Chebyshev Knots
Résumé
A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); \ y(t)=T_b(t) ; \ z(t)= T_c(t + \phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $\phi \in \RR .$ Chebyshev knots are non compact analogues of the classical Lissajous knots. We show that there are infinitely many Chebyshev knots with $\phi = 0.$ We also show that every knot is a Chebyshev knot.
Origine | Fichiers produits par l'(les) auteur(s) |
---|