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Abstract

In this article, we address the com-
bination of non-independent sources
to solve classification problems,
within the theory of belief func-
tions. We show that the cautious
rule of combination [1, 2] is well-
suited to such problems. We pro-
pose a method to learn the combi-
nation rule from training data, and
we generalize it in the case of com-
plex dependence of the sources. We
demonstrate the validity of our ap-
proach on several synthetic and real-
data sets.

Keywords: Classification, classifier
combination, sensor fusion; theory
of belief functions.

1 Introduction

The theory of belief functions [11, 15] is a
powerful tool for modelling and manipulat-
ing knowledge. In this framework, beliefs held
by experts are quantified by belief functions.
Various mathematical tools have been pro-
posed for manipulating such items; in par-
ticular, the conjunctive rule of combination
(CoRC) [15, 13] plays a central role in the
theory of belief functions.

As pointed out in [2], a major limitation of
this rule comes from the requirement that the
items of evidence combined be distinct. A
cautious rule of combination (CaRC) was re-
cently proposed [1, 2], allowing the combi-

nation of information coming from non dis-
tinct sources. In a nutshell, it consists in
counting each elementary piece of informa-
tion only once during the combination. It was
also pointed out that both the CoRC and the
CaRC may be seen as elements of infinite fam-
ilies of combination rules.

In this paper, we address a supervised clas-
sification problem, in which several classifiers
C1, . . . Cp provide partial information on the
actual class of a test pattern x. To classify x,
we need to combine the information given by
each of those classifiers. We propose a method
to learn the rule of combination that will give
the best classification results over a set of pat-
terns. We then propose to generalize this
method, by clustering and combining sources
according to their dependency. We demon-
strate the interest of our approach by appling
it to several synthetic and real datasets.

In Section 2, we recall basic knowledge of be-
lief functions and fix notations. In Section 3,
we propose a simple procedure to adapt the
combination rule to a classification problem,
and results are reported in Section 4. The
method is generalized in Section 5, where nu-
merical results are also presented. Section 6
concludes the paper.

2 Fundamentals of Belief Functions

Our approach is based on the Transferable Be-
lief Model (TBM) [11, 15, 14], the main no-
tions of which are recalled in this section.



2.1 Basic Definitions

2.1.1 Representing Items of Evidence

with Belief Functions

Let C be a classifier that provides informa-
tion on the actual class of a test pattern x.
We suppose here that this information may be
quantified by a basic belief assignment (bba)
m, defined as a mapping from 2Ω to [0; 1]
which satisfies

∑
A⊆Ω m(A) = 1 (here, 2Ω de-

notes the powerset of Ω). A subset A ⊆ Ω
such that m(A) > 0 is called a focal set of
m. The empty set ∅ may be a focal set: m(∅)
quantifies the belief that x belongs to none of
the classes of the set Ω. A bba is said to be:

• dogmatic, if Ω is not a focal set;

• simple, if it has at most two focal sets,
including Ω;

• categorical, if it is simple and dogmatic ;

• normal, if ∅ is not a focal set, and sub-
normal otherwise;

• consonant, if all its focal sets A1, . . . , AN

are nested: ∅ ⊆ A1 ⊆ · · · ⊆ AN ⊆ Ω.

Note that any subnormal bba m can be nor-
malized; the resulting bba is defined by:

m∗(A) =
m(A)

1 − m(∅)
, ∀A ⊆ Ω. (1)

We may represent m by its associated plau-
sibility, belief, commonality, or implicability
function, denoted by pl, bel, q, and b, respec-
tively. All are in one-to-one correspondence,
and may be obtained from each other through
linear transformations. For instance, we have:

m(A) =
∑

A⊆B

(−1)|B|−|A|q(B). (2)

2.1.2 Conjunctive Combination and

Decision Making

Two bbas m1 and m2, provided by inde-
pendent classifiers C1 and C2, may be com-
bined using the conjunctive rule of combina-
tion (CoRC) ∩© [13] : for all A ⊆ Ω,

m1 ∩©2(A) =
∑

X∩Y =A

m1(X)m2(Y ). (3)

The resulting bba m1 ∩©2 embeds all the in-
formation provided by C1 and C2. Other com-
bination rules have been defined [4, 18]; how-
ever, they are often criticized for lacking the-
oretical justification, though they may prove
useful in a variety of practical applications.

Once a decision has to be made, a bba m is
transformed into a pignistic probability dis-
tribution [15]. The pignistic transform con-
sists in normalizing m, and then dividing each
mass m∗(A) equally between the ωk ∈ A:

BetP (ωk) =
∑

ωk∈A

m∗(A)

|A|
, ∀ωk ∈ Ω. (4)

We may then write BetP = Bet(m). This
transform is clearly nonlinear. It should also
be remarked that a same BetP generally cor-
responds to various bbas; we may then define:

Bet−1(BetP ) = {m : Bet(m) = BetP} .

In Section 2.2.2, we will present a method for
selecting a bba in Bet−1(BetP ), according to
additional requirements.

2.2 Weights of Belief

Any non dogmatic bba may be represented by
its weight function (wf) w [11, 16]; for exam-
ple, w may be computed from q by:

w(A) =
∏

A⊆B

q(B)(−1)|B|−|A|+1

. (5)

The weights of belief satisfy w(A) ≥ 0, for all
A ⊂ Ω. If w(A) ≤ 1, ∀A ⊂ Ω, the wf is said
to be separable. The smaller is the weight
w(A) < 1, the higher our confidence in A;
weights w(A) > 1 may be interpreted as de-
grees of diffidence to A. In the case of conso-
nant bbas, computing the wf becomes simpler
[2]. Let the pl({ωk}) be ordered by decreasing
order: 1 ≥ pl1 ≥ pl2 ≥ · · · ≥ plK > 0. Then:

w(A) =






pl1 A = ∅,
plk+1

plk
A = Ak, 1 ≤ k < K

1 otherwise .

(6)

The nested focal sets of the resulting bba are
thus Ak = {ω1, . . . , ωk}, for 1 ≤ k ≤ K, or ∅.



Let w1 and w2 be two wfs, and w1 ∩©2 denote
the result of their ∩©-combination; then:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊂ Ω. (7)

The CoRC is commutative and associative.
However, it is not idempotent: combining
the wf corresponding to a separable bba with
itself results in decreasing all the weights
w(A) 6= 1. More generally, ∩©-combining
the outputs of two non-independent classifiers
generally results in counting several times
same items of evidence.

2.2.1 Partial Orderings on Bbas

A partial ordering on the informational con-
tent of two non-dogmatic bbas m1 and m2

may be built, by comparing their correspond-
ing wfs [2]. The bba m1 is w-more committed
than m2, which we write m1 ⊑w m2, iff:

w1(A) ≤ w2(A), for all A ⊂ Ω.

This property is satisfied iff there exists a sep-
arable bba m3 such that m1 = m2 ∩©m3 [2].

The q-ordering [5] is obtained by replacing
w with q: m1 is q-more committed than m2

(m1 ⊑q m2) iff q1(A) ≤ q2(A), for all A ⊂ Ω.
This latter ordering is weaker than the former:
indeed, we have m1 ⊑w m2 ⇒ m1 ⊑q m2,
while the converse is generally not true.

2.2.2 Least q-committed Bba Induced

by a Probability Distribution

The q-ordering may be used to reverse the
pignistic transform. To avoid giving unjusti-
fied support to any A ⊆ Ω, it was proposed
in [6] to select m̂ = Bet−1

qlc(BetP ), the least

q-informative bba m̂ in Bet−1(BetP ):
{

m̂ ∈ Bet−1(BetP ),
m ⊑q m̂, for all m ∈ Bet−1(BetP ).

In [7], it was shown that m̂ is a consonant
bba, that may be obtained by first computing
pl({ωi}) for all 1 ≤ i ≤ K; and then deducing
pl(A), for all A ⊆ Ω with |A| > 1:

pl({ωi}) =
K∑

j=1

min (pi, pj) , (8)

pl(A) = max
ωk∈A

pl({ωk}). (9)

Remark that using (6), the wf may be com-
puted directly with (8): we need not use (9).

2.3 The Cautious Rule of

Combination

A cautious approach in combining two bod-
ies of evidence would consist in counting each
item only once [12, 17, 2], considering that
they may have been built on common infor-
mation. In the most extreme case where the
two bodies are identical, the result should be
the body itself — hence, we seek an idempo-
tent rule. As bringing new evidence aims at
having more precise knowledge of the actual
class of pattern x, the result should not be
less committed than the inputs.

The cautious rule of combination (CaRC) ∧©
consists in applying the min operator, instead
of the product, to the wfs [2]:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω, (10)

where a ∧ b stands for min(a, b), and where
w1 ∧©2 = w1 ∧©w2. The CaRC is associa-
tive, commutative, and idempotent, as is the
min operator. Provided that m1 and m2 be
separable, w1 ∧©2 is obviously at least as w-
committed as both w1 and w2.

Thus, whereas w1 ∩©2(A) depends on both
w1(A) and w2(A), the CaRC retains only the
smallest to compute w1 ∧©2(A) (that is, for
separable bbas, the strongest support to A).

3 Finding a Compromise Between

the CoRC and the CaRC

3.1 Motivations

Both the CoRC and the CaRC may be seen as
“extremal” rules of combination: the former
combines independent bodies of evidence, the
latter, wfs that could have been induced by
identical information. However, information
may be non-distinct, without being identical:
for example, two sensors may observe different
but correlated variables.

Therefore, an intermediate between the CoRC
and the CaRC may be best suited to combine
such information. If we restrict ourselves to



the combination of separable bbas [2], they
may be defined as follows. Both the product
and the min operators being triangular norms
(t-norms) on [0; 1] [10], one may consider a pa-
rameterized family of t-norms, counting both
the product and the minimum as members [2].
Selecting a t-norm, by picking a parameter
value, would implicitly define a combination
rule, intermediate between the CoRC and the
CaRC in the case of separable bbas. One may
consider, for instance, Frank’s family:

x ⊤s y = logs

(
1 +

(sx − 1) (sy − 1)

s − 1

)
, (11)

where logs defines the logarithm function with
base s. Here, parameter s defines the t-norm:
the min operator is retrieved as s → 0, and
the product as s = 1.

3.2 Preliminary Results

We created several two-class datasets, by gen-
erating numbers from a 10-dimensional mul-
tivariate Gaussian distribution, as follows:

• each marginal distribution has mean
µ1 = 0 in class ω1, µ2 = 1 in class ω2,
and variance σ2

1 = σ2
2 = 1 in both classes;

• in each class, the first 9 variables are pair-
wise linearly correlated with coefficient ρ,
the last one is independent of the others.

We trained a classifier (logistic regression [8])
on each variable. For each test point x, we
are thus able to provide p = 10 probability
distributions pi on Ω. Then, we computed
the q-least committed bbas mi whose pignistic
probabilities are pi, using (6) and (8). We
combine the mi, and eventually we classify x.

For various values of s, we computed the av-
erage misclassification rate on ten test sets,
using the corresponding rule of combination.
Figures 1, 2 and 3 show the misclassification
rate as a function of s, together with 95% con-
fidence intervals, for datasets generated using
correlation coefficients ρ = 0.1, ρ = 0.3 and
ρ = 0.9. In these figures, the CoRC and the
CaCR correspond to the rightmost and the
leftmost points of the x axis, respectively.
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Figure 1: Misclassification rate plotted as a
function of s; correlation coefficient ρ = 0.1.
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Figure 2: Misclassification rate plotted as a
function of s; correlation coefficient ρ = 0.3.

For ρ = 0.1 and ρ = 0.9, the best results are
obtained, respectively, using the CoRC and
the CaRC. The former case shows that the
CaRC is sensible to errors: it only considers
the strongest support to each focal set, and
thus may lead to a wrong decision if this sup-
port is erroneous. When ρ = 0.9, the first
9 classifiers have a tendency to provide er-
roneous evidence simultaneously; thus, using
the CaRC enables the 10th classifier to correct
such errors, as its output weights as much as
all the others. When ρ = 0.3, the best results
are obtained for a value of s that corresponds
to an intermediate rule of combination.
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Figure 3: Misclassification rate plotted as a
function of s; correlation coefficient ρ = 0.9.

3.3 Learning the Combination Rule

Given a set of classifiers, we want to learn the
combination rule that will give the best classi-
fication results on new data. We propose here
a method to learn this rule, by selecting the
parameter value optimizing the performances
of the classifiers’ ensemble on a set of data
whose actual class is known.

Rather than computing error rates, we used
a more sensitive criterion based on pignistic
probabilities to estimate these performances.
Let ⊤©s be the parameterized rule of combina-
tion (thereafter abbreviated as PaRC) defined
by some parameter value s. Then, a bba m,
quantifying our belief on the actual class of a
test pattern x, is obtained by combining the
outputs mi of the classifiers evaluating x:

m = m1 ⊤©s . . . ⊤©smp.

Then, finding an adequate value for parame-
ter s can be done by solving:

ŝ = arg min
0≤s≤1

n∑

j=1

∥∥betpj − dj

∥∥2
; (12)

here, given any pattern xj from the validation
set, betpj = (BetPj(ω1), . . . , BetPj(ωK)) is
the pignistic probability distribution obtained
from m, and dj = (dj1, . . . , djn) encodes its
crisp membership to the classes (djk = 1 if
xj ∈ ωk, and 0 otherwise).

We propose to search the parameter space (re-
stricted to ]0; 1]) for ŝ. For example, we can

use a dichotomic search algorithm, stopping
when the width of the interval to search is
less than some constant (e.g., 10−10).

4 Results

We considered five synthetic datasets, gener-
ated as described in Section 3.2, characterised
by ρ = {0.1, 0.3, 0.5, 0.7, 0.9}, and the real-
data sets Ecoli, Glass, Segment, Vowel, and
Waveform from the UCI Machine Learning
Repository. To compute smoother estimates,
we processed the mean of several values of
the error defined by (12) obtained on various
validation sets. These sets were either gen-
erated apart when possible — on each syn-
thetic dataset, 5000 validation patterns were
generated in each class — or obtained from
the training sets via 5 × 2 cross-validation.

Table 1 gives the number of classes, of fea-
tures, and the numbers of patterns in the
training and test sets.

Table 1: Description of the datasets.
dataset # classes # features

Synthetic 2 10

Ecoli 8 7

Glass 6 9

Segment 7 19

Vowel 11 10

Waveform 3 21

dataset number of patterns

training test

Synthetic 2000 10000

Ecoli 201 135

Glass 139 75

Segment 1400 910

Vowel 528 462

Waveform 1491 3509

For each dataset, we trained a classifier (logis-
tic regression) on each variable, by the pro-
cedure described in Section 3.2. Error rates
obtained with the CoRC, the CaRC, and the
PaRC corresponding to the optimal parame-
ter value, are provided in Table 2, together
with 95% confidence intervals. The best re-



sult is underlined, and printed in bold as well
as results that were not judged significantly
different by a McNemar test [3] at level 5%.

Table 2: Error rates of the CoRC, the CaRC
and the PaRC, and 95% confidence intervals.

data CoRC PaRC (bs) CaRC

Synth. 11.45 11.46 (0.75) 15.68
ρ = 0.1 [11.00;11.89] [11.01;11.90] [15.18;16.19]

Synth. 18.64 18.58 (0.5) 20.23
ρ = 0.3 [18.11;19.18] [18.04;19.12] [19.67;20.79]

Synth. 23.17 22.61 (9.8e-4) 22.98
ρ = 0.5 [22.59;23.75] [22.03;23.18] [22.40;23.56]

Synth. 25.77 24.51 (1.2e-10) 24.50

ρ = 0.7 [25.16;26.38] [23.91;25.11] [23.91;25.10]

Synth. 27.51 24.23 (0) 24.23

ρ = 0.9 [26.89;28.13] [23.64;24.83] [23.64;24.83]

Ecoli 44.44 37.04 (0) 37.04

[36.06;52.83] [28.89;45.18] [28.89;45.18]

Glass 49.33 45.33 (0.25) 45.33

[38.02;60.65] [34.07;56.60] [34.07;56.60]

Segm. 18.35 15.71 (0) 15.71

[15.84;20.87] [13.35;18.08] [13.35;18.08]

Vowel 55.84 56.71 (7.8e-3) 56.71

[51.32;60.37] [52.19;61.23] [52.19;61.23]

Wave. 16.93 16.13 (0) 16.53

[15.69;18.17] [14.91;17.35] [15.30;17.76]

We may remark on the synthetic datasets that
all error rates increase with the correlation of
the features. This is not surprising, as less in-
formation becomes then available. The CoRC
yields obviously the best results when the cor-
relation is low, and the CaRC when it is high.
The PaRC is close to the CoRC for ρ = 0.1;
when ρ = 0.3 or ρ = 0.5, it is truly intermedi-
ate between the CoRC and the CaRC; when
ρ = 0.7 and ρ = 0.9, learning the combination
rule yields the CaRC itself.

On the real data sets, the CaRC was always
learnt, except on the Waveform dataset for
which an intermediate rule was learnt. The
optimized rule gave the best results, except
on the Vowel dataset, for which the CoRC
performed better. The reason may be that
the training and test distributions differ.

5 Refined Combination of Sources

The method presented above consists in
adapting a unique combination rule to non-
independent data. It relies on the implicit as-
sumption that all the classifiers have the same
pairwise dependency, which may be too sim-
plistic. For example, in the synthetic datasets
we generated, all the sources share the same
dependency but one, which is conditionally in-
dependent on the others.

A distance dJ between two (normal) bbas m1

and m2 was defined in [9], by:

dJ (m1,m2) =

√
(m1 − m2) D (m1 − m2)

⊤

2
,

(13)
with an element DA,B of matrix D defined by:

DA,B =
A ∩ B

A ∪ B
, ∀A 6= ∅, B 6= ∅. (14)

We computed the average distance between
the outputs of each pair of classifiers, using
(13)-(14). Figures 4 to 6 show the dendro-
grams representing the hierarchy built upon
the shortest distance: at distance d̂J , two sets
of classifiers are aggregated iff we can find a
classifier in each set such that their distance
to each other is d̂J . While for ρ = 0.1, the
average distances range quite uniformly, for
ρ = 0.3 and ρ = 0.9 we can see that the tenth
classifier is clearly separated from the others.
Clustering the classifiers would lead to group
the first nine, and leave the tenth one alone.

Hence, we can define a hierarchical rule of
combination: the classifiers are clustered ac-
cording to their pairwise average distances;
their outputs are first combined in each clus-
ter, and the resulting bbas are then combined.

We applied this combination strategy of the
classifiers to the five synthetic data sets gen-
erated. We combined the first nine classifiers
using a combination rule learnt as described in
Section 3.3, and then we combined the tenth
classifier using the CoRC. Table 3 shows the
error rates (again, together with 95% confi-
dence intervals) thus obtained. These rates
were printed in bold when judged significantly
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Figure 4: Dendrogram of the average dis-
tances between the classifiers; ρ = 0.1.
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Figure 5: Dendrogram of the average dis-
tances between the classifiers; ρ = 0.3.

lower (by a McNemar test at level 5%) than
the best rate given in Table 2.

These results are better than those obtained
with other rules; the differences are significant
except for ρ = 0.1. That demonstrates the
interest of modeling all the knowledge on the
dependency of the variables. One may also
remark that the rule learnt is closer to the
CaRC than previously: the reason is that the
10th classifier (which is independent) is not
considered in the learning step any more.

6 Conclusions

In this article, we addressed the problem of
combining multiple sources for solving a clas-
sification problem. We concentrated on prob-
lems where the information sources are not
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Figure 6: Dendrogram of the average dis-
tances between the classifiers; ρ = 0.9.

Table 3: Error rates and confidence intervals
given by a hierarchical rule of combination.

dataset results (bs)

Synth. 11.34 (0.5)

ρ = 0.1 [10.91;11.78]

Synth. 17.66 (0.0625)

ρ = 0.3 [17.14;18.19]

Synth. 20.87 (4.75e-7)

ρ = 0.5 [20.31;21.43]

Synth. 22.68 (0)

ρ = 0.7 [22.10;23.27]

Synth. 23.91 (0)

ρ = 0.9 [23.32;24.51]

independent. We studied the influence of the
combination rule on classification results. We
considered the commonly used Dempster’s
rule of combination [11], and the cautious rule
of combination [1, 2]. The former requires
that the combined sources be independent;
the latter pools sources that may be provide
identical information. We proposed to define
a family of rules for separable bbas enclosing
both as extremal cases, and to learn the rule
that best suits the data processed.

On real data, the cautious rule often yields
the best classification results, although we
showed that Dempster’s rule, or some rule in-
termediate between Dempster’s rule and the
cautious rule, may also give the best perfor-
mances. Having demonstrated the validity
of this method, we refined it by clustering
classifiers using the average distance between



their outputs. Thus, combination may be pro-
cessed first within each cluster, the resulting
bbas being then combined together.

Future work will focus on two points. First,
we may cluster automatically the set of
sources. In addition, searching the parameter
space for several optimal values becomes com-
putationally demanding when several rules
have to be learnt. Efforts should be thus di-
rected on deducing the combination rule of
two (clusters of) classifiers using distances be-
tween classifier outputs.
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