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Abstract

A Chebyshev knot is a knot which admits a parametrization of the form x(t) =
Ta(t); y(t) = Tb(t); z(t) = Tc(t + ϕ), where a, b, c are pairwise coprime, Tn(t) is the
Chebyshev polynomial of degree n, and ϕ ∈ R. Chebyshev knots are non compact
analogues of the classical Lissajous knots. We show that there are infinitely many
Chebyshev knots with ϕ = 0. We also show that every knot is a Chebyshev knot.

keywords: Polynomial curves, Chebyshev polynomials, Chebyshev curves, Lissajous
knots, long knots, braids
Mathematics Subject Classification 2000: 14H50, 57M25, 14P99

1 Introduction

A Lissajous knot is a knot which admits a one to one parametrization of the form

x = cos(at); y = cos(bt+ ϕ); z = cos(ct+ ψ)

where 0 ≤ t ≤ 2π and where a, b, c are pairwise coprime integers. These knots, first defined
in [BHJS], have been studied by many authors: V. F. R. Jones, J. Przytycki, C. Lamm,
J. Hoste and L. Zirbel. Most known properties of Lissajous knots are deduced from their
symmetries, which are easy to see (see [JP, La, HZ]).

On the other hand Vassiliev considered polynomial knots, i.e. non singular polynomial
embeddings R → R3 (see [Va, Sh, RS, KP1, KP2]).

In this paper we study a polynomial analogue of Lissajous knots. The classical Chebyshev
polynomials Tn(t) are defined by the trigonometric identity cos(n θ) = Tn(cos θ). It is
natural to use these polynomials instead of cosine functions to define our Chebyshev knots.

∗Facult de Mathmatiques and Salsa-Inria project
†Facult de Mathmatiques
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2 P. -V. Koseleff, D. Pecker

Definition 1 A knot in R3 ⊂ S3 is a Chebyshev knot if it admits a parametrization of the
form

x = Ta(t); y = Tb(t); z = Tc(t+ ϕ)

where t ∈ R, a, b, c are pairwise coprime integers, and ϕ is a real constant.

Figure 1: The mirror image of the 77 knot is Chebyshev.

We begin with the study of plane Chebyshev curves which are projections of Chebyshev
knots on the (x, y)-plane. We conclude this paragraph with a theorem of Hoste and Zirbel
[HZ] describing these curves in terms of particular braid projections.

Then, we study some families of Chebyshev knots with ϕ = 0, called harmonic knots.
We prove that for a, b coprime integers, c = ab − a − b, the harmonic knot H(a, b, c) has
an alternating projection on the (x, y)-plane. We deduce that there are infinitely many
harmonic knot types. This is similar to a theorem of C. Lamm concerning Lissajous knots
(see [La]). We also prove that the torus knots T (2, 2n + 1) are harmonic knots. On the
other hand, we observe that the symmetries of harmonic knots are quite different from those
of Lissajous knots. There are infinitely many amphicheiral harmonic knots and infinitely
many strongly invertible harmonic knots. The trefoil and the figure-eight knot are harmonic
knots but are not Lissajous. Some knots are both Lissajous and harmonic knots, e.g. 52

and 75.

We conclude the paper with our principal result: every knot is a Chebyshev knot. This is
done by showing first that every knot has a plane projection which is a Chebyshev curve, the
use of some classical results of braid theory and a density argument based on Kronecker’s
theorem.

At the end we give Chebyshev diagrams of the first 2-bridge harmonic knots.

2 Geometry of plane Chebyshev curves

Chebyshev curves were defined in [Fi] to replace the older denomination of “doubly parame-
trized Lissajous curves”. Their double points are easier to study than those of Lissajous
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curves. It will be convenient to consider also the case of implicit Chebyshev curves.

Proposition 1 Let a, b be integers, a being odd. The affine Chebyshev curve C defined by

C : Tb(x) − Ta(y) = 0

has 1
2(a− 1)(b− 1) singular points which are crossing points. These points form two rectan-

gular grids contained in the open square Q =]−1, 1[2, R = {(x, y) ∈ Q, Tb(x) = Ta(y) = 1},
and R′ = {(x, y) ∈ Q, Tb(x) = Ta(y) = −1}.

Proof. The singular points of C are obtained for T ′
b(x) = 0, T ′

a(y) = 0, Tb(x) = Ta(y).

¿From Ta(cos θ) = cos aθ, we deduce that Ta has degree a and T ′
a(cos θ) = a

sin aθ

sin θ
. T ′

a has

a − 1 simple roots in ]0, 1[: yk = cos
(

k
π

a

)

, k = 1, . . . , a − 1. At these points, we have

Ta(yk) = (−1)k. T ′
b has b − 1 roots in ]0, 1[: x1, . . . , xb−1. For each xi there are exactly

1
2(a − 1) values yj satisfying T ′

a(yj) = 0, Ta(yj) = Tb(xi). Hence the number of singular
points is 1

2(a− 1)(b− 1), and they form two rectangular grids. Since the roots of T ′
b(x) = 0

are simple, we see that these points are crossing points. 2

Remark. It follows from our proof that |R| = 1
2

[

b−1
2

]

(a− 1), |R′| = 1
2

[

b
2

]

(a− 1).

Proposition 2 Let a and b are coprime integers, a being odd. Let the Chebyshev curve
C be defined by the equation Tb(x) − Ta(y) = 0. Then C admits the parametrization x =
Ta(t), y = Tb(t). The pairs (t, s) giving a crossing point are

t = cos

(

k

a
+
h

b

)

π, s = cos

(

k

a
−
h

b

)

π,

where k, h are positive integers such that
k

a
+
h

b
< 1.

Proof. Since Ta ◦ Tb = Tb ◦ Ta = Tab, the rational curve C′ parametrized by x = Ta(t), y =
Tb(t) is contained in C. These two curves intersect the line {x = x0} in one point if |x0| > 1,
in a points if |x0| < 1 and in 1

2(a+ 1) points if x0 = ±1. Consequently, they are equal.

The 1
2(a− 1)(b− 1) pairs

t = cos

(

k

a
+
h

b

)

π, s = cos

(

k

a
−
h

b

)

π,

give rise to double points of C′ = C. Because the number of singular points of C is 1
2(a −

1)(b− 1), we see that there is no other singular point. 2

Remarks. Note that for these values we get Tb(x) = Ta(y) = (−1)ah+bk.
We observe that the crossing points are obtained for the (a− 1)(b− 1) elements of

E = {tu = cos
u

ab
π, 0 ≤ u ≤ ab, a 6 |u, b 6 | u}. (1)
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For these values, we get Tb(x(tu)) = Ta(y(tu)) = (−1)u. Note that tu and tu′ correspond to
the same point when u ≡ −u′ (mod 2b) and u ≡ u′ (mod 2a).

The following proposition will be useful to consider Chebyshev curves as trajectories in a
rectangular billiard (see [JP]).

Proposition 3 Let C be the Chebyshev curve: Tb(x) − Ta(y) = 0. There exists an homeo-
morphism from the square I = [−1, 1]2 to the rectangle [0, b]× [0, a], such that the image of
C

⋂

I is the union of line segments with slopes ±1. These segments form broken lines (the
billiard trajectories) through the points with coordinates x = b, y = a− 2k, 0 ≤ 2k ≤ a.

Proof. Consider the mapping F (x, y) = (X,Y ) with πX = b(π − arccos x), πY = a(π −
arccos y). By trigonometry, it is not hard to check that F has the announced properties. 2

0

1

2

3

1 2 3 4 5 6 7 8

Figure 2: T8(x) = T3(y) and its billiard picture

We shall now present a description of Chebyshev curves using braids. Let Bn be the group
of braids on n strings. For practical purposes we shall draw these braids horizontally, the
strings being numbered from the bottom to the top. The standard braid generators are
denoted σ1, σ2, . . . , σn−1. The braid σi exchanges the strings i + 1 and i, the string i + 1
passing over the string i. In this paragraph we shall be interested in plane projections of
braids, called plane braids. We shall also consider the composition of such plane braids.
Let a = n. Let si denote the plane braid which is the plane projection of σi. This plane
braid has one crossing point.

Following Hoste and Zirbel [HZ], let us define the plane braids seven and sodd as

seven = s2s4 · · · sE, sodd = s1s3 · · · sO,

where E and O are the largest even and odd integers less than n = a.

Proposition 4 Let a, b be integers, a being odd. Let C be the Chebyshev curve Tb(x) −
Ta(y) = 0. Let ε > 0 small enough and consider the rectangle Rε = {|x| < 1 − ǫ, |y| ≤
1}. Then there is a homeomorphism between the pairs (Rε, C) and (Rε, ρ) where ρ =

(sodd seven)
b−1

2 if b is odd and ρ = (seven sodd)
b−2

2 seven if b is even.
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Figure 3: seven and sodd for n = 6, 7.

Proof. Following the proof of prop. (1), the 1
2 (a − 1)(b − 1) singular points of C are in Rε

when ε is small enough. For each k = 1, . . . , b− 1, there are 1
2(a− 1) singular points

(xk, yl) =
(

cos k
π

b
, cos l

π

a

)

, k + l ≡ 0 (mod 2).

It means that over a neighborhood over xk, the curve C is then isotopic to seven if k is odd,
and isotopic to sodd if k is even. This proves the result. 2

We can define the plat closure of a plane horizontal braid with 2m strings labelled 0, 1, . . . , 2m−
1, to be the plane curve obtained by connecting the right ends 0 to 1, . . . , 2m−2 to 2m−1,
and the left ends in the same order.

Corollary 1 Let a be an odd integer, and b an even integer. Let ρ′ be the plane braid with

a+ 1 strings obtained by adding a free string numbered a+ 1 over ρ = (seven sodd)
b−2

2 seven.

Then the Chebyshev curve Tb(x) − Ta(y) = 0 is isotopic (in S2) to the plat closure of the
plane braid ρ′.

Proof. Let us illustrate this by looking at the curve T10(x) − T5(y) = 0, which is reducible.
We see on fig. (4) that it is the plat closure of (seven sodd)

4seven. 2

Figure 4: The Chebyshev curve T10(x) − T5(y) = 0 and its billiard picture

3 Harmonic knots

In this paragraph we shall study Chebyshev knots with ϕ = 0. Comstock (1897) found the
number of crossing points of the harmonic curve parametrized by x = Ta(t), y = Tb(t), z =
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Tc(t). In particular, he proved that this curve is non singular if and only if a, b, c are pairwise
coprime integers [Com]. Such curves will be named harmonic knots H(a, b, c).

We see that H(a, b, 1) is the unknot because the height function is monotonic. We can also
obtain the unknot in a less trivial way.

Figure 5: The knot H(3, 8, 11) is trivial.

Proposition 5 Let a, b be coprime integers and c = a+ b. The harmonic knot H(a, b, c) is
trivial.

Proof. Let t ∈ [−1, 1], t = cos θ. We have x = Ta(t) = cos a θ, y = cos b θ, z = cos(a + b) θ.
By trigonometry, we see that the bounded part of our knot is on the surface

S = {(x, y, z) ∈ R3, |x| ≤ 1, |y| ≤ 1, z = xy ±
√

(1 − x2)(1 − y2)}.

Since S is the union of two sheets that are homeomorphic to the square [0, 1]2 glued along
their boundaries, we see that it is homeomorphic to a sphere. Consequently the genus of
H(a, b, c) is zero, hence it is the unknot. 2

Note that the surface S has the symmetries of a regular tetrahedron. It is contained in the
cubic surface {x2 + y2 + z2 = 1 + 2xyz} which has the same symmetries.

Let C be a plane projection of a parametrized knot. Consider a crossing point of C obtained
for the parameter pair (t, s), and suppose that the tangents at this point are not parallel to
the coordinates axis. It is not hard to check that the nature of this crossing point depends

only of the sign of the expression D =
(

z(t) − z(s)
)

x′(t)y′(t) (it is not the usual definition

of the sign of oriented crossings, see fig. 6).

Lemma 1 Let H(a, b, c) be a harmonic knot. The nature of the crossing point of parameter
t = cos

(

k
a

+ h
b

)

π, is given by

sign(D) = sign
(

−(−1)h+k sin(
ah

b
π) sin(

bk

a
π) sin

(ch

b
π
)

sin
(ck

a
π
)

)

.
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D > 0 D < 0

Figure 6: The two cases of crossings

Proof. The crossing points of the plane projection {x = Ta(t), y = Tb(t)} are obtained for

the parameters t = cos τ, s = cos σ, where τ =

(

k

a
+
h

b

)

π, σ =

(

k

a
−
h

b

)

π.

Using trigonometry and the values of t, s, we get x′(t) = a
sin aτ

sin τ
, y′(t) = b

sin bτ

sin τ
, so

x′(t)y′(t) = (−1)h+k ab

sin2 τ
sin(

ah

b
π) sin(

bk

a
π). (2)

We have also

z(t) − z(s) = Tc(t) − Tc(s) = −2 sin
(ch

b
π
)

sin
(ck

a
π
)

. (3)

2

Alternate harmonic knots

The following theorem is the analogue of a theorem of Lamm [La] concerning Lissajous
knots.

Theorem 1 (Alternate harmonic knots) Let a, b be relatively prime integers, c = ab−
a− b. The harmonic knot H(a, b, c) is alternate.

Proof. Using eq. (3), we get

z(t) − z(s) = −2 sin
(ch

b
π
)

sin
(ck

a
π
)

= −2 sin
(

(a− 1)hπ −
ah

b
π
)

sin
(

(b− 1)kπ −
bk

a
π
)

= −2(−1)h(a−1)+k(b−1) sin
(ah

b
π
)

sin
(bk

a
π
)

.

Using eq. (2), we deduce that sign
(

D
)

= −(−1)ah+bk. The crossing points are obtained for
the (a− 1)(b− 1) elements of E = {tu = cos u

ab
π, 0 ≤ u ≤ ab, a 6 |u, b 6 | u}.
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Note that tu < tu−1 and that at the crossing point corresponding to tu ∈ E one has
sign

(

D
)

= −(−1)u.
The polynomial x′(t)y′(t) has (a + b − 2) simple roots for tu = cos u

ab
π, where a or b

divides u = 1, . . . , ab − 1. For these parameters, the billiard curve corresponding to the
(x, y)-plane projection bounces on a wall.

Three cases may occur because at least one of three consecutive tu belongs to E.

1. th+1 ∈ E and th ∈ E. Then sign
(

x′(th)y′(th)
)

= sign
(

x′(th+1)y
′(th+1)

)

and since the
sign of D changes, we conclude that the sign of z(t) − z(s) changes between the 2
consecutive parameters th+1 and th.

2. th+1 ∈ E, th 6∈ E, th−1 6∈ E. We have x′(t)y′(t) = 0 at th and th−1. For th−1 < t <

th−2, we have sign
(

x′(t)y′(t)
)

= sign
(

x′(th+1)y
′(th+1)

)

, so sign
(

x′(th−2)y
′(th−2)

)

=
sign

(

x′(th+1)y
′(th+1)

)

. Hence we see that the sign of z(t)− z(s) changes between the
2 consecutive parameters th+1 and th−2.

3. th+1 ∈ E, th 6∈ E, th−1 ∈ E. We have x′(t)y′(t) = 0 at th, so sign
(

x′(th−1)y
′(th−1)

)

=
−sign

(

x′(th+1)y
′(th+1)

)

. Hence we see that the sign of z(t) − z(s) changes between
the 2 consecutive parameters th+1 and th−1.

In conclusion, the knot is alternate. 2

Symmetries and harmonic knots

A knot K in S3 is strongly (−)amphicheiral if there is an involution of (S3,K) which
reverses the orientation of both S3 and K. A knot K in S3 is strongly invertible if there is
an involution of (S3,K) which preserves the orientation of S3 and reverses the orientation
of K (see [Kaw], pp. 127-128).

Proposition 6 The harmonic knot H(a, b, c) is either strongly (−)amphicheiral if abc is
odd, or strongly invertible if abc is even.

Proof. It is immediate from the parity of Chebyshev polynomials.

Corollary 2 There are infinitely many amphicheiral harmonic knots. There are infinitely
many strongly invertible harmonic knots.

Proof. Since the harmonic knot H(a, b, c), c = ab− a − b is alternate, its crossing number
is 1

2(a− 1)(b− 1). From this we conclude that there is an infinity of such knots with a, b, c

odd, or with abc even. 2

If σ is any permutation of {a, b, c} then the harmonic knot H(σ(a), σ(b), σ(c)) is either
H(a, b, c) if σ is an even permutation or its mirror image if σ is an odd permutation.
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Proposition 7 Let a, b be coprime integers. H(a, b, c), H(a, b, 2ab− c) and H(a, b, 2ab+ c)
are the same knot.

Proof. The expression of sign
(

D
)

(eqs. (2,3)) for a given pair of parameters (t, s) corre-
sponding to crossing points in the (x, y)-plane projection is invariant under the transforma-
tion c 7→ c+ 2ab and c 7→ 2ab− c. 2

We can therefore suppose that a < b and 0 < c < ab to consider all cases.

Proposition 8 Let a, b, c be relatively prime integers. There exists c′ such that H(a, b, c′)
is the mirror image of H(a, b, c).

Proof. Because a and b are relatively prime, one can write c = αa+ βb where α and β are
integers. Let us consider c′ = −αa + βb. We have c′ ≡ c (mod 2a) and c′ ≡ −c (mod 2b).
For any crossing point of the Chebyshev curve C : Tb(x) = Ta(y) corresponding to diagrams
of both H(a, b, c) and H(a, b, c′), we see that sign

(

D
)

changes to opposite when c is replaced
by c′. 2

Corollary 3 H(a, b, ab+a− b) is the mirror image of the alternate knot H(a, b, ab−a− b).

Corollary 4 Let a, b be relatively prime integers. There are at most ϕ(a)ϕ(b) different
harmonic knots H(a, b, c).

Proof. The number of c in [1, ab] that are relatively prime to a and b is ϕ(a)ϕ(b) where ϕ
is the Euler function. 2

Remarks. Because of prop. (7) and prop. (8), for each c there is exists c′ < ab giving the
mirror image. We have at most 1

2ϕ(a)ϕ(b) different knots when we identify the knots and
their mirror images.
When a+ 1 < b, H(a, b, 1) and its mirror image, H(a, b, a+ b) and H(a, b, b− a) are trivial.

The simplest alternate harmonic knots

It is remarkable that for a = 3 the curves are drawn in “Conway normal form” for 2-
bridge knots [Mu]. Then their Conway notation is H(3, n, 2n − 3) = C(1, 1, . . . , 1) =
C(2, 1, 1, . . . , 1, 2) when n is not a multiple of 3. Turner [Tu] did name these knots Fi-
bonacci knots, because their determinant are Fibonacci numbers. For n = 4 we obtain the
trefoil, for n = 5 the figure eight, for n = 7 the 63 knot, for n = 8 the 77 knot...

The Fibonacci knots with an even crossing number are 2-bridge amphicheiral knots. By a
theorem of Hartley and Kawauchi [HK] they cannot be strongly positive amphicheiral, and
then they are not Lissajous [BHJS].
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Figure 7: The trefoil, the figure eight knot, and the 63 knot.

Figure 8: The 62 and 920 knots .

For a = 4, we also obtain 2-bridge knots. Following the classical method ([Mu] p. 183-
187), we see that their Conway notation is H(4, n, 3n − 4) = C(−1,−2, . . . ,−1,−2) =
C(−3,−1,−2, . . . ,−1,−2), (n odd). For n = 5 we obtain the 62 knot, for n = 7 a symmetric
picture of the 920 knot (compare with Rolfsen’s table [Ro]).

For n ≥ 5 we may obtain p-bridge knots, with p ≥ 3. For example the harmonic knot
H(5, 6, 19) is the mirror image of 10116 knot in Rolfsen’s table (amazingly, with exactly the
same picture). Its bridge number is known to be 3.

Figure 9: The mirror image of the 10116 knot.

Note that the torus knot T (2, 2n + 1) cannot be obtained as an alternate harmonic knot,
except for the trefoil knot, as it is proved in [KP1]. Nevertheless it can be obtained as an
harmonic knot.
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The torus knots T(2, 2n + 1)

Theorem 2 The torus knot T (2, 2n + 1) is harmonic. It is the harmonic knot H(3, 3n +
1, 3n + 2) if n is even, or the harmonic knot H(3, 3n + 2, 3n + 1) if n is odd.

Figure 10: The torus knots 51: H(3, 7, 8) and 71: H(3, 10, 11)

Proof. We shall determine the Conway normal form of the harmonic knot H(3, b, c), b =
3n + 1, c = b + 1. The crossing points of the plane projection of H(3, b, c) are obtained for

pairs of values (t, s) where t = cos τ, s = cos σ, and τ =
m

3b
π, σ =

m′

3b
π.

For k = 0, . . . , n− 1, let us consider

Ak be obtained for m = 3k + 1, m′ = 2b−m.

Bk be obtained for m = 2b+ 3k + 2, m′ = m− 2b.

Ck be obtained for m = 2b+ 3k + 3, m′ = 4b−m.

Then we have

x(Ak) = cos(
3k + 1

b
π), y(Ak) = 1

2(−1)k.

x(Bk) = cos(
3k + 2

b
π), y(Bk) = 1

2 (−1)k+1.

x(Ck) = cos(
3k + 3

b
π), y(Ck) = 1

2 (−1)k.

Hence our 3n points satisfy

x(Ak−1) > x(Bk−1) > x(Ck−1) > x(Ak) > x(Bk) > x(Ck), k = 1, . . . , n− 1.

Let us determine the nature of the crossing points. Using the identity T ′
a(cos τ) = a

sin aτ

sin τ
,

we get
sign

(

x′(t)y′(t)
)

= sign
(

sin 3τ sin bτ
)

.

We get



12 P. -V. Koseleff, D. Pecker

for Ak: sign
(

x′(t)y′(t)
)

= sign
(

sin(
3k + 1

b
π) sin(

3k + 1

3
π)

)

= (−1)k.

for Bk: sign
(

x′(t)y′(t)
)

= sign
(

sin
(2b+ 3k + 2

b
π
)

sin
(2b+ 3k + 2

3
π
))

= (−1)k+1sign
(

sin
(3k + 2

b
π
)

sin
π

3

)

= (−1)k+1.

for Ck: sign
(

x′(t)y′(t)
)

= sign
(

sin(
2b+ 3k + 3

b
π) sin(

2b+ 3k + 3

3
π)

)

= (−1)k+1sign
(

sin(
3k + 3

b
π) sin

2π

3

)

= (−1)k+1.

Now, let us compute the sign of

Tc(t) − Tc(s) = −2 sin(c
τ + σ

2
) sin(c

τ − σ

2
) = −2 sin

( c

6b
(m−m′)

)

sin
( c

6b
(m+m′)

)

We have, with c = b+ 1 = 3n+ 2,

for Ak: z(t) − z(s) = −2 sin c
π

3
sin

(

c
m− b

3b
π
)

= −2(−1)n sin
2π

3
sin

(

c
n− k

b
π
)

= 2(−1)n sin
2π

3
(−1)n−k sin

(n− k

b
π
)

so sign
(

z(t) − z(s)
)

= (−1)k.

for Bk: z(t) − z(s) = −2 sin
(

c
b+ 3k + 2

3b
π
)

sin(c
π

3
)

= −2 sin
(

(n+ k + 1 +
n+ k + 1

b
π
)

π(−1)n sin
π

3

= 2(−1)k sin
(n+ k + 1

b
)π

)

sin
π

3
.

so sign
(

z(t) − z(s)
)

= (−1)k.

for Bk: z(t) − z(s) = −2 sin
(

c
2π

3
) sin(c

3k + 3

3b
π
)

= −2 sin
(4π

3

)

sin
(

(b+ 1)
k + 1

b
π
)

= 2 sin
(4π

3
)(−1)k+1 sin

(k + 1

b
π
)

so sign
(

z(t) − z(s)
)

= (−1)k+1.

Collecting these results we finally get

sign
(

D(Ak)
)

= 1, sign
(

D(Bk)
)

= −1, sign
(

D(Ck)
)

= 1.

Crossing points of C are alternatively on the two rows: y = 1
2 and y = −1

2 . We must
multiply the signs of crossings by the sign of y in order to get the Conway normal form. We
get therefore (−1)k, (−1)k, (−1)k for Ak, Bk, Ck. We are now able to conclude the proof. If n
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is odd the Conway normal form of our 2-bridge knot is C(1, 1, 1,−1,−1,−1, . . . , 1, 1, 1). Its

Schubert fraction is equal to
2n+ 1

2n
∼ −(2n+1) and our knot is the mirror image of the torus

knot T (2, 2n+ 1). If n is even, the Conway normal form is C(−1,−1,−1, 1, 1, 1, . . . , 1, 1, 1),

its Schubert fraction is
2n+ 1

−2n
∼ (2n+ 1), and our knot is the torus knot T (2, 2n + 1). 2

Remark: Note that H(3, 3n+ 1, 3(3n+ 1)− 1) is the mirror image of H(3, 3n+ 1, 3n+ 2).
(see prop. (8)).

Remark: In [KP2], we obtained the torus knot T (2, 2n + 1) as an alternate polynomial
knot where x(t) = T3(t), y(t) = P (t), z(t) = Q(t) are polynomials and degP = 3n + 1,
degQ = 3n+ 2, that is to say the same degrees.

Because of their definitions, the symmetries of the harmonic knots are easy to find. They
are either strongly negative amphicheiral if a, b, c are odd, or strongly invertible. So that
not every knot is an harmonic knot. We can also remark that harmonic Knots are billiard
knots in a convex (compact) billiard (in fact a truncated cube)[JP].

On the other hand, it is not difficult to see that if we change the nature of one crossing
point in the diagram of the 10116 knot, we can obtain the famous 817 knot.

In the next paragraph, we shall see that it is possible to choose the nature of the crossing
points with a (shifted) Chebyshev polynomial as height function.

4 Every knot is a Chebyshev knot

Let us denote Bn the group of n-braids and Sn the symmetric group. The group of pure
braids Pn is the kernel of the morphism π : Bn → Sn. If α is a braid, we shall denote ρ(α)
its plane projection. In the next theorem, which is analogous to a theorem of Lamm for
Lissajous curves (see [BDHZ]), we show that

Theorem 3 Every knot has a projection which is a Chebyshev plane curve.

This is a consequence of the following proposition.

Proposition 9 Let K be a knot, br(K) its bridge number. Let m ≥ br(K) be an integer.
Then K has a projection which is a Chebyshev curve x = Ta(t), y = Tb(t), where a = 2m−1,
and b ≡ 2 (mod 2a).

Proof. Let K be a knot. Let D be a regular diagram of K such that the abscissa has only
two extremal values reached at m maxima and m minima. It means that K is the plat
closure of a horizontal braid t with 2m strings, such that the upper string is unbraided.
Furthermore, reordering if necessary the ordinates of the 2m extrema, we can suppose that
π(t) = (2, 3) · · · (2m−2, 2m−1) = π(σ2 σ4 · · · σ2m−2). Let us denote seven = ρ(σ2 · · · σ2m−2),
and sodd = ρ(σ1 · · · σ2m−3).
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As π(t) = π(σ2 · · · σ2m−2) we see that there exists l ∈ ker(π) = P2m−1, the group of pure
braids, such that t = l· σ2 · · · σ2m−2. As the braids Ai j = x−1σ2

i x, where x = σi+1 · · · σj , gen-
erate Pm, the braid l is a composition of such elementary braids. It is not difficult to see that
there is a braid αi j equivalent to Ai j with plane projection ρ(αi j) = (sevensodd)a. Conse-
quently, the braid t is equivalent to a braid projecting on (seven sodd)kaseven. Using the braid
description of Chebyshev curves (corollary 1), we conclude that our knot K is equivalent to
a knot projecting upon the Chebyshev curve x = Ta(t), y = Tb(t), a = odd, b ≡ 2 (mod 2a).

2

Figure 11: The “plane braid” (seven sodd)
5 is the projection of the braid α2,5 ∈ B5.

We shall prove our principal result with a density argument based on Kronecker’s theorem
([HW] th. 443 p. 382.) Let us recall this theorem.

Theorem 4 (Kronecker) If θ1, θ2, . . . , θk, 1 are linearly independent over Q, then the set
of points ((n θ1), (n θ2), . . . , (n θk)) is dense in the unit cube. Here (x) denotes the fractional
part of x.

We shall need the following lemma.

Lemma 2 Let c1, . . . , ck be real numbers such that −1 < c1 < c2 < · · · < ck < 1. There
exists a positive number e < 1 − ck such that the numbers arccos(c1 + e), arccos(c2 +
e), . . . , arccos(ck + e), 1 are linearly independent over Q.

Proof. First, we shall prove, by induction on k, that the functions arccos(ci + x), 1 are
linearly independent over R. Let λ0+

∑k
i=1 λi arccos(ci+x) = 0 be a linear relation between

these functions. We get by derivating

k
∑

i=1

λi

1
√

1 − (ci + x)2
= 0.

Then, when x→ 1 − ck, we get λk = 0, and the result follows by induction.

Suppose now that for each e < 1 − ck there exists a relation

λ0 +

k
∑

i=1

λi arccos(ci + e) = 0, λi ∈ Q,

k
∑

i=1

|λi| = 1.
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By cardinality, there are infinitely many e in ]0, 1− ck[ with the same collection of λi. This

means that the analytic function λ(x) = λ0 +
k
∑

i=1
λi arccos(ci + x) has an infinity of zeroes

in the interval ]0, 1 − ck[, which is absurd. 2

Theorem 5 Every knot is a Chebyshev knot.

Proof. Let K be a knot projecting on the Chebyshev curve {x = Ta(t), y = Tb(t)}. The
crossing points of the projection are obtained for the distinct pairs of values

t = cos

(

k

a
+
h

b

)

π, s = cos

(

k

a
−
h

b

)

π,
k

a
+
h

b
< 1.

Let us denote these values by (ti, si), i = 1 . . . n = 1
2 (a − 1)(b − 1). By our lemma, let

e < 1−cos
π

ab
be a positive number such that the 2n+1 numbers 1, τi = arccos(ti+e), σi =

arccos(si + e), i = 1, . . . n, are linearly independent over Q. Let us define the function
Z(t) = Tc(t+ e) (depending on the integer c). We have

Z(ti) − Z(si) = cos c τi − cos c σi.

Since the numbers 1, τi, σi are linearly independent over Q, the numbers c τi (mod 2π)
and c σi (mod 2π) are dense in [0, 2π]n by Kronecker’s theorem. So that we can choose
arbitrarily the signs of Z(ti) − Z(si), that is, the over/under nature of the crossing points.

2

Example 1: the knot 61

Let us consider the curve parametrized by

x = T3(t), y = T8(t), z = T10(t+
1

100
).

Computing sign
(

D
)

for the 1
2 (3−1)(8−1) = 7 crossing points, we find the Conway normal

form: C(−1,−1,−1,−1, 1, 1, 1). Its Schubert fraction (see [Mu]) is then

−1 +
1

−1 +
1

−1 +
1

−1 +
1

1 +
1

1 +
1

1

=
9

−5
∼

9

4
.

This knot is the knot 61.
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Figure 12: The knot 61 is a Chebyshev knot

Example 2: the knot 817

The famous 817 knot is non invertible and strongly (−)amphicheiral (see [Kaw] p. 128).
It is a 3-bridge knot. The Chebyshev curve T6(x) = T5(y) is one of its diagrams. It can

Figure 13: The knots 817 and its reverse as Chebyshev knots

be parametrized by x = T5(t), y = T6(t), z = T33(t + 1
67 ). The knot parametrized by

x = T5(t), y = T6(t), z = T33(t−
1
67 ) is the reversed image of 817 by a half-turn about the y

axis.

Conclusion

Since every knot is a Chebyshev knot, we shall give here some diagrams of 2-bridge harmonic
knots, with their Conway-Rolfsen numbering. A bar over a knot name indicates mirror
image.
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31 41 51 52 62

H(3, 4, 5) H(3, 5, 7) H(3, 7, 8) H(4, 5, 7) H(4, 5, 11)

63 71 75 77 87

H(3, 7, 11) H(3, 10, 11) H(4, 7, 9) H(3, 8, 13) H(4, 7, 13)

83 91 917 918

H(3, 11, 13) H(3, 13, 14) H(3, 11, 16) H(4, 9, 11)

920 931 1037 1045

H(4, 7, 17) H(3, 10, 17) H(3, 13, 17) H(3, 11, 19)

We shall now give the complete list of harmonic knots H(5, 6, c). We get 4 = 1
2ϕ(5)ϕ(6)

different types up to mirror symmetry.
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0 52 10159 10116

H(5, 6, 1) H(5, 6, 7) H(5, 6, 13) H(5, 6, 19)

The 10159 knot is the harmonic knot H(5, 6, 13). Its bridge number is equal to 3. Our
Chebyshev parametrization provides an easy proof that it is strongly invertible (compare
[Kaw], Appendix F, p. 254).

In conclusion, we have found a great number of harmonic knots. The classification of
these knots would be an interesting problem.

On the other hand, we showed how to construct a Chebyshev model for any knot. We
hope that these models which have simple equations and simple geometric properties will
be useful to the study of knots.
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