Adapting a Combination Rule to Non-Independent Information Sources - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Adapting a Combination Rule to Non-Independent Information Sources

Résumé

In this article, we address the combination of non-independent sources to solve classification problems, within the theory of belief functions. We show that the cautious rule of combination is well-suited to such problems. We propose a method to learn the combination rule from training data, and we generalize it in the case of complex dependence of the sources. We demonstrate the validity of our approach on several synthetic and real-data sets.
Fichier principal
Vignette du fichier
ipmu2008quost.pdf (128.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00338906 , version 1 (14-11-2008)

Identifiants

  • HAL Id : hal-00338906 , version 1

Citer

Benjamin Quost, Thierry Denoeux, Marie-Hélène Masson. Adapting a Combination Rule to Non-Independent Information Sources. 12th Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), Jul 2008, Spain. p. 448-455. ⟨hal-00338906⟩
102 Consultations
86 Téléchargements

Partager

More