Uniform exponential growth for some SL(2,R) matrix products
Résumé
Given a hyperbolic matrix $H\in SL(2,\R)$, we prove that for almost every $R\in SL(2,\R)$, any product of length $n$ of $H$ and $R$ grows exponentially fast with $n$ provided the matrix $R$ occurs less than $o(\frac{n}{\log n\log\log n})$ times.
Domaines
Mathématiques générales [math.GM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...