
and repeatedly minimizing Ereg while leaving out one subset. These subsets are
used at each cross-validation iteration to calculate one prediction error occurrence.
Averaging these prediction errors yields the estimate. Cross-validation is used here
to choose model hyper-parameters, which are fixed when minimizing Ereg, such as λ
in Equation (4). Two other computational regularization techniques, early stopping
and weight decay, will be presented with neural networks.

In brief, a statistical learning method is defined by a functional space G in which
the regularized error Ereg is minimized, a loss function L, a functional regularization
||g||2K and optionally a strategy for computational regularization. These items will
be described next for the four torque estimation methods (linear least squares, linear
and non-linear neural networks and support vector machines). The following assumes
that the reader is familiar with optimization concepts, which can be found in (Minoux
1986).

4.1 Linear Least Squares modelling

This is the baseline method for regression. It is computationally and conceptually
the simplest approach and may satisfactorily predict the torque since it is highly
correlated to the acceleration. The salient feature of linear models is their intrinsic
stiffness which makes them less prone to data overfitting; this saves the effort required
for regularization, but also limits their accuracy in non-linear cases. The functional
form of the estimated output is

g(u(t)) =
m
∑

i=1

aiui(t) + a0 (5)
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where ui(t) is the i-th component of the input vector u(t).
The loss function is a quadratic norm and there is no regularization. Thus, the

coefficients a0, · · · , am minimize the empirical error

Eemp(g) =
1

ℓ

ℓ
∑

j=1

(

y(tj) −
m
∑

i=1

aiui(tj) − a0

)2

(6)

which gives, in matricial notation,

min
a

‖y − Ua‖2 (7)

where a = [a0, · · · am]t, y = [y(t1), · · · , y(tℓ)] and

U =







1 u1(t1) · · · um(t1)
...

...
. . .

...
1 u1(tℓ) · · · um(tℓ)






.

The solution of this least squares minimization problem is given by the normal equa-
tions,

U tUa = U ty . (8)

4.2 Neural Networks

Neural networks (NNs) are a very popular statistical learning method (Bishop 1995,
Ripley 1996). The functional form of a NN is

g(u(t)) =

Nh
∑

j=1

wjΦj

(

bj +
m
∑

i=1

ai,jui(t)

)

+ a0 (9)

which is metaphorically described as the linear combination of Nh “hidden layer
neurons” Φj ’s. In non-linear NNs, the Φj ’s are sigmoidal functions such as the hy-
perbolic tangent. In this work, linear NNs are additionally considered where the Φj ’s
are identity functions. Non-linear NNs have three interesting properties, universal
approximation, parsimony and complexity control. Universal approximation means
that they can approximate arbitrarily well any function providing Nh is large enough
(a property shared by other function classes such as polynomials and Fourier series).
They are parsimonious because their number of internal parameters (1+mNh +2Nh

for a0, the ai,j ’s the bj ’s and wj ’s) grows linearly with the dimension of the input
space, m. Complexity control means that by changing Nh one can control the vari-
ance of the function independently from other factors such as the number of data or
the input space dimension.

A NN learns the data by solving the non-linear least-squares problem

min
w,a

1

ℓ

ℓ
∑

i=1

(y(t) − g(u(ti)))
2 + λ





∑

j

w2

j +
∑

i,j

a2

i,j



 (10)
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The Levenberg-Marquardt optimization algorithm is well suited to solving this
problem (Levenberg 1944, Marquardt 1963). It is a gradient-based optimizer that,
for non-linear least-squares problems, is a quasi-Newton method (Le Riche & Guyon
1999). Evaluation of the gradient of the objective function (Equation (10)) with
respect to the parameters (or weights) w and a is performed by a computationally
efficient implementation of chain rule differentiation, a technique known as “error
back-propagation” in the field of NNs (Bishop 1995).

The last penalty term in Equation (10), referred to as weight decay, is, rigorously
speaking, a computational regularization strategy, although it seems closely related
to functional regularization4 (see Equation (4) and (Canu & Elisseff 1999, Girosi
et al. 1995)).

Another computational regularization strategy, early stopping, is used for learning
NNs. Both versions of this strategy involve stopping the minimization of Equation(10)
before convergence.

In one version, a “stopping” subset of the learning data set is isolated and used
exclusively to control the empirical error—it is not involved in defining Levenberg-
Marquardt search directions. Whenever the empirical error on the stopping subset
increases for S1 Levenberg-Marquardt iterations, optimization is stopped and the
solution found S1 iterations earlier is chosen even though the empirical error on the
learning subset might have kept decreasing. This strategy is based on the supposition
that if the stopping error increases while the learning error decreases, optimization
is probably fitting the noise of the learning data.

In the other version, the search is stopped after a given number of Levenberg-
Marquardt iterations, S2.

In this work, both stopping criteria are used and optimization is stopped when-
ever either is met. The NN regularization hyper-parameters λ and S2 are determined
through cross-validation.

Finally, note that the difference between linear least squares and linear NN is that
the latter is subject to the specified computational regularization strategies (weight
decay and early stopping). Otherwise, these two models share the same functional
form and empirical error.

4.3 Support Vector Machines

Support Vector Machines (SVM) (Schölkopf & Smola 2001, Vapnik 1998) in regres-
sion minimize the regularized error Ereg of Equation (4) where the loss function L
of the empirical error is the ε-insensitive loss function

Eemp(g) =
1

ℓ

ℓ
∑

i=1

|y(ti) − g(u(ti))|ε (11)

4In the case of a linear NN, weight decay is a functional norm in a RKHS of (finite) dimension

R
n+1, whose basis vectors are

e0 : R
n

→ R

x → 1
,

ei : R
n

→ R

x → xi

and whose kernel is K(x, y) =P
n

i=1
xiyi + 1. The link between weight decay and functional norms is still a subject for research

in the case of non-linear NNs (Canu & Elisseff 1999, Girosi, et al. 1995).
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and | · |ε means

|x|ε =

{

0 if |x| < ε
|x| − ε otherwise.

(12)

With the ε-insensitive loss function, any output which is less than ε away from the
data is treated as a perfect interpolant. ε can be interpreted as the resolution of the
measures; it also controls the regularity of the function that minimizes Ereg because
increasing it reduces the emphasis on interpolating the data and increases the degrees
of freedom available for decreasing the regularization term of Equation (4).

Note that the functional norms ‖g‖2

K will not be explicit in the framework of
classical SVMs because the first order optimality conditions (the Karush Kuhn and
Tucker conditions) will be used to transform them into linear combinations of K.

However, the choice of the kernel K defines the reproducing kernel Hilbert space
(RKHS) in which a minimizer of Ereg (Equations (4) and (11)) is sought. In other
words, the kernel determines the functional form of the solution which can be written
(as any function of the RKHS)

g(u(t)) =
ℓ
∑

i=1

aiK(u(ti),u(t)) + a0 . (13)

Because the ε-insensitive loss function is not differentiable, slack variables ξ and
ξ∗ are introduced into the original SVM problem; this yields an equivalent quadratic
optimization problem:

ming,ξ,ξ∗ Φ(g, ξ, ξ∗) = C
ℓ

∑ℓ
i=1

(ξi + ξ∗i ) + 1

2
‖g‖2

K

subject to the constraints:
g(u(ti)) − yi ≤ ε + ξi ∀i ∈ [1, · · · ℓ]
yi − g(u(ti)) ≤ ε + ξ∗i ∀i ∈ [1, · · · ℓ]
ξi, ξ

∗
i ≥ 0 ∀i ∈ [1, · · · ℓ]

(14)

where C = 1

2λ
. This minimization problem is convex, so it is equivalent to solve

its dual form where the Lagrange multipliers associated with the ε-tube constraints
are introduced (denoted αi and α∗

i ). Making use of the Karush-Kuhn and Tucker
conditions in the dual form to eliminate the slack variables, the SVM regression
problem turns out to be the following quadratic programming problem in αi and α∗

i

(Schölkopf & Smola 2001, Smola & Schölkopf 1998, Vapnik 1998):

minαi,α
∗

i
ε
∑ℓ

i=1
(α∗

i + αi) −
∑ℓ

i=1
yi(α

∗
i − αi) + 1

2

∑ℓ
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(u(ti),u(tj))

subject to the constraints:
∑ℓ

i=1
(α∗

i − αi) = 0

0 ≤ αi, α
∗
i ≤ C

ℓ
∀i ∈ [1, · · · ℓ]

(15)
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a0 is the Lagrange multiplier associated to the constraint
∑ℓ

i=1
(α∗

i − αi) = 0. The
solution of the regression problem (the minimizer of Ereg) is finally

g(u) =
ℓ
∑

i=1

(αi − α∗
i )K(u(ti),u) + a0 . (16)

Note that the data points u(ti) for which the error is less than ε have their αi and
α∗

i equal to 0 since they are Lagrange multipliers associated to inactive constraints.
Furthermore, αi and α∗

i cannot be simultaneously equal to 0, so only a few points,
called the “support vectors”, have either αi or α∗

i different from zero. The support
vectors are the only data points that determine the model g (Equation (16))—the
other points could be removed without changing the SVM; this property is known
as sparsity.

In SVMs, two hyper-parameters are tuned by cross-validation, C (= 1/(2λ)) and
ε.5 Polynomial kernels will be used in this work,

K(u, u′) = (< u, u′ > +1)p , (17)

where < u, u′ > denotes the scalar product between u and u′.

This presentation of the statistical learning methods under consideration for
torque estimation will close with a comparative review of their theoretical features.
One should be careful here not to rush to conclusions because, as the No Free Lunch
Theorem in optimization (Wolpert & MacReady 1995) states, there is no such a
thing as a universally better performing method. For this reason the numerical tests
performed later on the torque estimation problem remain necessary.

For certain choices of kernels such as Gaussian radial basis functions, it has been
shown (Dyn 1987) that SVMs, like NNs, are universal approximators. However, the
universal approximation property is not of much practical benefit in itself since it
should be balanced against the associated risk of poor prediction. More important
in practice is the difficulty of the optimization problem that needs to be solved to
learn the methods. Learning NNs is complex because it involves a non-linear least
squares problem where the Levenberg-Marquardt algorithm may converge to a local
minimum. On the other hand, the linear least squares method can be tuned to the
data by a simple linear system resolution. Learning SVMs involves solving a classical
quadratic programming problem where convergence to a global optimum is guaran-
teed. With regard to computer memory usage, SVMs typically require more memory
than NNs, as shown in Problem (15) where there are ℓ2 terms K(u(ti),u(tj)). To
save some memory, SVM implementations can make use of the sparsity property
(Collobert & Bengio 2001): Problem (15) is solved as a series of smaller quadratic
programming problems, each of which corrects a guess of the support vectors. In

5Cross-validation on ε is possible because the criterion that will be used to compare all learning
methods in Section 5 is the normalized mean square error—whose definition does not depend on ε.
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Linear Least Squares

functional space g(x) =
∑m

i=1
aixi + a0

loss function L least squares
functional regularization none
computat. regularization none

optimization pb. linear least squares

Neural Networks

functional space g(x) =
∑Nh

j=1
wjΦj (

∑m
i=1

ai,jxi) + a0, Φj(x) = tanh(x) or x

loss function L least squares
functional regularization none
computat. regularization weight decay, early stopping, cross-validation (λ and S2)

optimization pb. non-linear least squares (Levenberg-Marquardt)

Support Vector Machines

functional space g(x) =
∑ℓ

i=1
aiK(u(ti), x) + a0

loss function L ε-insensitive
functional regularization 1/(2C)‖g‖2

K

computat. regularization cross-validation (C and ε)
optimization pb. constrained quadratic programming

Table 3: Summary of the features of the statistical learning methods considered.

each subproblem, many αi and α∗
i are set to 0 (non support points) and not con-

sidered in the optimization. This guess is iteratively updated until a solution to the
quadratic problem (15) is found.

All the characteristics of the methods presented are summarized in Table 3.

5 Experimental results

5.1 Experimental setup

The four statistical learning methods previously described are now compared for
estimating an IC engine net torque.

The relationship between the engine torque, the accelerator pedal position Ap(t)
and the engine speed θ̇ depends on which gear is engaged, as measured by the discrete
signal r(t). Here we have adopted the simplest way to cope with this dependency:
building a separate model for each gear. This can be seen as a rough way of intro-
ducing expert knowledge into the models. Other approaches would imply making
r(t) one of the inputs ui in Equation (2) with the drawback of increasing the input
space dimension and the complexity of the learning task.

A large number of experimental data, representing several hours of recording, are
available here. They translate into a number of (u, y) pairs that vary with the max-
imum delay, tdmax = maxi=y,1...N (tdi), because the input signals of relation (2) have
to start tdmax time steps after the beginning of usable sequences. Short sequences
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may also disappear from the inputs as their length becomes smaller than tdmax. On
average, there are on the order of 140000 data points for each gear.

The data are divided into learning, validation and test sets. The learning set
consists in general of the ℓ points used to calculate the empirical error (Equation (3))
when tuning the models parameters (the a and w parameters). An exception is made
for early stopping, when part of the learning set is put aside to control learning as
explained in Section 4.2. The validation set is composed of the ℓV points used to
evaluate each tuned model’s performance and cross-validate the hyper-parameters
(see Section 4). Performance is quantified in terms of the normalized mean square
error

nmse =

∑ℓV

i=1
(y(i) − g(u(ti)))

2

∑ℓV

i=1
y(i)2

. (18)

The prediction (or generalization) ability of a model is evaluated by its nmse on
the test set. The data are correlated in time, so care is taken to split them so that
contiguous sequences of signals are allocated to the sets. For each gear, the learning
and validation set sizes are ℓ = ℓV = 20000, the early stopping set is made up of
30% of the learning set and the test sets have about 100000 points.

5.2 Setting hyper-parameters

A first experiment is performed in order to choose the value of the time delays tdi

and tdy. These should be chosen in accordance with the driveline dynamics. The
time delays are taken to be the same for all input signals but the torque, and are
varied from 0 to 40 for a non-linear NN composed of 5 tanh neurons in the hidden
layer and having Ap and θ̇ as inputs. In all cases, tdy = 0 in the best performing
variants: so there is no recursivity in the statistical models. The results in terms
of nmse are shown in Figure 3 for gears 2 and 5. Optimal delays are 30 for gear
2 and 40 (or more) for gear 5. The smaller delays for gear 2 than gear 5 reflect
faster dynamics. It is striking however that the improvement in nmse is no longer
significant beyond delays of 20. Therefore, in accordance with Occam’s Razor6, time
delays of 20 are chosen for a saving of 10 × (N + 1) inputs.

In the case of SVMs, the results presented here correspond to third order polyno-
mials (p = 3 in Equation 17), which were found to have the best performance from
a range of p = 1 to 4.

The hyper-parameters of NNs and SVMs are chosen by cross-validation. For
NNs, these parameters are the weight decay factor, λ, and the number of optimiza-
tion iterations (early stopping), S2. They are selected from the sets of possible
values {0.01, 0.1, 1} and {100, 500, 1000}, respectively. The other early stopping

6Named after the 14th century logician and Franciscan friar, William of Occam; the general
scientific meaning of Occam’s razor is this: if you have two equally likely solutions to a problem,
pick the simplest. In statistical learning, Occam’s Razor corresponds to the principle of structural
risk minization (Vapnik 1998) which, out of two models of similar observed performance, advocates
selecting the simplest.
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Figure 3: Validation normalized mean square error vs. time delays. The model is a
neural network with 5 tanh neurons in the hidden layer and accepting Ap and θ̇ as
inputs. (left) Gear 2. (right) Gear 5.

Model : hyper-parameters Input Signals

Ap Ap, θ̇ Ap, θ̇, ḋ Ap, θ̇, ḋ, FR

NN, 5 tanh(x)’s, gear 2 : (S2, λ) (500,0.1) (500,0.01) (1000,0.01) (500,0.1)

NN, 5 tanh(x)’s, gear 5 : (S2, λ) (100,1) (500,0.1) (500,0.1) (1000,0.1)

3rd order polynomial SVM, gear 2 : (C, ε) (10,0.05) (10,0.05) (10,0.05) -

3rd order polynomial SVM, gear 5 : (C, ε) (10,0.05) (10,0.05) (100,0.05) -

Table 4: Optimal values of hyper-parameters obtained by cross-validation, filtered
torque.

parameter, S1, is set equal to 10. Table 4 summarizes the optimal values of the hy-
perparameters. The optimal settings of the NNs change with respect to the network
input set, but it is clear that more regular functions (lower S2 and higher λ) perform
better on the higher gears, which indeed have slower dynamics. For SVMs, the two
hyper-parameters are the regularization factor, C, and the width of the ε-insensitive
norm, ε, which are taken from the sets {10, 100, 1000} and {0.05, 0.1, 0.15}, respec-
tively. The optimal values of these hyper-parameters, given in Table 4, are constant
at C = 10, ε = 0.05.

5.3 Comparison of models

The statistical learning methods (linear least squares, NNs and SVMs) are now
compared for six sets of input signals: {Ap}, {Ap, θ̇}, {Ap, θ̇, ḋ}, {Ap, θ̇, FR}, {Ap

2, θ̇}
and {θ̇, ḋ, FR}. Tables 5 and 6 show the validation nmse obtained for the different
models. The following conclusions can be made:
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• Averaged over both gears, the best7 model is a non-linear NN with 5 tanh
neurons in the hidden layer accepting as inputs Ap

2 and θ̇. It accurately
estimates the torque with a validation nmse of 1.9% on gear 2 and 0.14%
on gear 5. The faster dynamics of gear 2 make it more difficult to learn than
gear 5. Squaring the accelerator position is not critical to this NN model
because the model is non-linear, and using Ap and θ̇ as inputs yields a similar
prediction performance.

• Using the accelerator position as input is critical to the method, as illustrated
by the major deterioration in nmse seen in the rightmost columns of Tables 5
and 6.

• For gear 2, the dependency of engine torque on accelerator position is clearly
non-linear since using non-linear models reduces the nmse by about 3%. The
non-linearity is, as the correlation coefficients of Table 2 suggest, partly rep-
resented by the square of the accelerator position, since linear models in gear
2 have their nmse decrease by 2.3% with a substitution of Ap for Ap

2. This
non-linearity fades away for the fifth gear, where non-linear models are only
0.6% better than linear ones.

• The best input signal set (of the sets tried here) is {Ap, θ̇} (or equivalently
{Ap

2, θ̇}) for both gears. On average over all models, changing the input from
{Ap} to {Ap, θ̇} improves the torque estimates by about 3%. Adding ḋ to
{Ap, θ̇} does not produce further significant progress. Such a result was partly
expected since θ̇ is equal to ḋ multiplied by a gear-dependent factor. Never-
theless, redundant signals may be useful to neutralize measuring noise; this
explains the marginal improvement seen for gear 2, but this progress is so
small that Occam’s razor can be invoked to remove ḋ from the inputs. Finally,
adding a rear axle load estimate, FR, to the inputs does not improve the torque
estimation.

Figures 4 and 5 illustrate the performance of the best model for gears 2 and 5.
Figure 4 plots the real versus the estimated torques, and shows again that the model
is more accurate for gear 5 than for gear 2 (points are more concentrated around the
y = x axis in the first plot than in the second one). For both gears, it is evident
that most points departing from the optimal x = y region are above it at low torque
values; this indicates a tendency to underestimate low torques. Figure 5 is a time
representation of the estimated and real torque signals. While the overall dynamics
of the engine is accurately reproduced by the best NN model, the most important
errors occur for gear 2 in unstable regions (for example around 260 sec.).

To sum up performance on the validation set, the best model found using Ap,
θ̇, ḋ and FR as possible inputs is a non-linear neural network composed of five

7More precisely, the best model of the ones studied in this article. In particular, it is likely
that more informative inputs for torque—such as fuel and air flows, spark advances and throttle
angles—would yield more robust estimations.
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Models Input Signals

Ap Ap, θ̇ Ap, θ̇, ḋ Ap, θ̇, ḋ, FR Ap
2, θ̇ θ̇, ḋ, FR

Linear Model 9.31 6.43 6.29 6.35 3.94 14.15

Linear NN 9.26 6.26 6.07 6.19 3.89 16.84

NL NN, 4 tanh(x) & 1 x 6.35 1.96 1.91 1.91 2.22 12.74

NL NN, 5 tanh(x)’s 6.30 1.95 1.91 1.91 1.90 12.25

3rd order polyn. SVM 6.29 2.47 2.12 - - -

Table 5: Comparison of models validation nmse, gear 2, filtered torque.

Models Input Signals

Ap Ap, θ̇ Ap, θ̇, ḋ Ap, θ̇, ḋ, FR Ap
2, θ̇ θ̇, ḋ, FR

Linear Model 2.49 1.70 1.78 1.85 5.40 12.41

Linear NN 1.86 1.21 1.30 2.85 4.59 14.22

NL NN, 4 tanh(x) & 1 x 1.28 0.14 0.17 0.23 0.12 14.18

NL NN, 5 tanh(x) 1.28 0.14 0.16 0.21 0.14 26.00

3rd order polyn. SVM 1.74 0.28 0.73 - - -

Table 6: Comparison of models validation nmse, gear 5, filtered torque.

tanh neurons in the hidden layer with Ap and θ̇ as selected inputs. The prediction
performance of this best model will now be evaluated on a test set composed of data
that have never been used before, corresponding to experiments spanning a 1 month
period, and divided into 6 subsets.

Table 7 gives the test nmse results for the two gears. The model performs globally
well (nmse < 4% for gear 2 and nmse < 2% for gear 5) except for test set 2. Close
examination of test set 2 shows that most badly predicted data are associated with
experiments run on the same day. Removing that day’s data from set 2 reduces the
nmse values to 1.5% and 0.16% for gears 2 and 5, respectively. It is therefore likely
that the data gathered on that day do not represent nominal driving conditions. It
is noteworthy that detecting atypical data can be an interesting side application of
statistical learning.

6 Concluding remarks

This article has shown that IC engine torque values can be accurately estimated on-
line, in nominal conditions, using statistical learning methods from signals available
in any conventional vehicle: the gear engaged (r), the accelerator pedal position (Ap)
and the engine rotational speed (θ̇).

A wide spectrum of statistical methods for building the torque model (linear least
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Figure 4: Examples of real vs. estimated engine torque on validation set, best model
(NN with 5 tanh neurons using Ap(t) and θ̇(t) as inputs). (left) Gear 2. (right) Gear
5.

Test sets size nmse gear 2 size nmse gear 5

Set 1 4460 0.71 16455 0.24

Set 2 8014 11.27 26278 4.18

Set 3 4531 2.55 107510 1.88

Set 4 15324 3.81 53739 0.35

Set 5 7693 2.06 18902 0.20

Set 6 8463 2.06 35600 0.17

Table 7: Normalized mean-square error on test sets using the best neural network
model.

squares, linear and non-linear neural networks and support vector machines) have
been compared. They differ in their functional forms, in how they are compared
to the data (quadratic or ε-insensitive norms), and in how they are regularized.
Non-linear neural networks performed the best with a test normalized mean square
error of the order of 2%. The performance of support vector machines was close to
that of the non-linear neural networks. Linear models were unable to predict torque
correctly, especially at low gears.

The approach’s main limitation is that experimental values of r, Ap, θ̇ and the
torque must be available for each type of vehicle considered. Torque estimates dete-
riorate profoundly in the absence of Ap as an input signal.

Another limitation is that the method—at least in the form presented here—is
not robust with regard to such changes of working conditions as major variations
in ambient pressure or temperature because they affect the relationship between Ap

and the torque.8 The methodology presented here could be applied to developing a

8For example, at a high ambient temperature the spark is retarded to avoid engine knock.
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Figure 5: Examples of real (solid line) and estimated (dashed line) engine torques on
validation set, best model (NN with 5 tanh neurons using Ap(t) and θ̇(t) as inputs).
(left) Gear 2. (right) Gear 5.

more robust estimation system, but complementary inputs such as air, fuel or coolant
temperatures would be required.

More generally, the statistical learning approaches summarized and illustrated
here for torque estimation provide a way of diversifying the sensors data processings.
In the near future, such redundant information may be exploited to detect abnormal
use conditions and sensor failures.
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Figure 6: Sketch of a vehicle seen as a material point.

A Torque estimation and longitudinal dynamics

It is possible to propose a knowledge-based model of engine torque by applying the
laws of dynamics to a car. Such a model is called external because the effects of the
engine torque on the car dynamics in a given environment are modelled independently
from the engine controls (accelerator position, gear, throttle, fuel flow, . . . ). Referring
to Figure 6, the vehicle seen as a conservative material point follows the fundamental
relation of dynamics

Fengine + Fgravity + Ffriction + Fbrake = (M + Mrot)d̈ , (19)

where F... are forces, M is the vehicle mass and Mrot is the reduced mass of rotating
elements. The right hand side of Equation (19) describes inertial effects and stems
from the

d

dt

(

∂K

∂ḋ

)

(20)

term is Lagrange’s Equation, where K is the kinetic energy,

K =
1

2
Mḋ2 +

4
∑

i=1

1

2
Iiθ̇

2 . (21)

To simplify the above Equation, it is considered that there are 4 pieces in rotation
with moments of inertia Ii. Transmission ratios are defined here as

ki =
θ̇i

θ̇4

(22)

where the 4th rotating piece is the wheel of radius R. Introducing (22) into (21), the
kinetic energy of the vehicle is

K =
1

2
(M +

4
∑

i=1

Ii
k2

i

R2
)ḋ2 . (23)
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Using this expression of K into Equation (20) yields the definition of the reduced
mass of Equation (19),

Mrot =
4
∑

i=1

Ii
k2

i

R2
. (24)

Some of the forces in the left hand-side of Equation (19) are now further explicited
using classical approximate relations.

Fengine =
torque at wheel

R
=

P4

Rθ̇4

=
ηP1

Rθ̇4

=
ηyθ̇1

Rθ̇4

=
k1η

R
y , (25)

where Pi is the power at the i-th rotating piece and η the driveline efficiency between
the engine and the wheels. Friction forces are typically expressed as

Ffriction = Faero + Froad , (26)

Faero =
1

2
ρSCx(ḋ + wind)2 , (27)

Froad = Crfḋ
2 , (28)

where ρ is the air density, S the vehicle aerodynamic cross-section, Cx the drag
coefficient and Crf a road friction coefficient.

Substituting forces expressions into (19) gives a longitudinal dynamics equation
involving the net engine torque y,

ηyk1

R
− Mg sin(α) −

(

1

2
ρSCx

)

(ḋ + wind)2 + Crfḋ
2 + Fbrake

= (M + Mrot)d̈

(29)

In a conventional vehicle in real driving conditions, the road slope α, the road surface
state Crf and the wind are unknown. This is the reason why the external model
cannot be used to estimate engine torque. Note, on the contrary, that Equation (29)
could participate in estimating some of these external condition parameters.
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