Adaptive Bayesian Density Estimation with Location-Scale Mixtures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Adaptive Bayesian Density Estimation with Location-Scale Mixtures

Résumé

We study convergence rates of Bayesian density estimators based on finite location-scale mixtures of a kernel $C_p \exp\{-|x|^p\}$. We construct a finite mixture approximation of densities whose logarithm is locally $\beta$-Hölder, with squared integrable Hölder constant. Under additional tail and moment conditions, the approximation is minimax for both the supremum-norm and the Kullback-Leibler divergence. We use this approximation to establish convergence rates for a Bayesian mixture model with priors on the weights, locations, and the number of components. Regarding these priors, we provide general conditions under which the posterior converges at a near optimal rate, and is rate-adaptive with respect to the smoothness of $\log f_0$. Examples of priors which satisfy these conditions include Dirichlet and Polya-tree priors for the weights, and Poisson processes for the locations.
Fichier principal
Vignette du fichier
lsMixtures0.pdf (307.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00389343 , version 1 (28-05-2009)
hal-00389343 , version 2 (01-07-2010)

Identifiants

  • HAL Id : hal-00389343 , version 1

Citer

Willem Kruijer, Judith Rousseau, Aad A.W. van Der Vaart. Adaptive Bayesian Density Estimation with Location-Scale Mixtures. 2009. ⟨hal-00389343v1⟩
433 Consultations
192 Téléchargements

Partager

More