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UNIFORM EXPONENTIAL GROWTH FOR SOME SL(2,R)

MATRIX PRODUCTS

ARTUR AVILA AND THOMAS ROBLIN

Abstract. Given a hyperbolic matrix H ∈ SL(2, R), we prove that for almost

every R ∈ SL(2, R), any product of length n of H and R grows exponentially
fast with n provided the matrix R occurs less than o( n

log n log log n
) times.

1. Introduction

For t, θ ∈ R, let H = H(t) be the hyperbolic matrix

(

exp 1
2 t 0

0 exp− 1
2 t

)

and let

R = R(θ) be the rotation matrix

(

cos θ sin θ
− sin θ cos θ

)

. For a finite word w = wn . . . w1

on the symbols H and R, we let |w| denote its length and we let m(w) denote
the number of occurrences of R in w. For any such word, and for any choice of
parameters t and θ, we let Aw(t, θ) denote the corresponding matrix product in
SL(2,R), and denote by ‖Aw(t, θ)‖ its norm.

By the Oseledets Theorem, for a typical large word w on H and R, the size of the
matrix product is given up to subexponential error, by eL(t,θ)|w|, where L(t, θ) is the
Lyapunov exponent of the Bernoulli product giving equal probabilities for H and
R. By Furstenberg’s Theorem (cf [3]), L(t, θ) > 0 unless t = 0 or θ = π/2 mod π,
thus hyperbolic behavior prevails under a very mild “transversality condition” on
the pair (H,R).

Here we are interested in the following subtler question: Assuming some stronger
transversality condition on the pair (H,R), can one ensure hyperbolic behavior just
by limiting the frequency of rotation elements in the word? A basic question in
this direction, raised by Bochi and Fayad in [1], is whether for almost every t
and θ, a condition of the type C(t, θ)m(w) ≤ |w| implies that ‖Aw(t, θ)‖ grows
exponentially. While this question is still open, in [2], Fayad and Krikorian showed
that for almost every t and θ, one has exponential growth provided m(w) ≤ |w|α

with 0 < α < 1/2. Our goal in this paper will be to show that the weaker condition
C(t, θ)m(w) logm(w) log logm(w) ≤ |w| suffices.

Theorem 1. For every t > 0, 0 < γ < t
2 and almost every θ ∈ R, there exists

ǫ > 0 such that for any word w on H and R, if m(w) ≤ ǫ|w|(log |w| log log |w|)−1,

then the spectral radius of Aw(t, θ) is at least e|w|γ .

In fact, our proof allows us to take for R a general matrix of SL(2,R), presented
in its Cartan decomposition form, as follows.
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Theorem 2. For every t > 0, s > 0, α ∈ R, 0 < γ < t
2 and almost every θ ∈ R,

there exists ǫ > 0 such that for any word w on H = H(t) and R = R(θ)H(s)R(α),
if m(w) ≤ ǫ|w|(log |w| log log |w|)−1, then the spectral radius of Aw is at least e|w|γ .

Corollary. For every t > 0, 0 < γ < t
2 and almost every R ∈ SL(2,R) with respect

to the Haar measure, there exists ǫ > 0 such that for any word w on H = H(t) and

R, if m(w) ≤ ǫ|w|(log |w| log log |w|)−1, then the spectral radius of Aw is at least

e|w|γ .

2. Proof of the theorems

We now give a detailed proof of theorem 1. Then we shall indicate how theorem
2 is obtained following the same lines.

From now on we fix t > 0, and drop the dependence on t from the notation.
For a given word w we shall use the notations w[i j] = wj . . . wi for 1 ≤ i ≤ j ≤

|w|. We also let aw, bw, cw, dw : R → R be defined so thatAw(θ) =

(

aw(θ) bw(θ)
cw(θ) dw(θ)

)

.

Let us say that a function ψ : Z+ → R+ is good if

(1) ∀k, l ≥ 1, ψ(k) + ψ(l) ≤ ψ(k + l) − log 2.

We will mostly work with multiples (by reals greater than 1) of the functions
ψ1(m) = m(1 + log2m) and ψ2(m) = m(1 + logm)(1 + log log max{e,m}) (with
0 log 0 = 0). Both ψ1 and ψ2 are easily seen to be good.

Given a good function ψ and 0 < γ ≤ t
2 , for any word w of length n, we let

Fw(ψ, γ) = Fw be the set of all θ ∈ [0, π) such that

log |aw[1 k]
| ≥ kγ − ψ(m(w[1 k])) and log |aw[k+1 n]

| ≥ (n− k)γ − ψ(m(w[k+1n]))

for all 0 < k < n, but log |aw| < nγ − ψ(m(w)).(2)

Notice that if Fw is not empty, necessarily w1 = wn = R. In view of (1), it follows
that on the set Fw,

(3) |aw| ≤
1

2
|aw[1 k]

aw[k+1 n]
|, ∀ 0 < k < n.

Lemma 1. For every w we have, writing |w| = n and m(w) = m:

(4) |Fw| ≤ 8n2eψ([ m

2 ])+ψ(m−[ m

2 ])−ψ(m).

Proof. Since aω is in general a polynomial of degree m(ω) in cos θ, as is easily
checked, the set Fw is the union of at most 4nm intervals. Now, in order to bound
the size of such an interval, we show that the derivative of aw with respect to θ at
any (fixed) point of Fw is not too small.

Since the derivative of R(θ) is R(π2 )R(θ), using the product rule, it is easy to
derive the following formula for the derivative of aw:

(5) a′w =
∑

k, wk=R

cw[1 k]
aw[k+1 n]

− aw[1 k]
bw[k+1 n]

.

On the one hand, we have, for all 0 < k < n,

(6) aw = aw[1 k]
aw[k+1 n]

+ cw[1 k]
bw[k+1 n]

.

In view of (3), this shows that

(7)
1

2
≤ −

cw[1 k]
bw[k+1 n]

aw[1 k]
aw[k+1 n]

≤
3

2
.
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In particular, for each 0 < k < n, cw[1 k]
aw[k+1 n]

and −aw[1 k]
bw[k+1 n]

have the same
sign.

On the other hand, one easily sees that ∀1 < k < n, the upper left entry of
the matrix Aw[k+1 n]

R(π2 )Aw[1 k]
is cw[1 k]

aw[k+1 n]
− aw[1 k]

bw[k+1 n]
= cw[1 k−1]

aw[k n]
−

aw[1 k−1]
bw[k n]

if wk = R and cw[1 k]
aw[k+1 n]

− aw[1 k]
bw[k+1 n]

= e−tcw[1 k−1]
aw[k n]

−

etaw[1 k−1]
bw[k n]

if wk = H (indeed, R(π2 )H(t) = H(−t)R(π2 ) = H(t)H(−2t)R(π2 )).
After finite iteration, we deduce from these observations that the quantities

cw[1 k]
aw[k+1 n]

and −aw[1 k]
bw[k+1 n]

for k varying from 1 to n − 1 have all the same

sign; among them, the summands in (5). Therefore, taking k with wk = R so that
m(w[1 k]) = [m2 ] where m = m(w), we have

|a′w| ≥ |cw[1 k]
aw[k+1 n]

| + |aw[1 k]
bw[k+1 n]

| ≥ 2|aw[1 k]
aw[k+1 n]

cw[1 k]
bw[k+1 n]

|
1
2 .

From (7) and (2), we get (at any point θ ∈ Fw):

|a′w| ≥ |aw[1 k]
aw[k+1 n]

|

≥ en
t

2−ψ([ m

2 ])−ψ(m−[ m

2 ])

From the above minoration, we deduce that any interval in Fw as defined by (2)
is of length less than 2eψ([ m

2 ])+ψ(m−[ m

2 ])−ψ(m). Since Fw is the union of at most
4nm such intervals, the result follows. �

Lemma 2. If Fw 6= ∅ then

n ≤ m(1 +
1

t
ψ(m)),

where n = |w| and m = m(w).

Proof. Let us fix some θ ∈ Fw, and write w = w[k+r+1n]H
rw[1 k] with r maxi-

mal. Since w1 = wn = R, as we have already observed, one has 0 < k < n − r,
m(w[1 k]),m(w[k+r+1n]) ≥ 1, and

(8) r ≥
n−m

m− 1
.

We have

(9) aw = er
t

2 aw[1 k]
aw[k+r+1 n]

+ e−r
t

2 cw[1 k]
bw[k+r+1 n]

.

Observe that in general max(a2
ω + c2ω, b

2
ω + d2

ω) ≤ e|ω|t, so that here

|cw[1 k]
bw[k+r+1 n]

| ≤ e(n−r)
t

2 .

From (1),(2) and (9), we get

2en
t

2−ψ(m) ≤ en
t

2−ψ(m(w[1 k]))−ψ(m(w[k+r+1 n]))

≤ er
t

2 |aw[1 k]
aw[k+r+1 n]

|

< en
t

2−ψ(m) + e(n−2r) t

2 .

Hence rt < ψ(m), which combined with (8) gives the result. �

From now on, let E(ψ, γ) denote the set of all θ ∈ [0, π) such that

(10) log |aw(θ)| < |w|γ − ψ(m(w)) for some word w.

Lemma 3. There exists some constant c > 0 such that |E(λψ1,
t
2 )| = Oλ≥1(e

−cλ).
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Proof. Let En = En(λψ1,
t
2 ) ⊂ E = E(λψ1,

t
2 ) be the set of θ such that n is the

minimal length of a word w such that (10) holds. Clearly E is the disjoint union
of the En’s and each En is covered by the Fw’s with |w| = n.

We then apply lemmas 1 and 2 to estimate |En| for n ≥ 2 as follows:

(11) |En| ≤
∑

|w|=n

|Fw| ≤ 8n2
∑

m

(

n

m

)

eλ(ψ1(m−[ m

2 ])+ψ1([
m

2 ])−ψ1(m)),

where the sum runs over the 2 ≤ m ≤ n such that n ≤ m(1 + 1
t
λψ1(m)), which

implies n ≤ C0λm
2 log2m. Here and in the sequel, C0, C1, . . . stand for positive

constants independent of m, n or λ.
For n = 1, notice that E1 = { θ | | cos θ| < e

t

2−λ}.
It is readily seen that ∀m ≥ 2, ψ1(m− [m2 ]) + ψ1([

m
2 ]) − ψ1(m) ≤ −C1m logm.

On the other hand, by the use of Stirling’s formula, we find that

(12)

(

n

m

)

≤ em log n−m logm+C2m.

So, summing over n in (11) and then reversing the order of summation yields

|E| ≤ |E1| +
∑

m≥2

e(C3−C1λ)m logm
∑

n≤C0λm2 log2m

n(m+2)

≤ C4e
−λ +

∑

m≥2

e(C5−C1λ)m logm+(m+3) log λ.

For large λ, this sum is finite and less than e−cλ. �

Lemma 4. Let 0 < γ < t
2 . There exists some constant c > 0 such that |E(λψ2, γ)\

E(λψ1,
t
2 )| = Oλ≥1(e

−cλ).

Proof. We first notice that if Fw(λψ2, γ) \ E(λψ1,
t
2 ) 6= ∅, then λψ1(m(w)) ≥ ( t2 −

γ)|w|. Thus, proceeding as in the previous lemma, we get (even for n = 1)

|En(λψ2, γ) \ E(λψ1,
t

2
)| ≤ 8n2

∑

λψ1(m)≥( t

2−γ)n
m≥2

(

n

m

)

eλ(ψ2(m−[ m

2 ])+ψ2([
m

2 ])−ψ2(m)).

Here ∀m ≥ 2, ψ2(m − [m2 ]) + ψ2([
m
2 ]) − ψ2(m) ≤ −C6m(1 + log log max{e,m}).

Using again (12), we obtain

|E(λψ2, γ) \ E(λψ1,
t

2
)| ≤

∑

m≥2

e(C7−C6λ)m(1+log log max{e,m})−m logm
∑

n≤C8λm log2m

n(m+2)

≤
∑

m≥2

e(C9−C6λ)m(1+log log max{e,m})+(m+3) log λ.

We conclude as before. �

The lemmata 3 and 4 show that for 0 < γ < t
2 , the sum

∑

λ∈N∗ |E(λψ2, γ)|
converges. By the Borel-Cantelli lemma, we conclude that for almost every θ, there
exists λ ≥ 1 such that for all word w, log |aw(θ)| ≥ |w|γ − λψ2(m(w)).

It follows that for almost every θ, if |w| is large and m(w) is much smaller than
|w|(log |w| log log |w|)−1, then 1

|w| log ‖Aw(θ)‖ is close to t
2 , as well as 1

|w|2 log ‖Aww(θ)‖.

But
Aww(θ) −AwtrAw + id = Aw(θ)2 −AwtrAw + id = 0,
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since Aw ∈ SL(2,R), which shows that 1
|w| log |trAw| is close to t

2 , yielding the

estimate on the spectral radius in theorem 1.
In order to prove theorem 2 by the same method, we consider, instead of the

words on H and R, words w = wn . . . w1 on H(t), R(θ), H(s) and R(α) such that
the last three ones always appear consecutively, except maybe at the ends of the
word, and m(w) is now the number of these occuring in w. Then the proof goes
the same way, notably the considerations of sign in lemma 1.
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