
HAL Id: hal-00389343
https://hal.science/hal-00389343v1

Preprint submitted on 28 May 2009 (v1), last revised 1 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Bayesian Density Estimation with
Location-Scale Mixtures

Willem Kruijer, Judith Rousseau, Aad A.W. van Der Vaart

To cite this version:
Willem Kruijer, Judith Rousseau, Aad A.W. van Der Vaart. Adaptive Bayesian Density Estimation
with Location-Scale Mixtures. 2009. �hal-00389343v1�

https://hal.science/hal-00389343v1
https://hal.archives-ouvertes.fr


Submitted to the Annals of Statistics

ADAPTIVE BAYESIAN DENSITY ESTIMATION WITH
LOCATION-SCALE MIXTURES

By Willem Kruijer∗, Judith Rousseau and Aad van der Vaart

Université Paris Dauphine and VU University Amsterdam

We study convergence rates of Bayesian density estimators based
on finite location-scale mixtures of a kernel Cp exp{−|x|p}. We con-
struct a finite mixture approximation of densities whose logarithm
is locally β-Hölder, with squared integrable Hölder constant. Under
additional tail and moment conditions, the approximation is mini-
max for both the supremum-norm and the Kullback-Leibler diver-
gence. We use this approximation to establish convergence rates for
a Bayesian mixture model with priors on the weights, locations, and
the number of components. Regarding these priors, we provide gen-
eral conditions under which the posterior converges at a near optimal
rate, and is rate-adaptive with respect to the smoothness of log f0.
Examples of priors which satisfy these conditions include Dirichlet
and Polya-tree priors for the weights, and Poisson processes for the
locations.

1. Introduction. When the number of components in a mixture model
can increase with the sample size, it can be used for nonparametric density
estimation. Such models were called mixture sieves by Grenander [12] and
Geman and Hwang [4]. Although originally introduced in a maximum like-
lihood context, there has been a large number of Bayesian papers in the
following years. See, among many others, [17], [2], and [3]. Whereas much
progress has been made regarding the computational problems in nonpara-
metric Bayesian inference (see for example the review by Marin et al.[16]),
results on convergence rates were found only recently, especially for the case
when the underlying distribution is not a mixture itself.

For the estimation of a C2-density using continuous normal mixtures with
a Dirichlet prior on the mixing distribution, [10] found optimal rates un-
der certain conditions on the prior. Convergence rates of normal mixtures
have also been studied by Scricciolo [19] and Genovese and Wasserman [5].
For beta-mixtures with rational parameters (i.e. corresponding to Bernstein
polynomials), rates can be found in [7] and [14]. In these papers optimal
∗Much of this work was carried out when the first author was a PhD-student at the
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2 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

rates were only obtained when the smoothness β of the underlying density
is at most 2 (normal mixtures) or 1 (beta-mixtures). For continuous beta-
mixtures Rousseau [18] recently obtained a (near)-optimal 1 rate for any β,
the posterior being rate-adaptive with respect to β. In the present work a
similar result is derived for location-scale mixtures. This is achieved using
the approximations studied in section 2. These are established following the
approach of [18], which consists of finding a continuous mixing density fk
for which the mixture is close to f0 and next discretizing fk. If fk is allowed
to be different from f0, the approximation can also be optimal when the
smoothness is larger than 2. A difference with [18] is that we can exploit
properties of the convolution operator (see Lemma 1), which is not possible
for beta-mixtures. A remarkable difference with the frequentist approach is
that the underlying density f0 can be approximated by convoluting a func-
tion different from f0, instead of, for example, convoluting f0 itself with a
kernel that is not strictly nonnegative.

Whereas much of the (asymptotical) literature on nonparametric mixtures
is restricted to normal mixtures with Dirichlet process priors, we give general
conditions for the priors on µ and w, under which the posterior is rate-
optimal and adaptive. Conditions for consistency were recently given by Wu
and Ghosal [20]. In section 4 we give examples of priors that satisfy these
conditions. It appears that optimal rates are achieved in many other models
than the Dirichlet mixtures of normals. For example, one can equally well
use Laplace mixtures with a Poisson process prior on the locations and a
Polya-tree prior on the weights.

We obtain posterior convergence rates for location-scale mixtures of the
type

(1) m(x; k, µ, w, σ) =
k∑
j=1

wjψσ(x− µj),

where σ > 0, wj ≥ 0,
∑k
j=1wj = 1, µj ∈ R and

(2) ψ(x) = Cpe
−|x|p ,

for a normalizing constant Cp. The inverse ψ−1(y) =
(
log Cp

y

)1/p
is defined

on (0, Cp].
Notation For any nonnegative α, let

(3) να =
∫
xαψ(x)dx.

1In the sequel, a near optimal rate is understood to be the minimax rate with an
additional factor (logn)c.
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ADAPTIVE LOCATION-SCALE MIXTURES 3

For any function h, let Kσh denote the convolution h ∗ ψσ, and let ∆σh
denote the error (Kσh)−h. For L > 0, β > 0 and r the largest integer smaller
than β, let H(β, L) be the space of functions h such that supx 6=y |h(r)(x) −
h(r)(y)|/|y − x|β−r ≤ L. Let Hβ be the Hölder-space ∪L>0H(β, L), and
given some function h ∈ Hβ, let Lh,β−r = supx 6=y |h(r)(x) − h(r)(y)|/|y −
x|β−r. When β − r = 1, this equals ‖h(r+1)‖∞. Let ∆k = {x ∈ Rk : xi ≥
0,
∑k
i=1 xi = 1} denote the (k − 1)-dimensional unit-simplex and Sk = {x ∈

Rk : xi ≥ 0,
∑k
i=1 xi ≤ 1}. For b, d ∈ Rk, Hk[b, d] denotes the hypercube

{x ∈ Rk | xi ∈ [bi, di]}. When no confusion can result we write Hk[b, d] :=
Hk[(b, . . . , b), (d, . . . , d)] for real numbers b and d. For positive numbers c and
ε, Tc,ε denotes the interval [−c| log ε|1/p, c| log ε|1/p]. Given ε > 0 and fixed
points x ∈ Rk and y ∈ ∆k, define the l1-balls Bk(x, ε) =

{
z ∈ Rk |

∑k
i=1 |

zi − xi |≤ ε
}

and ∆k(y, ε) =
{
z ∈ ∆k |

∑k
i=1 | zi − yi |≤ ε

}
. Inequality up

to a multiplicative constant is denoted with . and & (for . we also use O).
The number of integer points in an interval I ∈ R is denoted N(I). Finally,
the convergence rate is a sequence tending to zero such that nε2n →∞ and
Π(d(f0, f) > Mεn | X1 . . . , Xn)→ 0 in Fn0 -probability, for some sufficiently
large constant M , d being the Hellinger- or L1-metric.
Conditions on f0. The observations X1, . . . , Xn are assumed to be an i.i.d.
sample from a density f0, satisfying the following conditions.

1. Smoothness. log f0 is assumed to be locally β-Hölder, with derivatives
lj(x) = dj

dxj
log f(x). In addition we assume the existence of a polyno-

mial L and a constant γ > 0 such that

log f0(y) ≤ log f0(x) +
r∑
j=1

lj(x)
j!

(y − x)j + L(x)|y − x|β(4)

log f0(y) ≥ log f0(x) +
r∑
j=1

lj(x)
j!

(y − x)j − L(x)|y − x|β(5)

for all x, y with |y− x| ≤ γ. Hence log f0 is locally Hölder with an ad-
ditional uniformity condition. As L is polynomial, the lj ’s are bounded
by polynomials. In the remainder, (4) and (5) are always used when
|x − y| is smaller than a multiple of σ| log σ|1/p, and throughout the
paper it is assumed that σ is small enough to have |x− y| < γ.

2. Moments. The functions L and the lj satisfy

(6) F0|lj |2β/j <∞, j = 1, . . . , r, F0L
2 <∞.

3. Monotonicity. f0 is strictly positive, and there are numbers xm <
xM such that f0 is nondecreasing on (−∞, xm) and nonincreasing
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4 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

on (xM ,∞). Without loss of generality we assume that f0(xm) =
f0(xM ) = c and that f0(x) ≥ c for all xm < x < xM . The mono-
tonicity in the tails implies that Kσf0 & f0; see the remark on p.
149-150 in [6].

4. Tails. f0 has smaller tails than the kernel, i.e. there are constants T
and Mf such that f0(x) ≤Mfψ(x) when |x| ≥ T . Combined with the
monotonicity condition, this implies that there exists a finite constant
cf such that for all sufficiently small ε,

(7) {x : f0(x) ≥ ε} ⊂ [−cf | log ε|1/p, cf | log ε|1/p].

The constant cf depends on f by the constant Mf in the tail condition.
This property is used in the proof of Lemma 6.

Prior (Πn) The prior on σ is the inverse Gamma distribution with scale
parameter λ > 0 and shape parameter α > 0, i.e. σ has prior density
λα

Γ(α)x
−(α+1)e−λ/x and σ−1 has the Gamma-density λα

Γ(α)x
α−1e−λx. The priors

on the number of components, locations and weights satisfy the conditions
(8)-(11) below, where d1, d2, d3 and d4 may be arbitrary positive constants.

First, the marginal distribution ρ of the number of components K is such
that for all integers m

(8)
∞∑
k=m

ρ(k) . e−d1m(logm)r ,

where the constant r affects the logarithmic factor in the convergence rate
in Theorem 1 if it is smaller than one.

Second, the joint distribution of (K,µ) satisfies

(9) Π
(
N([−y, y]c) > 0

)
. e−|y|

d2
,

and for all c > 0 there exists a constant d3 > 0 such that

(10) Π
(
K = k, µ ∈ Bk(µ0, ε)

)
& exp

{
−d3k log

1
ε

}
when y > 0, k ∈ N, ε < 1

k , and the elements of µ0 are contained in Tc,ε =
[−c| log ε|1/p, c| log ε|1/p]. Condition (9) requires that the number of points
(N) outside [−y, y] is exponentially small.

Finally, the prior distribution of the weight vector w is independent of µ,
such that for all k, ε < 1

k , and w0 ∈ ∆k,

(11) Π(w ∈ ∆k(w0, ε) | K = k) & exp
{
−d4k(log k)b log

1
ε

}
,
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ADAPTIVE LOCATION-SCALE MIXTURES 5

for some nonnegative constant b, which affects the logarithmic factor in the
convergence rate.

We can now state our main result.

Theorem 1. If the prior satisfies conditions (8)-(11) and f0 satisfies
Conditions 1-4, then Πn(· | X1, . . . , Xn) converges to f0 in Fn0 -probability,
with respect to the Hellinger or L1-metric, with rate εn = n−β/(1+2β)(log n)t,
where r and b are as in (8) and (11), and t > (2 + b + p−1)/(2 + p−1) +
max(0, (1− r)/2).

The proof is based on Theorem 5 of Ghosal and van der Vaart [10], which
is included here in appendix A. Informally speaking, the conditions (10)
and (11) translate the general prior mass condition (51) in Theorem 2 to
conditions on the priors for µ and w. The prior is to put enough mass near
µ0 and w0, which are the locations and weights of a mixture approximating
f0. Since µ0 and w0 are unknown, the conditions in fact require that there
is a minimal amount of prior mass around all their possible values; therefore
(10) and (11) could be seen uniformity conditions. Considering only proper
priors, this requires a restriction of the form µ0 ∈ T kc,ε. Due to conditions (8)
and (10), the marginal distribution of the number of components has to be
exponential in k, as in Ghosal [7], who studied convergence rate of Bernstein-
polynomials.

2. Approximation of smooth densities. In the proof of Theorem
1 we need a set of finite mixtures whose Kullback-Leibler- (KL) divergence
with respect to f0 is O(σ2β). The usual approach is to bound the supremum-
norm between f0 and Kσf0, and then show that under certain conditions on
f0, this also gives a small KL-divergence. But as ‖f0 −Kσf0‖∞ remains of
order σ2 when β > 2, this approach becomes rather difficult. In this section
we propose an alternative mixing distribution, following the construction of
Rousseau [18] for beta-mixtures. In Lemma 1 we construct, by substracting
the convoluted approximation error, a function fk such that ‖f0−Kσfk‖∞ =
O(σβ). Under extra assumptions on f0, the error is even relative with respect
to f0 (Lemma 2). This fk is not necessarily a density however, and after
some modification and normalization we obtain a density hk. In Lemma 3
it is shown that hk still has the desired approximative properties. It then
follows that hk is also close to f0 in the KL-sense (Lemma 4). After a result
quantifying the L∞- and L1-distances between mixtures whose parameters
are close, given in Lemma 5, hk is discretized in Lemma 6. In the remainder
of this section, we often write f for f0 for notational convenience.
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6 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

It is well known that for any f ∈ Hβ,

‖∆σf‖∞ ≤ νβLf,βσ
β, β ∈ (0, 1](12)

‖∆σf‖∞ ≤ νβ∧2Lf ′,(β−1)∧1σ
β∧2, β > 1.(13)

When β ≥ 2, the latter inequality can be written ‖∆σf‖∞ ≤ ν2σ
2‖f (2)‖∞.

The approximation error is therefore of order σ2, even when β is larger than
two. The following calculation illustrates how this can be improved if we
take f1 = f − ∆σf = 2f − Kσf as mixing density instead of f itself. If
f ∈ Hβ with β ∈ (2, 4], the approximation error |(Kσf1)(x)− f(x)| equals∣∣∣∣∫ ψσ(x− µ)

{
(f(µ)− f(x))−

∫
ψσ(ε− µ)(f(ε)− f(µ))dε

}
dµ

∣∣∣∣
=

∣∣∣∣∣σ2

2
f
′′
(x) +O(σβ)− σ2

2

∫
ψσ(x− µ)f

′′
(µ)dµ−O(σβ)

∣∣∣∣∣ = O(σβ).

If 4 < β ≤ 6, it can be shown that an error of O(σβ) is achieved using
Kσf2, where f2 = f −∆σf1. For larger β, this procedure of substracting the
convoluted error of the previous approximation can be continued; we find a
sequence fi+1 = f −∆σfi. It can be shown by induction that

fk =
k∑
i=0

(−1)i
(
k + 1
i+ 1

)
Ki
σf,(14)

∆k
σf =

k∑
i=0

(−1)k−i
(
k

i

)
Ki
σf.(15)

The following elementary result is included for convenience. Its proof de-
pends on the following two observations. First, note that if f ∈ Hβ then
f1, f2, . . . are also in Hβ, even if ψ is not in Hβ (e.g. when p = 1).

Second, it follows from the symmetry of ψ that Kσf
(k) = dk

dxk
Kσf , i.e.

the kth derivative of the convolution of f equals the convolution of f (k).

Lemma 1. Let f ∈ Hβ, where 2k < β ≤ 2k + 2 for some positive
integer k. Then ‖f − fk ∗ ψσ‖∞ = O(σβ), where fk is defined recursively by
f1 = f −∆σf = 2f −Kσf and fj+1 = f −∆σfj, j ≥ 1.

Proof. For k = 1 it can be seen that Kσ(f1) − f = ∆σ(f − ∆σ(f)) −
∆σ(f) = −∆σ∆σf . From (13) it follows that ‖∆σ∆σf‖∞ ≤ ν2σ

2‖(∆σf)”‖∞.
Because differentiation and the ∆σ operator can be interchanged, we also
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ADAPTIVE LOCATION-SCALE MIXTURES 7

have ‖(∆σf)′′‖∞ = ‖(∆σf
′′)‖∞. Since f ′′ ∈ Hβ−2, the latter quantity is

O(σβ−2). Consequently, ‖∆σ∆σf‖∞ = O(σβ). For k > 1, we repeat this
step and use that, as a consequence of (14) and (15), ‖Kσfk − f‖∞ =
‖∆k+1

σ f‖∞. In fact, by induction it follows that for any positive integer k,
β ∈ (2k, 2k + 2] and f ∈ Hβ, ‖∆k+1

σ f‖∞ = O(σβ). Suppose this statement
holds for k = 0, 1, . . . ,m − 1, and that f ∈ Hβ with β ∈ (2m, 2m + 2].
Then ‖∆m

σ f‖∞ = O(‖∆σf
(2m)‖∞σ2m) and ‖∆σf

(2m)‖∞ = O(σβ−2m) as
f (2m) ∈ Hβ−2m.

Once the approximation error O(σβ) is achieved with a certain fk, the ap-
proximation clearly doesn’t improve any more for fj with j > k. In the con-
text of a fixed β > 0 and a density f ∈ Hβ (or an f such that log f ∈ Hβ),
fk will be understood as the first function in the sequence {fi}i∈N for which
an error of order σβ is achieved, i.e. k is one half of the largest even number
strictly smaller than β.

The following approximation result, whose proof can be found in Ap-
pendix B, will be essential for controlling the KL-divergence between f and
Kσfk. A similar result for beta-mixtures is contained in Theorem 3.1 in [18].

Lemma 2. Let f be a density satisfying conditions 1-4, and let fk be
the first function in the sequence {fi}i∈N for which an error of order σ2β is
achieved. Then for all sufficiently small σ and for all x contained in the set
(16)
Aσ = {x : |lj(x)| ≤ Bσ−j | log σ|−j/p, j = 1, . . . , r, |L(x)| ≤ Bσ−β| log σ|−β/p}

we have

(17) (Kσfk)(x) = f(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
where H > 0 can be chosen arbitrarily large and

(18) R(x) = rr+1|L(x)|+
r∑
i=1

ri|l1(x)|β/i,

for nonnegative constants ri.

Hence the result of Lemma 1 can be strengthened considerably: on a set on
which the lj ’s are sufficiently controlled, the approximation error (Kσfk)(x)−
f(x) is now relative to f(x), apart from a term σH where H can be arbitrar-
ily large. Note that the powers of the |lj |’s appearing in R are half of those
appearing in the moment condition (6); this is because of the application
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8 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

of (17) (after a small modification in Lemma 3) in Lemma 4, where it is
required that

∫
R2dF <∞.

Since Kσfj is a density when fj is a density, we have that for any non-
negative integer j (f0 denoting the density f itself) fj integrates to one.
For j > 0 the fj are however not necessarily nonnegative, which can be
easily seen by considering a compactly supported f . To obtain a probability
density, we define

Rσ,j = {x : fj(x) >
1
2
f(x)}(19)

gj(x) = fj(x)1Rσ,j +
1
2
f(x)1Rcσ,j ,(20)

hj(x) = gj(x)/
∫
gj(x)dx.(21)

The constant 1
2 in (19) and (20) is arbitrary and could be replaced by any

other number between zero and one. From our conditions on f it will follow
that these hj still have the desired approximation error, i.e. we will show in
Lemma 3 that for any f ∈ Hβ the normalizing constant

∫
gk is 1 +O(σβ).

We define

(22) Eσ = {x : f(x) ≥ σH1},

where (at this point) the constant H1 has to be at least 4β, but will have to
be chosen larger in the remainder. By property (7) we have that for ε = σH1

and a certain constant c, Eσ ⊂ Tc,ε.

Lemma 3. Let f be a density satisfying conditions 1-4. Then

(23)
∫
Acσ

(Km
σ f)(x)dx = O(σ2β),

∫
Ecσ

(Km
σ f)(x)dx = O(σ2β)

for any nonnegative integer m, provided that H1 = H1(m) in (22) is suf-
ficiently large. Furthermore, Aσ ∩ Eσ ⊂ Rσ,k for small enough σ. Conse-
quently,

(24)
∫
gk(x)dx = 1 +

∫
Rc
σ,k

(
1
2
f − fk)dx = 1 +O(σ2β).

Consequently,

(25) Kσhk(x) = f(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
for all x ∈ Aα ∩Eσ, i.e. if we make the further restriction to Eσ, (17) holds
with fk replaced by hk.
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ADAPTIVE LOCATION-SCALE MIXTURES 9

Proof. To show that the first integral is of order σ2β, consider the sets

Aσ,δ = {x : |lj(x)| ≤ δBσ−j | log σ|−j/p, j = 1, . . . , r, |L(x)| ≤ δBσ−β| log σ|−β/p},

indexed by δ ≤ 1. If m = 0, the moment condition (6) and Markov’s in-
equality imply F (Acσ) = O(σ2β). If m = 1, consider independent random
variables X and U with densities f and ψ, respectively. Then X + σU has
density Kσf . Because P (|U | ≥ k′| log σ|1/p) = O(σ2β) if the constant k′ is
sufficiently large, we have

P (X + σU ∈ Acσ) ≤ P (X + σU ∈ Acσ, | U |≤ k′| log σ|1/p) + P (|U | ≥ k′| log σ|1/p)
= O(σ2β) + P (X + σU ∈ Acσ, X ∈ Aσ,δ, | U |≤ k′| log σ|1/p)

+ P (X + σU ∈ Acσ, X ∈ Acσ,δ, | U |≤ k′| log σ|1/p)

(26)

The last term is bounded by P (X ∈ Acσ,δ), which is O(σ2β) for any 0 <
δ ≤ 1. We show that the second term on the last line is zero for sufficiently
small δ. We show that the conditions on f and the fact that X ∈ Aσ,δ and
X + σU ∈ Acσ,1 imply that |U | is large, contradicting | U |≤ k′| log σ|1/p.

SinceX ∈ Aσ,δ, |L(X)| ≤ δBσ−β| log σ|−β/p and |lj(X)| ≤ δBσ−j | log σ|−j/p
for j = 1, . . . , r, whereas X + σU ∈ Acσ,1 implies that |L(X + σU)| ≥
Bσ−β| log σ|−β/p or that |li(X + σU)| ≥ δBσ−i| log σ|−i/p for some i ∈
{1, . . . , r}. By (4) and (5), it follows that for all i = 1, . . . , r

|li(X + σU)| =

∣∣∣∣∣∣
r∑
j=i

lj(X)
j!

(σU)j−i +O(L(X)σβ−i(σU)β−i)

∣∣∣∣∣∣
≤

r∑
j=i

δBσ−j

j!
| log σ|−j/p|σU |j−i + δBσ−β| log σ|−β/p|σU |β−i

≤ Bσ−i| log σ|−i/p

if δ is sufficiently small. Therefore it has to be a large value of |L(X + σU)|
that forces X + σU to be in Acσ. Hence it suffices to show that |L(X)| ≤
δBσ−β| log σ|−β/p and | U |≤ k′| log σ|1/p is in contradiction with |L(X +
σU)| ≥ Bσ−β| log σ|−β/p. This follows from the assumption that L is poly-
nomial.

If m = 2 in (23), note that the above argument remains valid if X has
density Kσf instead of f . The last term in (26) is then bounded by P (X ∈
Acσ,δ), which is O(σ2β) by the result for m = 1. This step can be repeated
arbitrarily often, for some decreasing sequence of δ’s.
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10 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

To bound the second integral in (23), first note that for m = 0

(27)
∫
Ecσ

f(x)dx ≤ σH1/2
∫
Ecσ

√
f(x)dx = O(σ2β).

For m = 1, we integrate over the sets Ecσ ∩Acσ and Ecσ ∩Aσ. The integral
over the first set is O(σ2β) by the preceding paragraph. To bound the second
integral, consider the sets

(28) Eσ,δ = {x : log f(x) ≥ δH1 log σ},

indexed by δ ≤ 1. We can use the inequality (26) with Acσ, Aσ,δ and Acσ,δ
replaced by respectively Ecσ ∩ Aσ, Eσ,δ ∩ Aσ and Ecσ,δ ∩ Aσ. The proba-
bility PX∼f (X ∈ Ecσ,δ) can be shown to be O(σ2β) as in (27), provided
that δH1/2 ≥ 2β. The probability that |U | ≤ k′| log σ|1/p, X + σU ∈
Ecσ ∩ Aσ and X ∈ Eσ,δ ∩ Aσ is zero: due to the construction of Aσ we have
| l(X+σU)−l(X) |= O(1), whereas | l(X+σU)−l(X) |≥ (1−δ)H1 | log σ |.
This step can be repeated as long as the terms PX∼f (X ∈ Ecσ,δ) remain
O(σ2β), which is the case if the initial H1 is chosen large enough. This fin-
ishes the proof of (23).

To prove that Aσ∩Eσ ⊂ Rσ,k we use that f(x) > σH1 > σH and f(x)(1+
O(R(x)σβ)) +O

(
(1 +R(x))σH

)
if x ∈ Aσ ∩ Eσ. Because R is bounded by

a polynomial and Eσ ⊂ Tc,ε for some c and ε = σH1 , it follows that for any
ρ1 < 1,

f1(x) = 2f(x)−Kσf(x) = 2f(x)−(1+O(R(x))σβ)f(x)−O(1+R(x))σH > ρ1f(x)

for small enough σ. Similarly,

f2(x) = 2f1(x)−Kσf1(x) = 2f1(x)−(1+O(R(x))σβ)f(x)−O(1+R(x))σH > ρ2f(x),

where ρ2 can be arbitrarily close to one if we choose ρ1 close enough to one.
Continuing in this manner, we find a constant ρk such that fk(x) > ρkf(x)
for x ∈ Aσ ∩Eσ and σ sufficiently small. If ρ1 > ρ2 > . . . > ρk−1 are chosen
large enough, ρk can be at least one half; hence Aσ ∩Eσ ⊂ Rσ,k. To see that
(23) now implies (24), note that the integrand 1

2f−fk is a linear combination
of Km

σ f , m = 0, . . . , k.

Remark 1. As a further consequence we have hk ≥ f/(2(1 + O(σβ))),
and the fact that Kσf is lower bounded by a multiple of f implies that the
same is true for Kσhk.

imsart-aos ver. 2008/08/29 file: lsMixtures0.tex date: May 21, 2009



ADAPTIVE LOCATION-SCALE MIXTURES 11

Remark 2. Clearly, the O(σ2β) in (27) can be improved by choosing a
larger H1. This will be used in the proof of Lemma 6.

Lemma 4. Given β > 0, let f ∈ Hβ be a density that satisfies the
Conditions 1-4 above, and let hk be defined by (21). Then for all small
enough σ,

(29)
∫
f log

f

Kσhk
= O(σ2β),

∫
f

(
log

f

Kσhk

)2

= O(σ2β).

Proof. Since∫
S
p log

p

q
≤
∫
S
p
p− q
q

=
∫
S

(p− q)2

q
+
∫
S

(p− q) =
∫
S

(p− q)2

q
+
∫
Sc

(q − p)

for any densities p and q and any set S, we have the bound∫
f(x) log

f(x)
Kσhk(x)

dx ≤
∫
Aσ∩Eσ

(f(x)−Kσhk(x))2

Kσhk(x)
dx

+
∫
Acσ∪Ecσ

f(x) log
f(x)

Kσhk(x)
dx+

∫
Acσ∪Ecσ

(Kσhk(x)− f(x))dx.
(30)

The first integral on the right can be bounded by application of (25) and
Remark 1 following Lemma 3. On Aσ ∩ Eσ the integrand is bounded by
f(x)O(σβR(x)) − 2O(σβ+HR(x)) + O((1 + R(x))2)σ2H/f(x). If we choose
H ≥ H1 +β, it follows from the definition of R(x) and the moment condition
(6) that the integral over Aσ∩Eσ is O(σ2β) for each of these terms. For exam-
ple,

∫
(1 +R(x))2σ2H/f(x)dx =

∫
f(x)(1 +R(x))2σ2H/f2(x)dx . σ2(H−H1),

as f(x) ≥ σH1 on Eσ and the Lebesgue measure of this interval is at most
σ−H1 . To bound the second integral in (30) we use once more that Kσhk & f ,
and then apply (23) with m = 0. For the last integral we use (23) with
m = 0, . . . , k+1; recall that hk is a linear combination of Km

σ f , m = 0, . . . , k.
The second integral in (29) is bounded by∫

Acσ∪Ecσ
f(x)

(
log

f(x)
Kσhk(x)

)2

dx+
∫
Aσ∩Eσ

(f(x)−Kσhk(x))2

Kσhk(x)
dx,

which is O(σ2β) by the same arguments.
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12 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

The result of the preceding lemma is discretized in Lemma 6 below. Apart
from the finite mixture derived from hk we also need to construct a set of
finite mixtures close to it, such that this entire set is contained in a KL-ball
around f . For this purpose the following lemma is useful. A similar result
can be found in Lemma 5 of [10]. The inequality for the L1-norm will be
used in the entropy calculation in the proof of Theorem 1.

Lemma 5. Let w, w̃ ∈ ∆k, µ, µ̃ ∈ Rk and σ, σ̃ ∈ R+. Let ψ be a differ-
entiable symmetric density such that xψ′(x) is bounded. Then for mixtures
m(x) = m(x; k, µ, w, σ) and m̃(x) = m(x; k, µ̃, w̃, σ̃) we have

‖m− m̃‖1 ≤ ‖w − w̃‖1 + 2‖ψ‖∞
k∑
i=1

wi ∧ w̃i
σ ∧ σ̃

| µi − µ̃i | +
| σ − σ̃ |
σ ∧ σ̃

,

‖m− m̃‖∞ .
k∑
i=1

| wi − w̃i |
σ ∧ σ̃

+
k∑
i=1

wi ∧ w̃i
(σ ∧ σ̃)2

| µi − µ̃i | +
| σ − σ̃ |
(σ ∧ σ̃)2

.

Proof. Let 1 ≤ i ≤ k and assume that w̃i ≤ wi. By the triangle inequal-
ity,

‖wiψσ(· − µi)− w̃iψσ̃(· − µ̃i)‖ ≤ ‖wiψσ(· − µi)− w̃iψσ(· − µi)‖
+ ‖w̃iψσ(· − µi)− w̃iψσ(· − µ̃i)‖+ ‖w̃iψσ(· − µ̃i)− w̃iψσ̃(· − µ̃i)‖

for any norm. We have the following inequalities:

‖ψσ(z − µi)− ψσ(z − µ̃i)‖1 = 2
∣∣∣∣Ψ(µi − µ̃i2σ

)
−Ψ

(
µ̃i − µi

2σ

)∣∣∣∣
≤ 2‖ψ‖∞

| µ̃i − µi |
σ

≤ 2‖ψ‖∞
σ ∧ σ̃

| µ̃i − µi |,

‖ψσ − ψσ̃‖1 ≤ 1
σ ∧ σ̃

∫
| ψ(

x

σ
)− ψ(

x

σ̃
) | dx ≤ 1

σ ∧ σ̃
| σ − σ̃ |,

‖ψσ − ψσ̃‖∞ ≤ 1
(σ ∧ σ̃)2

‖ d
dz
gx‖∞ | σ − σ̃ |,(31)

‖ψσ(z − µi)− ψσ(z − µ̃i)‖∞ .
1

(σ ∧ σ̃)2
| µ̃i − µi | .

To prove (31), let σ = z−1 and σ̃ = z̃−1, and for fixed x define the function
gx : z → zψ(zx). By assumption, d

dzgx(z) = ψ(zx) + zxψ′(zx) is bounded,
and

‖ψσ−ψσ̃‖∞ = sup
x
| gx(z)−gx(z̃) |≤| z−z̃ | ‖ d

dz
gx‖∞ ≤

1
(σ ∧ σ̃)2

‖ d
dz
gx‖∞ | σ−σ̃ | .

imsart-aos ver. 2008/08/29 file: lsMixtures0.tex date: May 21, 2009



ADAPTIVE LOCATION-SCALE MIXTURES 13

Applying the mean value theorem to ψ itself, the last inequality is obtained.

The approximation hk defined by (21) can be discretized such that the
result of Lemma 4 still holds. The discretization relies on Lemma 3.13 in
[13], which is included in Appendix C.

Lemma 6. Let the constant H1 in the definition of Eσ be at least 4(β+p).
Given β > 0, let f ∈ Hβ be a density that satisfies the Conditions 1-4
above. Then there exists a finite mixture m = m(·; kσ, µσ, wσ, σ) with kσ =
O(σ−1| log σ|1+p−1

) support points contained in Eσ, such that

(32)
∫
f log

f

m
= O(σ2β),

∫
f

(
log

f

m

)2

= O(σ2β).

Furthermore, (32) holds for all mixtures m′ = m(·; kσ, µ, w, σ′) such that
σ′ ∈ [σ, σ + σδ

′H1+2], µ ∈ Bkσ(µσ, σδ
′H1+2) and w ∈ ∆kσ(wσ, σδ

′H1+1),
where δ′ ≥ 1 + β/H1.

Proof. We bound the second integral in (32); the first integral can be
bounded similarly. For h̃k the normalized restriction of hk to Eσ and m the
finite mixture to be constructed, we write

∫
f

(
log

f

m

)2

=
∫
Eσ
f

(
log

f

Kσhk
+
∫
f log

Kσhk

Kσh̃k
+
∫
f log

Kσh̃k
m

)2

+
∫
Ecσ

f

(
log

f

Kσhk
+ log

Kσhk
m

)2

.

(33)

The integral of f(log f/Kσhk)2 over Eσ is O(σ2β) by Lemma 4. By Lemma 3
and Remark 2 following the proof of this lemma, the integral of f(logKσhk/Kσh̃k)2

over Eσ is O(σ2β) as well. To bound the integral of f(logKσh̃k/m)2 over Eσ,
let m = m(·; kσ, µσ, wσ, σ) be the finite mixture obtained from Lemma 14,
with ε = σδ

′H1+1 and δ′ ≥ 1 + 2β/H1. The requirement that a . ψ−1(ε) is
satisfied by the monotonicity and tail conditions on f (see (7)). The number
of components kσ is O(σ−1| log σ|1+p−1

). We have

∫
Eσ
f

(
log

Kσh̃k
m

)2

≤
∫
Eσ
f

(
m−Kσh̃k
σH1 − σδ′H1

)2

≤ σ2(δ′−1)H1 = O(σ2β),
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14 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

provided that δ′ ≥ 1 + β
H1

. The cross-products resulting from the square in
the integral over Eσ can be shown to be O(σ2β) using the Cauchy-Schwartz
inequality and the preceding bounds.

To bound the integral over Ecσ, we add a component with weight σ2β and
mean zero to the finite mixture m. From Lemma 5 it can be seen that this
does not affect the preceding results. Since f and hk are uniformly bounded,
so is Kσhk. If C is an upper bound for Kσhk, then

∫
Ecσ

f(x)
(

log
Kσhk
m

(x)
)2

dx ≤
∫
Ecσ

f(x)
(

log
C

σ2βψσ(x)

)2

dx

=
∫
Ecσ

f(x)
(

log(C−1
p C) + 2β| log σ|+ |x|

p

σp

)2

dx.

(34)

This is O(σ2β) if∫
Ecσ

f(x)|x|2pdx ≤ σH1/2
∫
Ecσ

√
f(x)|x|2pdx = O(σ2β+2p),

which is the case if H1 ≥ 4(β + p). The integral of f(log f/Kσhk)2 over Ecσ
is O(σ2β) by Lemma 4, and the integral of f(log f/Kσhk)(logKσhk/m) over
Ecσ can be bounded using Cauchy-Schwartz.

If m′ = m(·; kσ, µ, w, σ′) is a different mixture with σ′ ∈ [σ, σ + σδ
′H1+2],

µ ∈ Bkσ(µσ, σδ
′H1+2) and w ∈ ∆kσ(wσ, σδ

′H1+1), the L∞-norm between m

and m′ is σδ
′H1 by Lemma 5, and

∫
Eσ
f
(
log Kσh̃k

m′

)2
= O(σ2β). The integral

over Ecσ can be shown to be O(σ2β) as in (34), where the |x − σ2β|2p that
comes in the place of |x|2p can be handled with Jensen’s inequality.

3. The proof of Theorem 1. For the entropy calculations we need
the following lemma.

Lemma 7. For positive vectors b = (b1, . . . , bk) and d = (d1, . . . , dk),
with bi < di for all i, the packing numbers of ∆k and Hk[b, d] satisfy

D(ε,∆k, l1) ≤
(

5
ε

)k−1

,(35)

D(ε,Hk[b, d], l1) ≤ k!
∏k
i=1(di − bi + 2ε)

(2ε)k
.(36)
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ADAPTIVE LOCATION-SCALE MIXTURES 15

Proof. A proof of (35) can be found in [8]; the other result follows from a
volume argument. For λk the k-dimensional Lebesgue measure, λk(Sk) = 1

k!

and λk(Bk(y, ε2 , l1)) = εk

k! , where Bk(y, ε2 , l1) is the l1-ball in Rk centered at
y, with radius ε

2 . Suppose x1, . . . , xN is a maximal ε-separated set in Hk[b, d].
If the center y of an l1-ball of radius ε

2 is contained in Hk[b, d] then for any
point z in this ball, | zi−yi |≤ ε

2 for all i. Because for each coordinate we have
the bounds | zi |≤| yi | + | zi−yi |≤ di+ ε

2 and | zi |≥ bi− ε
2 , z is an element

of Hk[b− ε
2 , d + ε

2 ]. The union of the balls Bk(x1,
ε
2 , l1), . . . , Bk(xN , ε2 , l1) is

therefore contained in Hk[b− ε
2 , d+ ε

2 ].

Proof of Theorem 1. The proof is an application of Theorem 2, with
rate ε̃n = n−β/(1+2β)(log n)t1 and ε̄n = n−β/(1+2β)(log n)t2 , where t1 and
t2 ≥ t1 are determined below. Let kn = k0n

1/(1+2β)(log n)1+(1−t1)/p be the
number of components in Lemma 6 when σ = σn = ε̃

1/β
n . This lemma

then provides a kn-dimensional mixture m = m(·; kn, µn, wn, σn) whose KL-
divergence from f0 is O(σn2β) = O(ε̃2n). The number of components is

kn = O(σn−1| log σn|1+p−1
) = O(n1/(1+2β)(log n)1+(1−t1)/p),

their locations being contained in the set Eσ defined in (22). By the same
lemma there are l1-ballsBn = Bkn(µn, σnδ

′H1+2) and ∆(n) = ∆kn(wn, σnδ
′H1+1)

such that the same is true for all kn-dimensional mixturesm = m(·; kn, µ, w, σ)
with σ ∈ [σn, σn+σn

δ′H1+2] and (µ,w) ∈ Bn×∆(n). It now suffices to lower
bound the prior probability on having kn components and on Bn, ∆(n) and
[σn, σn + σn

δ′H1+2]. Let b = δ′H1 + 2; as σ−1 is inverse-gamma, it follows
from the mean value theorem that

Π(σ ∈ [σn, σn + σn
b]) =

∫ σn+σnb

σn

λα

Γ(α)
x−(α+1)e−λ/xdx

≥
∫ σn+σnb

σn

λα

Γ(α)
e−2λ/xdx ≥ 4

λα+1

Γ(α)
σn

b−2e−λσn
−1
,

(37)

which is larger than exp{−nε̃2n} for any choice of t1 ≥ 0. From the conditions
(10) and (11) on the priors for µ and w it then follows that

Π(KL(f0, εn)) & exp
{
−d3kn log σn−(δ′H1+2) − d4kn(log kn)b log σn−(δ′H1+1)

}
.

The exponent is O(n1/(1+2β)(log n)2+b+(1−t1)/p); therefore Π(KL(f0, ε̃n)) ≥
exp{−nε̃2n} = exp{−n1/(1+2β)(log n)2t1} if t1 > (2 + b+ p−1)/(2 + p−1).
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16 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

We then have to find sets Fn such that (50) and (52) hold. For rn =
n

1
1+2β (log n)tr (rounded to the nearest integer) and a polynomially increasing

sequence bn such that bd2n > n1/(1+2β), with d2 as in (9), we define

Fn =
{
m(·; k, µ, w, σ)|k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn

}
.

The bandwidth σ is contained in Sn = (σn, σ̄n], where σn = n−A and σ̄n =
exp{nε̃2n(log n)δ}, for arbitrary constants A > 1 and δ > 0. An upper bound
on Π(Scn) can be found by direct calculation, for example∫ ∞

σ̄n

λα

Γ(α)
x−(α+1)e−

λ
x dx =

∫ σ̄−1
n

0

λα

Γ(α)
xα−1e−λxdx

≤
∫ σ̄−1

n

0

λα

Γ(α)
xα−1dx = O(exp{−αnε̃2n(log n)δ}).

Hence Π(Scn) ≤ e−cnε̃
2
n for any constant c, for large enough n. The prior

mass on mixtures with more than rn support points and the prior mass on
mixtures with at least one support point outside [−bn, bn] is controlled by
conditions (8) and (9). Combining these bounds, we find

Π(Fcn) ≤ Π(Scn) +
∞∑

k=rn

ρ(k) + Π(N([−bn, bn]c > 0)) . e−d1rn(logn)r .

The right hand side decreases faster than e−nε̃
2
n if tr + r > 2t1.

To control the sum in (50), we partition Fn using

Fn,j =
{
m(·; k, µ, w, σ)|k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
,

Sn,j = (sn,j−1, sn,j ] = (σn(1 + ε̃n)j−1, σn(1 + ε̃n)j ], j = 1, . . . , Jn,

Jn =
(

log
σ̄n
σn

)
/ log(1 + εn) = O

(
nε̃n(log n)δ

)
.

A lower bound on the prior probability on the Fn,j is again found by direct
calculation:

Π(Fn,j) ≤ Π(Sn,j) = Π(σ−1 ∈ [σ−1
n (1 + ε̃n)−j , σ−1

n (1 + ε̃n)1−j))

=
∫ σ−1

n (1+ε̃n)1−j

σ−1
n (1+ε̃n)−j

yα−1e−λydy

≤ λ−1 max{(σ−1
n (1 + ε̃n)−j)α−1, (σ−1

n (1 + ε̃n)1−j)α−1} exp{−λσ−1
n (1 + ε̃n)−j}

. σ1−α
n (1 + ε̃n)−(α−1)j exp{−λσ−1

n (1 + ε̃n)−j}.

(38)
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ADAPTIVE LOCATION-SCALE MIXTURES 17

As the L1-distance is bounded by the Hellinger-distance, condition (50)
only needs to be verified for the L1-distance. We further decompose the
Fn,j ’s and write

Fn,j = ∪rnk=1Fn,j,k = ∪rnk=1

{
m(·; k, µ, w, σ)|µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
.

It will be convenient to replace the covering numbers N in (50) by their
corresponding packing numbers D, which are at least as big. Since for any
pair of metric spaces (A, d1) and (B, d2) we have D(ε, A × B, d1 + d2) ≤
D( ε2 , A, d1)D( ε2 , B, d2), Lemma 5 implies that for all k ≥ 1, D(ε̄n,Fn,j,k, ‖ ·
‖1) is bounded by

D
( ε̄n

3
,∆k, l1

)
D
( ε̄nsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
D
( ε̄nsn,j−1

3
, (sn,j−1, sn,j ], l1

)
.

Lemma 7 provides the following bounds:

D
( ε̄n

3
,∆k, l1

)
≤

(
15
ε̄n

)k−1

,

D
( ε̄nsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
≤ k!

( ε̄nsn,j−1

3‖ψ‖∞

)−k k∏
i=1

(
2bn +

ε̄nsn,j−1

3‖ψ‖∞

)
,

D
( ε̄nsn,j−1

3
, (sn,j−1, sn,j ], l1

)
≤

(
sn,j−1ε̄n/3

)(
(sn,j − sn,j−1) + ε̄nsn,j−1/3

)
.

For some constant C, we find that

D(ε̄n,Fn,j , ‖ · ‖1) ≤ rnD(ε̄n,Fn,j,rn , ‖ · ‖1)

. rnC
rnrn!(ε̄n)−2rnsn,js

−rn+1
n,j−1 (max(bn, ε̄nsn,j−1))rn .

(39)

If bn ≥ ε̄nsn,j−1, we have (1+ ε̃n)−j ≥ ε̄nσn
bn(1+ε̃n)

, and the last exponent in (38)

is bounded by −λb−1
n ε̄n/(1 + ε̃n). A combination of (38), (39) and Stirling’s

bound on rrnn then imply that
√

Πn(Fn,j)
√
N(ε̄n,Fn,j , d) is bounded by a

multiple of

σ(1−α)/2
n (1 + ε̃n)−(α−1)j/2√rnCrn/2rrn/2+1/2

n (ε̄n)−rn
√
sn,j

s
−rn/2+1/2
n,j−1 brn/2n exp{−λ

2
σ−1
n (1 + ε̃n)−j}

. n
A
2
rn+α−3

2
A(1 + ε̃n)−

1
2

(j−1)(rn+α−2)+ 1−α
2 (rn + 1)rn+1C

rn
2 ε̄−rnn b

rn
2
n exp{−λb−1

n

ε̄n
1 + ε̃n

}

. K0 exp{K1rn(log n)},

for certain constants C, K0 and K1. If bn < ε̄nsn,j−1 we obtain similar bound
but with an additional factor ε̄−rn/2n n−Arn/2(1 + ε̃n)(j−1)rn/2, where the fac-
tor (1 + ε̃n)(j−1)rn/2 cancels out with (1 + ε̃n)−(j−1)rn/2 on the third line of
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18 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

the above display. There is however a remaining factor (1 + ε̃n)
1
2

(j−1)(2−α).
Since Jn is defined such that n−A(1 + ε̃n)Jn = exp{nε̃2n(log n)δ}, the sum of√

Πn(Fn,j)
√
N(ε̄n,Fn,j , d) over j = 1, . . . , Jn is a multiple of exp{K1rn(log n)+

nε̃2n(log n)δ}, which increases at a slower rate than exp{nε̄2n} if 2t2 > max(tr+
1, 2t1 + δ). Combined with the requirement that tr + r > 2t1 this gives
t2 > t1 + 1−r

2 . Hence the convergence rate is εn = n−β/(1+2β)(log n)t, with
t > (2 + b+ p−1)/(2 + p−1) + max(0, (1− r)/2).

4. Examples of priors.

4.1. Priors for the locations. We show that conditions (8)-(10) hold for
two important types of priors for (k, µ).

First we consider hierarchical priors, where K is sampled from a prior ρ(·)
on N, such that (8) holds by assumption. In addition it is assumed that for
some constant D

(40) ρ(k) & e−Dk log k ,

which we need to obtain the lower bound in (10). Given K = k, the locations
µ1, . . . , µk are drawn independently from a prior pµ on R satisfying

pµ(x) & ψ(x),(41)

pµ(x) . e−a1|x|a2 for constants a1 > 0 and a2 ≤ p .(42)

The latter assumption implies that for any y > 0,

(43) Π(| µi |> y) =
∫

[−y,y]c
pµ(x)dx . ymax{0,1−a2}e−y

a2 . e−|y|
d2

for some constant d2 > 0. Because EρK < ∞ by condition (8), (9) follows
from (43):

Π(N([−y, y]c) > 0) =
∞∑
k=1

ρ(k) Π( max
i=1,...,k

| µi |> y | K = k)

≤
∞∑
k=1

ρ(k)k Π(| µi |> y) .
(
EρK

)
e−|y|

d2
.

(44)

To verify (10), let c > 0, k > 0, ε < 1
k , and µ0 ∈ T kc,ε. Because pµ & ψ and

for all i = 1, . . . , k, | µ0
i | is at most c| log ε|1/p,

Π
(
| µi − µ0

i |≤
ε

k

)
&
∫ tε+

ε
k

tε− ε
k

pµ(x)dx &
ε

k
ψ
(
c| log ε|1/p

)
=
Cp
k
εc
p−1.
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As the l1-ball Bk(µ0, ε) contains the l∞-ball {µ ∈ Rk : | µi − µ0
i |≤ ε

k , 1 ≤
i ≤ k}, we conclude that there is a constant d3 > 0 such that

(45) Π(K = k, µ ∈ Bk(µ0, ε)) & e−Dk log k
(
Cp
k
εc
p−1
)k

& exp{−d3k log
1
ε
},

where we used (40) and the fact that k ≤ ε−1.
Conditions (8) and (40) imply that ρ needs to be of exponential form. If

for example for some positive constants B1, B2 and A1 ≥ A2

(46) B1e
−A1k ≤ ρ(k) ≤ B2e

−A2k,

condition (8) holds for r = 0. Such exponential bounds were used by [7]
for density estimation with mixtures of beta-densities. If ρ is Poisson with
intensity ν, we have

∑∞
k=m+1 ρ(k) ≤ νm+1

(m+1)! , and using Stirling’s bound for
(m + 1)! it can be seen that (8) holds with r = 1. For a geometric prior,
r = 0.

Poisson processes are another popular choice for the location prior. We
consider a Poisson point process with base measure Pµ on R and intensity
λ, and assume that Pµ has a density pµ for which (41) and (42) hold. Again
a lower bound on Π(K = k, µ ∈ Bk(µ0, ε)) can be obtained by bounding
Π({K = k, µ ∈ Rk : | µi − µ0

i |≤ ε
k , 1 ≤ i ≤ k}). For some integer l ≤ k, we

can find disjoint intervals I1, . . . , Il ⊂ Tc,ε of length ε
k , containing µ0

1, . . . , µ
0
k.

Let ki be the number of points in Ii, and Ic the complement of I1 ∪ . . . ∪ Il
in Tc,ε. Since all Ii are contained in Tc,ε and pµ & ψ,

(47) Pµ(Ii) =
∫
Ii

pµ(x)dx &
∫
Ii

ψ(x)dx & λ(Ii)ψ(c| log ε|1/p) =
ε

k
Cpε

cp .

Again the tail assumptions on pµ can be used to verify (9):

Π(N([−y, y]c) > 0) = 1−Π(N([−y, y]c) = 0)

= 1− exp(−λPµ([−y, y]c)) ≤ λPµ([−y, y]c) . e−|y|
d2
.

Finally, (10) follows from (47), as we find a constant d3 such that

Π(K = k, µ ∈ Bk(µ0, ε)) ≥ P
(
N(I1) = k1, . . . , N(Il) = kl, N(Ic) = 0, N(T cc,ε) = 0

)
=

exp{−λ}
k1! · . . . · kl!

l∏
i=1

(Pµ(Ii)λ)ki

≥ exp{−λ}
k!

(Cpεc
p ε

k
λ)k & exp

{
−d3k log

1
ε

}
.
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20 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

4.2. Priors on the weights. In this section two classes of priors on the
simplex are discussed. In both cases the Dirichlet distribution, the most
popular choice in the literature, appears as a special case. The proof of
Theorem 1 requires lower bounds for the prior mass on l1-balls around some
fixed point in the simplex. These bounds are given in Lemmas 8 and 10
below.

As it is a well known fact that a normalized vector of independent gamma
distributed random variables is Dirichlet distributed, a straightforward gen-
eralization is to consider random variables with an alternative distribution
on R+. Given independent random variables Y1, . . . , Yk with densities fi on
[0,∞), define a vector X with elements Xi = Yi/(Y1 + . . .+Yk), i = 1, . . . , k.
For (x1, . . . , xk−1) ∈ Sk−1,

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1) =
∫ ∞

0
P (Y1 ≤ x1y, . . . Yk−1 ≤ xk−1y) dP Y1+...+Yk(y)

=
∫ ∞

0

∫ x1y

0

∫ x2y

0
· · ·
∫ xk−1y

0
fk(y −

k−1∑
i=1

si)
k−1∏
i=1

fi(si)ds1 · · · dsk−1dy.

(48)

The corresponding density is

fX1,...,Xk−1(x1, . . . , xk−1) =
∫ ∞

0
yk−1fk(y −

k−1∑
i=1

xiy)
k−1∏
i=1

fi(xiy)dy

=
∫ ∞

0
yk−1

k∏
i=1

fi(xiy)dy,

(49)

where xk = 1−
∑k−1
i=1 xi. We obtain a result similar to lemma 8 in [10].

Lemma 8. Let X1, . . . , Xk have a joint distribution with a density of the
form (49). Assume there are positive constants c1(k), c2(k) and c3 such that
for i = 1, . . . , k, fi(z) ≥ c1(k)zc3 if z ∈ [0, c2(k)]. Then there are constants
c and C such that for all y ∈ ∆k and all ε ≤ ( 1

k ∧ c1(k)c2(k)c3+1)

P
(
X ∈ ∆k(y, 2ε)

)
≥ Ce−ck log( 1

ε
).

Proof. As in [10] it is assumed that yk ≥ k−1. Define δi = max(0, yi−ε2)
and δ̄i = min(1, yi + ε2). If xi ∈ (δi, δ̄i) for i = 1, . . . , k − 1, then

∑k
i=1 |

xi − yi |≤ 2
∑k−1
i=1 | xi − yi |≤ 2(k − 1)ε2 ≤ ε. Note that (x1, . . . , xk−1) ∈ Sk,

as
∑k−1
j=1 xj ≤ k−1

k + (k − 1)ε2 < 1. Since all xi in (49) are at most one,

f(x1, . . . , xk−1) ≥
∫ c2(k)

0
yk−1

k∏
i=1

(
c1(k)(xiy)c3

)
dy =

(
c2(k)c3+1c1(k)

)k
(c3 + 1)k

(x1·. . .·xk)c3 .
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Because

xk = |1−
k−1∑
j=1

xj | = |yk +
k−1∑
j=1

(yj − xj)| ≥ k−1 − (k − 1)ε2 ≥ ε2 ≥ 1
k2
,

P
(
X ∈ Bk(y, ε)

)
≥ 1
k2c3

(
c2(k)c3+1c1(k)

)k
(c3 + 1)k

k−1∏
j=1

∫ δ̄j

δj

xc3j dxj ≥
(
c2(k)c3+1c1(k)

)k
(c3 + 1)2k

ε2k(c3+1)−2

≥ exp
{
k log(c2(k)c3+1c1(k))− log(c3 + 1)− log(k)− 2k log(

√
2
ε

)
}
.

As ε ≤ ( 1
k ∧ c1(k)c2(k)c3+1), there are constants c and C for which this

quantity is lower-bounded by Ce−ck log( 1
ε
).

Alternatively, the Dirichlet distribution can be seen as a Polya tree. Fol-
lowing Lavine [15] we use the notation E = {0, 1}, E0 = ∅ and for m ≥ 1,
Em = {0, 1}m. In addition, let Em∗ = ∪mi=0{0, 1}i. It is assumed that k = 2m

for some integer m, and the coordinates are indexed with binary vectors
ε ∈ Em. A vector X has a Polya tree distribution if

Xε =
m∏

j=1,εj=0

Uε1···εj−1

m∏
j=1,εj=1

(
1− Uε1···εj−1

)
,

where
(
Uδ, δ ∈ Em−1

∗
)

is a family of beta random variables with parameters(
(αδ1 , αδ2), δ ∈ Em−1

∗
)
. We only consider symmetric beta densities, for which

αδ = αδ1 = αδ2 . Adding pairs of coordinates, lower dimensional vectors
Xδ can be defined for δ ∈ Em−1

∗ . For δ ∈ Em−1
∗ , let Xδ0 = UδXδ and

Xδ1 =
(
1 − Uδ

)
Xδ, and X∅ = 1 by construction. If αδ = 1

2αδ1···δi−1
for all

1 ≤ i ≤ m and δ ∈ Ei, X is Dirichlet distributed.

Lemma 9. Let X have a Polya distribution with parameters αδ, δ ∈
Em−1
∗ . Then for all y ∈ ∆2m and η > 0,

pm(y, η) = P
(
X ∈ ∆k(y, η)

)
= P (

∑
ε∈Em

| Xm
ε − ymε |≤ η)

≥
m∏
i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ
|≤ η

2m−i+2
).

Proof. For all i = 1, . . . ,m and δ ∈ Ei−1,

| UδXδ − yδ0 | ≤ Uδ | Xδ − yδ | +yδ | Uδ −
yδ0
yδ
|,

| (1− Uδ)Xδ − yδ1 | ≤ (1− Uδ) | Xδ − yδ | +yδ | (1− Uδ)−
yδ − yδ0
yδ

| .
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Consequently,∑
δ∈Em

| Xδ − yδ | =
∑

δ∈Em−1

| Xδ0 − yδ0 | + | Xδ1 − yδ1 |

≤
∑

δ∈Em−1

| Xδ − yδ | + 2
∑

δ∈Em−1

yδ | Uδ −
yδ0
yδ
|

≤
∑

δ∈Em−1

| Xδ − yδ | + 2 max
δ∈Em−1

| Uδ −
yδ0
yδ
| .

Hence,

pm(y, η) ≥ pm−1(y,
η

2
)P ( max

∂∈Em−1
| Uδ −

yδ0
yδ
|≤ η

4
)

≥
m∏
i=2

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ
|≤ η

2m−i+2
)P (| U∅ − y0 |≤

η

2m
)

≥
m∏
i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ
|≤ η

2m−i+2
),

as

p1(η2−m) = P (| X0 − y0 | + | X1 − y1 |≤ η2−m)

= P (| U0 − y0 | + | (1− U0)− (1− y0) |≤ η2−m) = P (| U0 − y0 |≤ η2−m−1).

With δ ∈ Ei−1 fixed, we can lower-bound P (| Uδ − yδ0
yδ
|≤ η

2m−i+2 ) for vari-
ous values of the αδ. In the remainder we will assume that αδ = αi, for all
δ ∈ Ei−1, with i = 1, . . . ,m. For increasing αi ≥ 1, Uδ has a unimodal beta-
density, and we can restrict to the ”worst case” where yδ0

yδ
= 0. If the αi are

decreasing, and smaller than one, the worst case is yδ0
yδ

= 1
2 . In both cases

Lemma 11 in appendix A is used to lower bound the normalizing constant
of the beta-density.

If αi ↑ ∞, i = 1, . . . ,m when m→∞, then

P (| Uδ |≤ η2−m+i−2) =
∫ η2−m+i−2

0

Γ(2αi)
Γ2(αi)

xαi−1(1− x)αi−1dx

&
∫ η2−m+i−2

0
αi
− 1

2 22αi− 1
2

1
2
xαi−1dx = 2−(m−i)αi− 3

2αi
− 3

2 ηαi .
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At the ith level there are 2i−1 independent variables Uδ with the Beta(αi, αi)
distribution, and therefore

log
(
pm(y, η)

)
& log

m∏
i=1

(
2−(m−i)αi− 3

2αi
− 3

2 ηαi
)2i−1

=
m∑
i=1

2i−1{−αi log
1
η
− 3

2
log(αi)− αi(m− i) log(2)

}
.

If αi ↓ 0, i = 1, . . . ,m when m→∞, we have

P (| Uδ −
1
2
|≤ η2−m+i−2) =

∫ 1/2+η2−m+i−2

1/2−η2−m+i−2

Γ(2αi)
Γ2(αi)

xαi−1(1− x)αi−1dx

& αiη2−m+i−1(1
4
)αi−1

,

log
(
pm(y, η)

)
&

m∑
i=1

2i−1{log(αi)−
(
2αi + (m− i− 1)

)
log(2)− log

1
η

}
.

We have the following application of these results.

Lemma 10. Let Xm
δ be Polya distributed with parameters αi. If αi = ib

for b > 0,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck(log k)b log
1
η
},

for some constants c and C. By a straightforward calculation one can see
that this result is also valid for b = 0. In the Dirichlet case αi = 1

2αi−1 for
i = 1, . . . ,m,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck log
1
η
},

in accordance with the result in [8].

5. Conclusion. We obtained posteriors that adapt to the smoothness
of the estimated density, that is assumed to be contained in a nonparametric
model. It is of interest to obtain, using the same prior, a parametric rate
if the underlying density is a finite mixture itself. This is the case in the
location-scale-model studied in [13], and the arguments used therein could
be easily applied in the present work. The result would however have less
practical relevance, as the variances σ2

j of all components are required to be
the same.

Furthermore, the prior on the σj ’s used in [13] depends on n, and this
seems to be essential if the optimal rates and adaptivity found in the present
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work are to be maintained. In the lower bound for the prior mass on a KL-
ball around f0, given by (37), we get an extra factor kn in the exponent, and
the argument only holds if λ = λn ≈ σn. This suggests that the restriction
to have the same variance for all components is necessary to have a rate-
adaptive posterior based on a fixed prior, but we have not proved this.
The determination of lower bounds for convergence rates deserves further
investigation; some results can be found in [21]. Full adaptivity over the
union of all finite mixtures and Hölder densities could perhaps be established
by putting a hyperprior on the two models, as considered in [9].

APPENDIX A

The following theorem is taken from [10] (Theorem 5), and slightly adapted
to facilitate the entropy calculations in the proof of Theorem 1. Their condi-
tion Πn(Fn|X1, . . . , Xn)→ 0 in Fn0 -probability is a consequence of (51) and
(52) below. This follows from a simplification of the proof of Theorem 2.1
in [8], p.525, where we replace the complement of a Hellinger-ball around
f0 by Fcn. If we then take ε = 2ε̄n in Corollary 1 in [10], with ε̄n ≥ ε̃n and
ε̄n → 0, the result of Theorem 5 in this paper still holds.

Theorem 2 (Ghosal and van der Vaart, 2006). Given a statistical model
F , let {Xi}i≥1 be an i.i.d. sequence with density f0 ∈ F . Assume that there
exists a sequence of submodels Fn that can be partitioned as

∞
∪

j=−∞
Fn,j such

that, for sequences ε̃n and ε̄n ≥ ε̃n with ε̄n → 0 and nε̃2n →∞,

∞∑
j=−∞

√
N(ε̄n,Fn,j , d)

√
Πn(Fn,j)e−nε̄

2
n → 0,(50)

Πn(KL(f0, ε̃n)) ≥ e−nε̃
2
n ,(51)

Πn(Fcn) ≤ e−4nε̃2n ,(52)

where KL(f0, ε̃n) is the Kullback-Leibler ball

{f : F0 log(f0/f) ≤ ε̃2n, F0 log2(f0/f) ≤ ε̃2n}.

Then Πn(f ∈ F : d(f, f0) > 8ε̄n | X1, . . . , Xn)→ 0 in Fn0 -probability.

The advantage of the above version is that (52) is easier to verify for a
faster sequence ε̃n. The use of the same sequence εn in (50) and (52) would
otherwise pose restrictions for the choice of Fn.

The following asymptotic formula for the Gamma function can be found
in many references, see for example Abramowitz and Stegun [1].
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Lemma 11. For any α > 0,

(53) Γ(α) =
√

2πe−ααα−
1
2 eθ(α),

where 0 < θ(α) < 1
12α . If α→∞, this gives the bound Γ(2α)

Γ(α)Γ(α) & α−
1
2 22α− 1

2

for the beta function. For α → 0, the identity αΓ(α) = Γ(α + 1) gives the
bounds Γ(α) ≤ 1

α and Γ(α) ≥ c
α , where c = 0.8856 . . . is the local minimum

of the gamma function on the positive real line. Consequently, Γ(2α)
Γ(α)Γ(α) & α.

From (53) it follows that for all α > 0 and all integers j ≥ 1,√
Γ
(2j+1

1+α

)
j!

≤ 1√
2π
e

α
1+α

(j+1)( 2
1 + α

) j
1+α (j + 1)−

αj
1+α ,(54)

Γ
( j+1

1+α

)
j!

≤ e
α

1+α
(j+1)+ 1

12
( 1
1 + α

) j
1+α (j + 1)−

αj
1+α .(55)

The following lemma will be required for the proof of Lemma 2 in the
next section.

Lemma 12. Given a positive integer m and ψ(p)(x) = Cpe
−|x|p, let ϕ be

the m-fold convolution ψ ∗ · · · ∗ ψ. Then for any α ≥ 0 there is a number
k′ = k′(p, α,m) such that for all sufficiently small σ > 0,

(56)
∫
|x|>k′| log σ|1/p

ϕ(x)|x|αdx = σH .

Proof. For any p > 0 and a random variable Z with density ψ(p),

P (Z > y) =
∫ ∞
y

ψ(p)(x)dx ≤ p−1y1−p
∫ ∞
y

pxp−1ψ(p)(x)dx = p−1y1−pψ(p)(y).

For m = 1, we have∫ ∞
y

xαψ(p)(x)dx =
∫ ∞
y1+α

ψ(p)

(
z1/(1+α)

)
dx =

Cp
Cp/(1+α)

∫ ∞
y1+α

ψ(p/(1+α))(z)dz

=
Cp

Cp/(1+α)
PZ∼ψ(p/(1+α))

(Z > k′
(1+α)| log σ|

1+α
p )

for any α > 0 and y > 0.
Now let m > 1, and X =

∑m
i=1 Zi for i.i.d. random variables Zi with

density ψ(p). If α ≥ 1 then, by Jensen’s inequality applied to the function
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x 7→ xα,

E
(
|Z|α1|Z|>k′| log σ|1/p

)
≤ E

(
mα−1

(
m∑
i=1

|Zi|α
)

1|Z|>k′| log σ|1/p

)

≤ mα−1
m∑
i=1

E

|Zi|α m∑
j=1

1|Zj |> k′
m
| log σ|1/p

 = σH ,

where we used (56) with α = 0 and the independence of the Zi’s to bound
the terms with i 6= j. If α < 1, we bound |Z|α by |Z| and apply the preceding
result.

APPENDIX B: PROOF OF LEMMA 2

Under our assumptions on f , the fact that log f is β-Hölder implies that
also f itself is β-Hölder. Consequently, Lemma 1 implies that for any fixed
x, Kσfk − f is O(σβ). To prove Lemma 2, it suffices to show that, apart
from a term σH , the multiplicative constant is a multiple of R(x). For this
we need the restriction x ∈ Aσ and the additional smoothness conditions
(4) and (5). Let f be a function for which these conditions hold, r being the
largest integer smaller than β. We define

Bf,r(x, y) =
r∑
j=1

lj(x)
j!

(y − x)j + L(x)|y − x|β.

First we consider the case f ∈ Hβ with β ∈ (1, 2] and r = 1; the case
β ∈ (0, 1] is easier and can be handled similarly. Using (4) we establish

(57) Kσf(x) ≤ (1+O((|L(x)|+|lβ1 (x)|)σβ))f(x)+O(1+|L(x)|+|lβ1 (x)|)σH .

The proof of the inverse inequality using (5) is completely analogous. For
any x ∈ R, let

Dx = {y : |y − x| ≤ k′σ| log σ|1/p},

for a large enough constant k′ to be chosen below.
Assuming that k′σ| log σ|1/p ≤ γ, for γ as in Condition 1 on page 3, we

can rewrite (4) as f(y) ≤ f(x) exp{Bf,1(x, y)}, and

(58) Kσf(x) ≤ f(x)
∫
Dx
eBf,r(x,y)ψσ(y − x)dy +

∫
Dcx

f(y)ψσ(y − x)dy.
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Furthermore, if x ∈ Aσ and y ∈ Dx, then forM = 1
(r+1)! exp{supx∈Aσ ,y∈Dx |Bf,r(x, y)|},

eBf,r(x,y) =
r∑

m=0

1
m!
Bm
f,r(x, y) +

eξ

(r + 1)!
Br+1
f,r (x, y) ≤ 1 +Bf,r(x, y) +MB2

f,r(x, y)

= 1 + l1(x)(y − x) + L(x)|y − x|β

+M
(
l21(x)(y − x)2 + 2l1(x)L(x)(y − x)|y − x|β + L2(x)|y − x|2β

)
.

(59)

Integrating over Dx, the terms with a factor (y − x) disappear, so that the
first integral on the right in (58) is bounded by
(60)∫
Dx
ψσ(y−x)

{
1 + L(x)|y − x|β +M(k′B)2−β|l1(x)(y − x)|β +Mk′

β
B|L(x)(y − x)|β

}
dy,

since |l1(x)(y − x)| ≤ k′B and |L(x)(y − x)| ≤ k′βB when x ∈ Aσ and
y ∈ Dx. Because

∫
Dcx
ψσ(y−x)|y−x|αdy = σH for any α ≥ 0, when k′ in the

definition of Dx is sufficiently large (see Lemma 12 in Appendix A), (58),
(59) and (60) imply that for constants k1 = M(k′B)2−β and k2 = 1+Mk′βB,

(Kσf)(x) ≤
∫

R
ψσ(y − x){1 + k1|l1(x)|β|y − x|β + k2|L(x)||y − x|β}dy

+ (‖f‖∞ + 1 + k1|l1(x)|β + k2|L(x)|)O(σH),

(61)

which completes the proof of (57) for β ∈ (1, 2]. Using the same arguments
the inverse inequality can be obtained when we define Bf,1(x, y) = l1(x)(y−
x)− L(x)|y − x|β. Consequently, we have shown that
(62)
(Kσf)(x) = f(x)

(
1 +O(|l1(x)|β + |L(x)|)σβ

)
+O(1 + |l1(x)|β + |L(x)|)σH .

For the inequality in this result resulting from (61), the term O(|l1(x)|β +
|L(x)|)σβf(x) could be replaced by (k1νβ|l1(x)|β + k2νβ|L(x)|)σβf(x), with
νβ as in (3). However to combine this result with the corresponding inverse
inequality we use the O-notation.

Now let f be a function for which (4) and (5) hold with β ∈ (2, 4]. Treating
Kσf and KσKσf separately, we show that for f1 = 2f −Kσf

(63) (Kσf1)(x) = f(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
,

where R is defined as in (18). First we give an expression for Kσf when
β ∈ (2, 4], again by showing inequality in both directions. For the upper

imsart-aos ver. 2008/08/29 file: lsMixtures0.tex date: May 21, 2009



28 W. KRUIJER, J. ROUSSEAU AND A.W. VAN DER VAART

bound on Kσf when r = 3 for example, note that when x ∈ Aσ and y ∈ Dx,
eB ≤ 1 + B + 1

2B
2 + 1

6B
3 + MB4 for some constant M , with B(x, y) =

l1(x)(y− x) + 1
2 l1(x)(y− x) + 1

6 l3(x)(y− x)3 +L(x)|y− x|β. For this bound
on eB we redo the calculations given in (58), (59), (60) and (61), and we
find that

Kσf(x) = f(x)
(

1 +
ν2

2
(l21(x) + l2(x))σ2 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
.

(64)

This follows from the fact that for x ∈ Aσ and y ∈ Dx we can control the
terms containing a factor |y − x|k with k > 2 in similar way as in (60).
All these terms can be shown to be a multiple of σβ by taking out a factor
|y− x|β and matching the remaining factor |y− x|k−β by a certain power of
the |lj |’s or |L|. For instance, the term 1

8 l
2
2(x)(x−y)4 resulting from 1

2B
2 can

be written as 1
8 |l2(x)|1−β/2|x−y|2−β|x−y|β|l2(x)|β/2 . |x−y|β|l2(x)|β/2. For

terms that are products of different lj ’s we first completely ’compensate’ the
lower order lj ’s by the appropriate powers of |x−y|. The term 1

6 l1(x)l3(x)(y−
x)4 coming from 1

2B
2 for example, is bounded by

k′B

6
|l3(x)||y−x|3 = |l3(x)|1−β/3|y−x|3−β|y−x|β|l3(x)|β/3 . |y−x|β|l3(x)|β/3.

Similarly, the terms 1
3 |L(x)|l21(x)|y − x|2+β and 1

6 |L(x)|3|y − x|3β coming
from 1

6B
3 are bounded by multiples of |L(x)||y − x|β. Hence all the terms

resulting from eB with a factor |y − x|k with k > 2 can be bounded by a
multiple of |y−x|β|l1|β, |y−x|β|l1|β/2, |y−x|β|l1|β/3 or |y−x|β|L|, leading to
the sum defined by (18). Note that also the terms with |y − x|k with k > β
are reduced to |x − y|β, as terms with σk would not improve the result (at
least not for our purpose) and would require stronger moment conditions on
lj ’s.

To find a similar expression for KσKσf , note that (64) does not depend
on the explicit form of the kernel ψ. We only used the properties that ψ
is symmetric with

∫
ψ(x)|x|αdx = να < ∞ for certain numbers να, and

that
∫
|x|>k′| log σ|1/p ψ(x)|x|αdx = σH when k′ is sufficiently large. For the

kernel ϕ = ψ ∗ ψ these properties follow from Lemma 12 in Appendix A.
Consequently, (64) also holds with Kσ denoting convolution over ϕ and ν2

replaced by νϕ,2 =
∫
ϕ(x)|x|αdx = 2ν2. Plugging in these results in Kσf1 =

2Kσ −KσKσf , we find that the σ2-terms cancel out, completing the proof
of (63).

When k > 1, β ∈ (2k, 2k + 2] and log f is satisfying (4) and (5), it
can be shown that all terms with σ2, σ4, . . . , σ2k cancel out. This follows
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directly from Lemma 1, but can also be shown by expressing the moments
νm,2, . . . , νm,2k of the kernels Km

σ , m = 2, . . . , k + 1 in terms of ν2, . . . , ν2k

and combining this with (14). The terms O(R(x))σβf(x) and O(1+R(x))σH

are obtained by the same arguments used above for the case β ≤ 4.

APPENDIX C: DISCRETIZATION

The following lemmas can be found in [13], p.59-60. They are straightfor-
ward extensions of the corresponding results for normal mixtures, contained
in lemma 3.1 of [11] and lemma 2 of [10]. Lemma 14 is used in the proof of
Lemma 6 in the present work.

Lemma 13. Given p > 0, let ψ(x) = Cp e
−|x|p. Let F be a probability

measure on [−a, a], where a . ψ−1(ε), and assume that σ ∈ [σn, σ̄n] and
ε < (1 ∧ Cp). Then there exists a discrete distribution F ′ on [−a, a] with at
most N = pe2 log Cp

ε support points such that ‖F ∗ ψσ − F ′ ∗ ψσ‖∞ . ε.

Lemma 14. Given σ ∈ [σn, σ̄n] and F ∈M[−a, a], let F ′ be the discrete
distribution from the previous lemma. Then ‖F ∗ψσ −F ′ ∗ψσ‖1 . ε ψ−1(ε).
Moreover, for any σ > 0 there exists a discrete F ′ with a multiple of (aσ−1∨
1) log ε−1 support points, for which ‖F ∗ ψσ − F ′ ∗ ψσ‖1 . εψ−1(ε) and
‖F ∗ ψσ − F ′ ∗ ψσ‖∞ . ε

σ .
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