Inequivalent embeddings of the Koras-Russell cubic threefold - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Inequivalent embeddings of the Koras-Russell cubic threefold

Résumé

The Koras-Russell threefold is the hypersurface X of the complex affine four-space defined by the equation x^2y+z^2+t^3+x=0. It is well-known that X is smooth contractible and rational but that it is not algebraically isomorphic to affine three-space. The main result of this article is to show that there exists another hypersurface Y of the affine four-space, which is isomorphic to X as an abstract variety, but such that there exists no algebraic automorphism of the ambient space which restricts to an isomorphism between X and Y. In other words, the two hypersurfaces are inequivalent. The proof of this result is based on the description of the automorphism group of X. We show in particular that all algebraic automorphisms of X extend to automorphisms of the ambient space.
Fichier principal
Vignette du fichier
KR-Embd.pdf (209.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00370741 , version 1 (25-03-2009)

Identifiants

Citer

Adrien Dubouloz, Lucy Moser-Jauslin, Pierre-Marie Poloni. Inequivalent embeddings of the Koras-Russell cubic threefold. 2009. ⟨hal-00370741⟩
94 Consultations
215 Téléchargements

Altmetric

Partager

More