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On the stabilization of permanently excited linear systems∗

Yacine Chitour† Mario Sigalotti‡

Abstract

We consider control systems of the type ẋ = Ax+α(t)bu, where u ∈ R, (A, b) is a controllable
pair and α is an unknown time-varying signal with values in [0, 1] satisfying a permanent excitation

condition i.e.,
∫ t+T

t
α ≥ µ for every t ≥ 0, with 0 < µ ≤ T independent on t. We prove that such

a system is stabilizable with a linear feedback depending only on the pair (T, µ) if the real part
of the eigenvalues of A is non-positive. The stabilizability does not hold in general for matrices
A whose eigenvalues have positive real part. Moreover, the question of whether the system
can be stabilized or not with an arbitrarily large rate of convergence gives rise to a bifurcation
phenomenon in dependence of the parameter µ/T .

1 Introduction

The present paper is a continuation of [9], where the study of general n-dimensional linear systems
subject to scalar persistently excited PE-signals was initiated. Such a linear time-dependent system
is given by

ẋ = Ax + α(t)Bu , (1)

where the function α is a scalar PE-signal i.e., α takes values in [0, 1] and there exist two positive
constants µ, T such that, for every t ≥ 0,

∫ t+T

t
α(s)ds ≥ µ. (2)

Given two positive real numbers µ ≤ T , we use G(T, µ) to denote the class of all PE signals verifying
(2).

In (1), the PE-signal α can be seen as an input perturbation modeling the fact that the instants
where the control u acts on the system are not exactly known. If α only takes the values 0 and 1, then
(1) actually switches between the uncontrolled system ẋ = Ax and the controlled one ẋ = Ax + Bu.
In that context, the PE condition (2) is designed to guarantee some action on the system. (For a
more detailed discussion on the interpretation of permanently excited systems and on the related
literature, see [9].)

Our main concern will be the global asymptotic stabilization of system (1) with a constant linear
feedback u = −Kx where the gain matrix K is required to be the same for all signals in the
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considered class G(T, µ) i.e., K depends only on A, b, T, µ and not on a specific element of G(T, µ).
We refer to such a gain matrix K as a (T, µ)-stabilizer. It is clear that (A,B) must be stabilizable for
hoping that a (T, µ)-stabilizer exists and we will suppose that throughout the paper. Moreover, by
standard linear algebra considerations, the stabilizability analysis can be reduced to the case where
(A,B) is controllable.

The questions studied in this paper find their origin in a problem stemming from identification
and adaptive control (cf. [3]). Such a problem deals with the linear system ẋ = −P (t)u, where the
matrix P (·) is symmetric non-negative definite and plays the role of α. If P ≡ I, then u∗ = x trivially
stabilizes the system exponentially. But what if P (t) is only semi-positive definite for all t? Under
which conditions on P does u∗ = x still stabilize the system? The answer for this particular case,
can be found in the seminal paper [12] which asserts that, if x ∈ Rn and P ≥ 0 is bounded and has
bounded derivative, it is necessary and sufficient, for the global exponential stability of ẋ = −P (t)x,
that P is also persistently exciting (PE) i.e., that there exist µ, T > 0 such that

∫ t+T

t
ξ⊤P (τ)ξ ≥ µ, (3)

for all unitary vectors ξ ∈ Rn and all t ≥ 0. Therefore, as regards the stabilization of (1), the notion
of persistent excitation seems to be a reasonable additional assumption on the signals α.

Let us recall the main results of [9]. We first addressed the issue of controllability of (1), uniformly
with respect to α ∈ G(T, µ). We proved that, if the pair (A,B) is controllable, then (1) is (completely)
controllable in time t if and only if t > T −µ. We next focused on the existence of (T, µ)-stabilizers.
We first treated the case where A is neutrally stable and we showed that in this case the gain K = BT

is a (T, µ)-stabilizer for system (1) (see also [3]). Note that in the neutrally stable case K does not
even depend on the specific class G(T, µ). We next turned to the case where A is not stable. In such a
situation, even in the one-dimensional case, a stabilizer K cannot be chosen independently of (T, µ).
In [9], we considered the first nontrivial unstable case, namely the double integrator ẋ = J2x+αb0u,
with J2, the 2× 2 Jordan block and b0 = (0, 1)T . We showed that, for every pair (T, µ), there exists
a (T, µ) stabilizer for ẋ = J2x + αb0u, α ∈ G(T, µ).

In this paper, we provide two sets of results. The first one concerns the stabilization of (1)
when the control is scalar-valued. Given two arbitrary constants 0 < µ ≤ T , we prove the existence
of a (T, µ)-stabilizer when the eigenvalues of A have non-positive real part. The second set of
results concerns the possibility of obtaining an arbitrary rate of convergence once the stabilization
is achieved. We essentially focus on the two-dimensional case and we point out an interesting
phenomenon: there exists ρ∗ ∈ (0, 1) so that, for every controllable two-dimensional pair (A, b) and
0 < µ ≤ T such that µ/T ≤ ρ∗, the maximal rate of convergence of ẋ = Ax + αbu, α ∈ G(T, µ), is
finite. Here maximality is evaluated with respect to all possible (T, µ)-stabilizers. As a consequence,
we prove the existence of matrices A (e.g. J2 + λId2 with λ large enough) such that for every
0 < µ ≤ T with µ/T ≤ ρ∗, the PE system ẋ = Ax + αbu, α ∈ G(T, µ), does not admit (T, µ)-
stabilizers. The latter result is rather surprising when one compares it with the following two facts:
let ρ ∈ (0, 1]; (i) a sequence (αn), with αn ∈ G(Tn, ρTn) and limn→+∞ Tn = 0, has at least one weak-⋆
limit point α⋆ taking values in [ρ, 1] (see Lemma 2.5) and (ii) the two-dimensional switching system
ẋ = J2x+α⋆b0u can be stabilized, uniformly with respect to α⋆ ∈ L∞(R≥0, [ρ, 1]), with an arbitrary
rate of convergence. The weak-⋆ convergence considered in (i) is the natural one in this context since
it renders the input-output mapping continuous.

Let us briefly comment on the technics used in this paper. First of all, it is clear that the notion of
common Lyapunov function, rather powerful in the realm of switched systems, cannot be of (direct)
help here since, at the differential level, one can evolve with an unstable dynamics ẋ = Ax, when
α = 0 takes the value zero. More refined tools as multiple and non-monotone Lyapunov functions
(see, e.g., [1, 2, 7, 10, 13, 15]) do not seem well-adapted to permanently excited systems, at least for
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what concerns the proof of their stability. It seems to us that one must rather perform a trajectory
analysis, on a time interval of length at least equal to T , in order to achieve any information which
is uniform with respect to α ∈ G(T, µ). This viewpoint is more similar to the geometric approach
to switched system behind the results in [4, 5, 6]. As a second consideration, notice that point
(i) described above, which is systematically used in the paper, presents formal similarities with the
technic of averaging but is rather different from it, since T is not the period of a PE signal. Moreover,
for a given permanently excited system, T is fixed and thus it does not tend to zero.

The paper is organized as follows. In Section 2, we introduce the notations of the paper, the basic
definitions and some useful technical lemmas. We gather in Section 3 the stabilization results for
matrices with spectrum having non-positive real part. Finally, the analysis of the maximal rates of
convergence and divergence is the object of Section 4. Since many of our results give rise to further
challenging questions, we propose in the course of the paper several conjectures and open problems.

2 Notations and definitions

Let N denote the set of positive integers. Given n and m belonging to N, we use 0n×m to denote
the n × m matrix made of zeroes, Mn(R) the set of real-valued n × n matrices, and Idn the n × n
identity matrix. We also write 0n for 0n×1, σ(A) for the spectrum of a matrix A ∈ Mn(R), and ℜ(λ)
(respectively, ℑ(λ)) for the real (respectively, imaginary) part of a complex number λ.

Definition 2.1 (PE signal and (T, µ)-signal) Let µ ≤ T be positive constants. A (T, µ)-signal is
a measurable function α : R≥0 → [0, 1] satisfying

∫ t+T

t
α(s)ds ≥ µ , ∀t ∈ R≥0 . (4)

We use G(T, µ) to denote the set of all (T, µ)-signals. A PE signal is a measurable function α :
R≥0 → [0, 1] such that there exist T, µ positive real numbers for which α is a (T, µ)-signal.

Definition 2.2 (PE system) Given two positive constants µ ≤ T and a controllable pair (A, b) ∈
Mn(R) × Rn, we define the PE system associated to T, µ,A, and b as the family of linear control
systems given by

ẋ = Ax + αub, α ∈ G(T, µ). (5)

Given a PE system (5), we address the following problem. We want to stabilize (5) uniformly with
respect to every (T, µ)-signal α, i.e., we want to find a vector K ∈ Rn which makes the origin of

ẋ = (A − α(t)bKT )x (6)

globally asymptotically stable, with K depending only on A, b, T and µ.
More precisely, referring to x(· ; t0, x0,K, α)as the solution of (6) with initial condition x(t0; t0, x0,K, α) =

x0, we introduce the following definition.

Definition 2.3 ((T, µ)-stabilizer) Let µ ≤ T be positive constants. The gain K is said to be a
(T, µ)-stabilizer for (5) if (6) is globally asymptotically stable, uniformly with every (T, µ)-signal α.
Since (6) is linear in x, this is equivalent to say that (6) is exponentially stable, uniformly with respect
to α ∈ G(T, µ), i.e., there exist C, γ > 0 such that every solution x(· ; t0, x0,K, α) of (6) satisfies

‖x(t; t0, x0,K, α)‖ ≤ Ce−(t−t0)γ‖x0‖, ∀t ≥ t0.

The next two lemmas collect some properties of PE signals.
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Lemma 2.4 1. If α(·) is a (T, µ)-signal, then, for every t0 ≥ 0, α(t0 + ·) is a (T, µ)-signal as
well.

2. If 0 < ρ′ < ρ and T > 0 then G(T, ρT ) ⊂ G(T, ρ′T ).

3. For η ∈ (0, µ), G(T, µ) ⊂ G(T + η, µ) ∩ G(T − η, µ − η).

4. If T ≥ τ > 0 and ρ > 0, then G(τ, ρτ) ⊂ G(T, (ρ/2)T ).

5. For every 0 < ρ′ < ρ there exists M > 0 such that for every T ≥ Mτ > 0 one has G(τ, ρτ) ⊂
G(T, ρ′T ).

Proof. We only provide an argument for points 4 and 5. Fix t ≥ 0, T ≥ τ , ρ > 0 and α ∈ G(τ, ρτ).

Let l be the integer part of T/τ . Since l ≥ max(1, T/τ − 1), then
∫ t+T
t α ≥ lρτ ≥ max(τ, T − τ)ρ ≥

Tρ/2. For ρ′ ∈ (0, ρ) and T/τ large enough, then max(τ, T − τ) ≥ (ρ′/ρ)T and so
∫ t+T
t α ≥ ρ′T . �

Let

b0 =

(

0
1

)

, A0 =

(

0 1
−1 0

)

.

Recall that an element f of L∞(R≥0, [0, 1]) is the weak-⋆ limit of a sequence (fk)k∈N of elements
of L∞(R≥0, [0, 1]) if, for every g ∈ L1(R≥0,R),

∫ ∞

0
f(s)g(s)ds = lim

k→∞

∫ ∞

0
fk(s)g(s)ds. (7)

It is well known that L∞(R≥0, [0, 1]) endowed with the weak-⋆ topology is compact (see, for instance,
[8]). Hence, G(T, µ) is weak-⋆ compact for every 0 < µ ≤ T . Unless specified, limit points of sequences
of PE signals are to be understood as limits of subsequences with respect to the weak-⋆ topology of
L∞(R≥0, [0, 1]).

Lemma 2.5 Let (α(n))n∈N and (νn)n∈N be, respectively, a sequence of (T, µ)-signals and an increas-
ing sequence of positive real numbers such that limn→∞ νn = ∞.

1. Define αn as the (T/νn, µ/νn)-signal given by αn(t) = α(n)(νnt) for t ≥ 0. If α⋆ is a limit point
of the sequence (αn)n∈N, then α⋆ takes values in [µ/T, 1] almost everywhere.

2. Let j0 ∈ {0, 1} and h ∈ N. Let ωj, j = j0, . . . , h be real numbers with ωj = 0 if and only if
j = 0 and {±ωj} 6= {±ωl} for j 6= l. For every t ≥ 0, let

v(t) =











1
eω1A0tb0

...
eωhA0tb0











if j0 = 0 or v(t) =







eω1A0tb0
...

eωhA0tb0






if j0 = 1.

For every signal α and every t ≥ 0, define

αC(t) = α(t)v(t)v(t)T . (8)

Then αC is a time-dependent non-negative symmetric (2h + 1− j0)× (2h + 1− j0) matrix with
αC ≤ Id2h+1−j0 and there exists ξ > 0 only depending on T, µ and ωj0, . . . , ωh such that, for
every t ≥ 0,

∫ t+T

t
αC(τ)dτ ≥ ξ Id2h+1−j0 . (9)
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Therefore, αC may be considered as a matrix-valued PE signal. Moreover, define αC
n (t) =

(α(n))C(νnt) for every t ≥ 0 and every n ∈ N. If αC
⋆ is a limit point of the sequence (αC

n )n∈N for
the weak-⋆ topology of L∞(R≥0,M2h+1−j0(R)), then αC

⋆ ≥ (ξ/T )Id2h+1−j0 almost everywhere.

Proof. Let us first prove point 1. Let α⋆ be the weak-⋆ limit of some sequence (αnk
)k≥1. For every

interval J ⊂ R≥0 of finite length |J | > 0, apply (7) by taking as g the characteristic function of J .
Since each αnk

is a (T/νnk
, µ/νnk

)-signal, it follows that

1

|J |

∫

J
α⋆(s)ds = lim

k→∞

1

|J |

∫

J
αnk

(s)ds ≥ lim inf
k→∞

µ

|J |νnk

I
( |J |νnk

T

)

=
µ

T
,

where I(·) denotes the integer part. Since α⋆ is measurable and bounded (actually, L1
loc would be

enough), almost every t > 0 is a Lebesgue point for α⋆, i.e., the limit

lim
ε→0+

1

2ε

∫ t+ε

t−ε
α⋆(s)ds

exists and is equal to α⋆(t) (see, for instance, [14]). We conclude that, as claimed, α⋆(t) ≥ µ/T
almost everywhere.

For the first part of point 2 fix t ≥ 0 and notice that the map

α 7→
∫ t+T

t
αC(τ)dτ

is continuous with respect to the weak-⋆ topology and takes values in the set of non-negative sym-
metric matrices. If we prove that all such matrices are positive definite then, by weak-⋆ compactness
of G(T, µ), we deduce the existence of ξ > 0 independent of α such that (9) holds true. (The inde-
pendence of ξ with respect to t follows from the shift-invariance of G(T, µ) pointed out in Lemma 2.4,
point 1.) Assume by contradiction that there exist α ∈ G(T, µ) and x0 ∈ R2h+1−j0 \ {02h+1−j0} such

that
∫ t+T
t xT

0 αC(τ)x0dτ = 0. Then, for almost every s ∈ [t, t + T ], we would have α(s)xT
0 v(s) = 0.

Since α(s) 6= 0 for s in a set of positive measure, we deduce that the real-analytic function xT
0 v(·)

takes the value zero on a set of positive measure, i.e. it is identically equal to zero. Let AC
0 =

diag(1, ω1A0, . . . , ωhA0) if j0 = 0 or AC
0 = diag(ω1A0, . . . , ωhA0) if j0 = 1. Then xT

0 (AC
0 )jv(0) = 0

for every non-negative integer j. The contradiction is reached, since (AC
0 , v(0)) is a controllable pair

and x0 6= 02h+1−j0 .
As for the second part of point 2, we follow the same argument used to prove point 1, noticing

that, for every t ≥ 0,
∫ t+ T

νn

t
αC

n (τ)dτ ≥ ξ

νn
Id2h+1−j0 .

3 Spectra with non-positive real part

We consider here below the problem of whether a controllable pair (A, b) gives rise to a PE system
that can be (T, µ)-stabilized for every choice of 0 < µ ≤ T . We will see in the Section 4 that this
cannot in general be done if the real part of the eigenvalues of A is too large. The scope of this
section is to study the case in which each eigenvalue of A has non-positive real part.

Theorem 3.1 Let (A, b) ∈ Mn(R) × Rn be a controllable pair and assume that the eigenvalues of
A have non-positive real part. Then, for every 0 < µ ≤ T there exists a (T, µ)-stabilizer for (1).

5



Since the proof of Theorem 3.1 is technical, we prefer to clarify its main ideas by first showing
the theorem in the special case of the n-integrator.

Let Jn ∈ Mn(R) be defined as

Jn =























0 1 0 · · · · · · 0
0 0 1 0 · · · 0

...
. . .

. . .
...

0 · · · 0 1
0 · · · · · · 0























.

Theorem 3.2 Let A = Jn and b = (0, . . . , 0, 1)T ∈ Rn. Then, for every 0 < µ ≤ T there exists a
(T, µ)-stabilizer for (1).

Proof. In the special case of the n-integrator system (6) becomes
{

ẋj = xj+1, for j = 1, . . . , n − 1,
ẋn = −α(t)(k1x1 + · · · + knxn) ,

(10)

where K = (k1, . . . , kn)T .
For every ν > 0, define Dn,ν = diag(νn−1, . . . , ν, 1). As done in [9] in the case n = 2, one easily

checks that, in accordance with

νD−1
n,νJnDn,ν = Jn, Dn,νb = b, (11)

the time-space transformation

xν(t) = D−1
n,νx(νt) , ∀t ≥ t0

ν
, (12)

of the trajectory x(·) = x(· ; t0, x0,K, α) satisfies

d

dt
xν(t) = Jnxν(t) − α(νt)νbKT Dn,νxν(t),

that is,
xν(·) = x(· ; t0/ν,D−1

n,νx0, νDn,νK,α(ν ·)).
As a consequence, (10) admits a (T, µ)-stabilizer if and only if it admits a (T/ν, µ/ν)-stabilizer.
(More precisely, K is a (T, µ)-stabilizer if and only if νDn,νK is a (T/ν, µ/ν)-stabilizer.)

We prove Theorem 3.2 by contradiction, fixing a suitable gain K and assuming that it is not
a (T/ν, µ/ν)-stabilizer, whatever the value of ν. Therefore, for every ν > 0 there exists αν ∈
G(T/ν, µ/ν) that destabilizes, in a suitable sense, (10). Considering all the possible limit points of
(αν)ν>0 as ν → ∞ (see point 1 of Lemma 2.5), we introduce the limit switched system

{

ẋj = xj+1, for j = 1, . . . , n − 1,
ẋ2 = −α⋆(t)(k1x1 + · · · + knxn), α⋆(t) ∈ [µ/T, 1].

(13)

The gain K will be selected by asking it to stabilize (13). In order to check the existence of such
a stabilizer, assume that k1 6= 0 and define X1 = k1x1 + · · · + knxn, X2 = k1x2 + · · · + kn−1xn, . . . ,
Xn = k1xn. Although such a change of variables depends on K, the uniformly exponential global
asymptotic stabilizability of (13) is clearly equivalent to that of

Ẋj = Xj+1 − α⋆k̄jX1, j = 1, . . . , n, α⋆(t) ∈ [µ/T, 1], (14)
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where k̄j = kn+1−j and, by convention, Xn+1 = 0n. The stabilizability of (14) results from the
existence of K ∈ Rn, a scalar γ > 0 and a symmetric positive definite n × n matrix S such that

(Jn − ᾱK(1, 0, . . . , 0))
T
S + S(Jn − ᾱK(1, 0, . . . , 0)) ≤ −γIdn, (15)

for every (constant) ᾱ ∈ [µ/T, 1]. The existence of such K, γ and S is proved in Gauthier and Kupka
[11, Lemma 4.0] (where it is attributed to W.P. Dayawansa).

This proves the stabilizability of (13). Fix a stabilizing feedback K and a positive definite matrix
S′ such that V (x) = xT S′x defines a quadratic Lyapunov function that decreases uniformly on every
trajectory of (13). In particular, there exists a time τ such that every trajectory of (13) starting in
BV

2 = {x ∈ Rn | V (x) ≤ 2} at time 0 lies in BV
1 = {x ∈ Rn | V (x) ≤ 1} for every time larger than τ .

Assume now by contradiction that, for every l ∈ N, K does not uniformly contract every trajectory
corresponding to a (T/l, µ/l)-signal starting from BV

2 into BV
1 in time 2τ . In particular, there exist

a sequence of initial conditions (x0,l)l∈N ⊂ BV
2 , a sequence of times (tl)l∈N ⊂ [2τ, 4τ ] and a sequence

of signals (αl)l∈N such that αl ∈ G(T/l, µ/l) and

x(tl; 0, x0,l,K, αl) 6∈ BV
1 for every l ∈ N. (16)

By compactness of BV
2 × [2τ, 4τ ] and by weak-⋆ compactness of L∞(R≥0, [0, 1]), we can assume that,

up to extracting a subsequence, x0,l → x0,⋆ ∈ BV
2 , tl → t⋆ ∈ [2τ, 4τ ] and αl converges weakly-⋆ to

α⋆ ∈ L∞(R≥0, [0, 1]) as l goes to infinity. Then x(tl; 0, x0,l,K, αl) converges, as l goes to infinity,
to x(t⋆; 0, x⋆,K, α⋆) (see [9, Appendix] for details). Since α⋆ ≥ µ/T almost everywhere (point 1 of
Lemma 2.5), then α⋆ can be taken as an admissible signal in (13).

By homogeneity of the linear system (13) and because t⋆ ≥ 2τ , we have that

V (x(t⋆; 0, x⋆,K, α⋆)) ≤ 1/2.

Therefore, for l large enough x(tl; 0, x0,l,K, αl) ∈ BV
1 contradicting (16). �

Let us now follow the same scheme of proof as above to tackle Theorem 3.1. The main technical
difficulties come from the fact that A may have several Jordan blocks of different sizes.

Proof of Theorem 3.1. Fix a controllable pair (A, b) ∈ Mn(R) × Rn. Thanks to simple linear
algebra considerations (see [9, Lemma 9] for details), we can assume, with no loss of generality,
that all eigenvalues of A lie on the imaginary axis. Denote the distinct eigenvalues of A by ±iωj,
j ∈ {j0, j0 + 1, . . . , h}, where j0 = 1 if 0 6∈ σ(A) and j0 = 0 with ω0 = 0 otherwise. For every
j ∈ {0, . . . , h}, let rj be the multiplicity of iωj , with the convention that r0 = 0 if 0 6∈ σ(A).

Assume that A is decomposed in Jordan blocks. Since (A, b) is controllable, then A has a unique
(complex) Jordan block associated with each {iωj ,−iωj}, j0 ≤ j ≤ h. (Otherwise, the rank of
the matrix (A − iωjIdn | b) would be strictly smaller than n, contradicting the Hautus test for
controllability.) Therefore, for every j = 1, . . . , h, the Jordan block associated to iωj is ωjA

(j) + JC
rj

,

where A(j) = diag(A0, . . . , A0) ∈ M2rj
(R) and JC

rj
∈ M2rj

(R) is defined as

JC
rj

=























02×2 Id2 02×2 · · · · · · 02×2

02×2 02×2 Id2 02×2 · · · 02×2

...
. . .

. . .
. . .

. . .
...

02×2

02×2 · · · 02×2 02×2 Id2

02×2 · · · · · · 02×2 02×2























,

that is, in terms of the Kronecker product, JC
rj

= Jrj
⊗ Id2.
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All controllable linear control systems associated with a pair (A, b) that have in common the
eigenvalues of A, counted according to their multiplicity, are state-equivalent, since they can be
transformed by a linear transformation of coordinates into the same system under companion form.
We exploit such an equivalence to deduce that, up to a linear transformation of coordinates, (1) can
be written as

{

ẋ0 = Jr0x0 + αb0u,

ẋj = (ωjA
(j) + JC

rj
)xj + αbju, for j = 1, . . . , h,

(17)

where b0 and bj are respectively the vectors of Rr0 and R2rj with all coordinates equal to zero except
the last one that is equal to one. Here x0 ∈ Rr0 and xj ∈ R2rj for j = 1, . . . , h

Write the feedback law as u = −KTx = −KT
0 x0 −

∑h
l=1 KT

l xl with K0 ∈ Rr0 and Kj ∈ R2rj for
every 1 ≤ j ≤ h.

For every ν > 0 consider the following change of time-space variables: applying to x0 the same
transformation as in (12), let

y0(t) = D−1
r0,νx0(νt).

Define, moreover,

yj(t) = (DC
rj ,ν)

−1e−νtA(j)
xj(νt), for 1 ≤ j ≤ h,

where
DC

rj ,ν = Drj ,ν ⊗ Id2 ∈ M2rj
(R).

In accordance with
ν(DC

rj ,ν)
−1JC

rj
DC

rj ,ν = JC
rj

, DC
rj ,νb

j = bj,

we end up with the following linear time-varying system

{

ẏ0 = Jr0y0 − αν(t)b
0
(

KT
0,νy0 +

∑h
l=1 KT

l,νe
νtωlA

(l)
yl

)

,

ẏj = JC
rj

yj − αν(t)b
j,ν(t)

(

KT
0,νy0 +

∑h
l=1 KT

l,νe
νtωlA

(l)
yl

)

, for j = 1, . . . , h,
(18)

where K0,ν = νDr0,νK0, Kj,ν = νDC
rj ,νKj and bj,ν(t) = e−νtωjA(j)

bj for j = 1, . . . , h.
Given ν > 0, (6) admits a (T, µ)-stabilizer if and only if (18) admits a (T/ν, µ/ν)-stabilizer. As

done in the proof of Theorem 3.2, we prove the (T, µ)-stabilizability of (6) reasoning by contradiction.
This is done by fixing a suitable gain K and assuming that Kν = K is not a (T/ν, µ/ν)-stabilizer
of (18), whatever the value of ν. We then consider the possible weak-⋆ limit points as ν tends to
infinity of the time-dependent coefficients in (18) (with an arbitrary choice of αν ∈ G(T/ν, µ/ν) for
every ν > 0). These limit points can be characterized using point 2 of Lemma 2.5. We associate
with (18) a set of limit points as ν tends to infinity, which are linear time-dependent systems of the
type ẏ = A⋆(K, t)y. The time-dependent matrix A⋆(K, ·) happens to take values in a compact set
AK of matrices only depending on T, µ,A and K. The final contradiction is reached by proving the
existence of K only depending on T, µ and A so that all the matrices in AK are Hurwitz and admit
a common quadratic Lyapunov function.

In order to identify the possible weak-⋆ limit points of system (18), let us compute the weak-⋆

limit points of αν(t)b
j,ν(t)KT

l etνωlA
(l)

, j0 ≤ j, l ≤ h, as ν tends to infinity.
For each l = 1, . . . , h, we chose the feedback KT

l of the form (0, kl
1, . . . , 0, k

l
rl

), that is,

KT
l = Kl ⊗ (0, 1), Kl = (kl

1, . . . , k
l
rl
).

For uniformity of notations, we also write K0 = KT
0 .

Recall that (αν)ν>0 is any family of signals satisfying αν ∈ G(T/ν, µ/ν) for every ν > 0.
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Consider a sequence (νn)∈N going to infinity as n → ∞ such that the matrix-valued curve αC
νn

(·)
(defined as in (8)) has a weak-⋆ limit as n → ∞ in L∞(R≥0,M2h+1−j0(R)). Denote the weak-⋆ limit
by C⋆. Using point 2 of Lemma 2.5, one deduces that C⋆(t) is symmetric and

C⋆(t) ≥ ξId2h+1−j0 ,

for almost every t ≥ 0, for some positive scalar ξ only depending on T, µ and σ(A).
Define the 2 × 2 time-dependent matrices Cjl, 1 ≤ j, l ≤ h, the 1 × 2 time-dependent matrices

C0j , 1 ≤ j ≤ h, and the scalar time-dependent signal C00 by the relation

C⋆ = (Cjl)j0≤j,l≤h.

Then all coefficients of system (18) are weakly-⋆ convergent along the sequence (νn)n∈N (with
Kνn = K for every n). The limit system obtained taking all such limits is equal to

{

ẏ0 = Jr0y0 − b0
(

C00K0y0 +
∑h

l=1 C0l(Kl ⊗ Id2)yl

)

,

ẏj = JC
rj

yj − (bj ⊗ Id2)
(

CT
0jK0y0 +

∑h
l=1 Cjl(Kl ⊗ Id2)yl

)

, for j = 1, . . . , h.
(19)

In the sequel, we only treat the case where 0 is not an eigenvalue of A. The general case presents
no extra mathematical difficulties and can be treated similarly. Then system (19) takes the form

ẏj = JC
rj

yj − (bj ⊗ Id2)
h

∑

l=1

Cjl(Kl ⊗ Id2)yl, for j = 1, . . . , h. (20)

We also assume that the multiplicities r1, . . . , rh of the eigenvalues of A form a non-increasing se-
quence.

Let us impose a further restriction on the structure of the feedback K. Assume that there exist
k̄1, . . . , k̄r1 ∈ R, each of them different from zero, such that

kl
ξ = k̄rl+1−ξ, for 1 ≤ l ≤ hand 1 ≤ ξ ≤ rl.

We find it useful to provide an equivalent representation of system (20) in a higher dimensional
vector space, introducing some redundant variables. In order to do so, for 1 ≤ l ≤ r1, associate to
y = (y1, . . . , yh) the 2h-vector

Yl =







(K1 ⊗ Id2)(J
C
r1

)l−1y1
...

(Kh ⊗ Id2)(J
C
rh

)l−1yh






.

Notice that the last 2h − 2ml coordinates of Yl are equal to zero, where ml denotes the number of
Jordan blocks of size at least l, that is,

ml = #{j | 1 ≤ j ≤ h, rj ≥ l}.

For 1 ≤ l ≤ r1, let pl be the orthogonal projection of R2h onto R2ml × {02h−2ml
}, i.e.,

pl = diag(Id2ml
, 0(2h−2ml)×(2h−2ml)).

By construction we have p1 = Id2r1 and plYj = Yj for 1 ≤ l ≤ j ≤ r1.
Notice that the map y = (y1, . . . , yh) 7→ (Y1, . . . , Yr1) is a bijection between Rn and the subspace

of R2hr1 defined as follows

Eh
m1,...,mr1

= {(Y1, . . . , Yr1) | Yl ∈ R2h and plYl = Yl for l = 1, . . . , r1}.
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Indeed, the matrix corresponding to the transformation is upper triangular, with the k̄l’s as elements
of the diagonal, if one considers the following choice of coordinates on Eh

m1,...,mr1
: take the first two

coordinates of the first copy of R2h, then the first two of its second copy and so on until the last
copy; then start again with the third and fourth coordinates of the first copy of R2h and repeat the
procedure until its rth

2 copy; and so on.
If y evolves along the dynamics of system (20), then Y = (Y1, . . . , Yr1) is a trajectory in Eh

m1,...,mr1

satisfying the system of equations

Ẏl = Yl+1 − k̄lplC⋆Y1, for l = 1, . . . , r1, (21)

where, by convention, Yr1+1 = 02h.
We are left to prove that there exist k̄1, . . . , k̄r1 6= 0 such that system (21), restricted to Eh

m1,...,mr1
,

is exponentially stable uniformly with respect to C⋆. Notice that such a system is well defined, since
Eh

m1,...,mr1
is invariant for the dynamics of (21).

The following proposition, calqued on [11, Lemma 4.0], states the stabilizability of all systems of
the type (21) defined on Eh

m1,...,mr1
for an arbitrary choice of h, r1 ∈ N and h ≥ m1 ≥ m2 ≥ · · · ≥

mr1 ≥ 0, uniformly with respect to any measurably varying time-dependent symmetric matrix C⋆

satisfying ξId2h ≤ C⋆(t) ≤ Id2h almost everywhere.

Proposition 3.3 For every h, r1 ∈ N, for every non-increasing sequence of non-negative numbers
m1, . . . ,mr1 such that m1 ≤ h and for every ξ > 0, there exist λ, k̄1, . . . , k̄r1 > 0 and a symmetric
positive definite 2hr1 × 2hr1 matrix S such that, for every C⋆ ∈ L∞(R≥0,M2h(R)), if C⋆(t) is
symmetric and satisfies ξId2h ≤ C⋆(t) ≤ Id2h almost everywhere, then any solution Y : R≥0 →
Eh

m1,...,mr1
of (21) satisfies for almost every t ≥ 0 the inequality

d

dt

(

Y (t)T SY (t)
)

≤ −λ‖Y (t)‖2.

Proof. The proof is similar to that of [11, Lemma 4.0] and goes by induction on r1.
We start the argument for r1 = 1, with h ∈ N, 0 ≤ m1 ≤ h and ξ > 0 arbitrary. In that case the

system reduces to
Ẏ1 = −k̄1p1C⋆Y1,

with Y1 ∈ Eh
m1

= R2m1 × {02h−2m1}. The conclusion follows by taking k̄1 = 1 and S = Id2h.
Let r1 be a positive integer. Assume that the proposition holds true for every positive integer

j ≤ r1 and for every h ∈ N, 0 ≤ m1 ≤ · · · ≤ mr1 ≤ h and ξ > 0. Consider system (21) where l runs
between 1 and r1 + 1.

Set Y = (Y T
2 , . . . , Y T

r1+1)
T . Note that if (Y T

1 , . . . , Y T
r1+1)

T ∈ Eh
m1,...,mr1+1

, then Y ∈ Eh
m2,...,mr1+1

.

The dynamics of (Y1, Y ) are given by

{

Ẏ1 = −k̄1C⋆Y1 + Π1Y,

Ẏ = −KC⋆Y1 + J Y,

where

Π1 = (Id2h, 02h×2h(r1−1)),

K =







k̄2p2
...

k̄r1+1pr1+1






,

J = Jr1 ⊗ Id2h.
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Define the linear change of variables (Z1, Z) given by

Z1 = Y1, Z = Y + ΩY1,

where

Ω =







η2p2
...

ηr1+1pr1+1







and the ηl’s are scalar constants to be chosen later. Note that Z belongs to Eh
m2,...,mr1+1

if Y does.

The dynamics of (Z1, Z) are given by

{

Ż1 = (−k̄1C⋆ + Π1Ω)Z1 + Π1Z,

Ż = −
(

(K + k̄1Ω)C⋆ + (J + ΩΠ1)Ω
)

Z1 + (J + ΩΠ1)Z.
(22)

Let us apply the induction hypothesis to the system

Ż = −(J + ΩΠ1)Z, (23)

which is well defined on Eh
m2,...,mr1+1

and has the same structure as system (21). (Here C⋆ ≡ Id2h

and therefore one can take as ξ any positive constant smaller than one.) We deduce the existence of
λ > 0, ηl < 0, 2 ≤ l ≤ r1 +1 and a symmetric positive definite matrix S such that V̇ (t) ≤ −λ‖Z(t)‖2

where V (t) = Z(t)T SZ(t) and Z(t) is any trajectory of (23) in Eh
m2,...,mr1+1

. Therefore,

−
[

(J + ΩΠ1)
T S + S(J + ΩΠ1)

]∣

∣

Eh
m2,...,mr1+1

≤ −λ IdEh
m2,...,mr1+1

.

Since Ω is fixed, for every k̄1 > 0 there exists a unique K(k̄1) such that K(k̄1) + k̄1Ω = 02r1h×2h.
Assume that K = K(k̄1) and notice that the corresponding k̄2, . . . , k̄r1+1 are positive. Our freedom
of choice is now restricted to k̄1 alone.

Choose S′ = (1/2)diag(Id2h, S) and define the corresponding Lyapunov function W (Z1, Z) =
‖Z1‖2/2 + ZTSZ. If (Z1, Z) is a trajectory of (22), then

d

dt
W (Z1, Z) = −ZT

1 ((k̄1C⋆ − Π1Ω)Z1 − Π1Z) − ZT S((J + ΩΠ1)ΩZ1 + (J + ΩΠ1)Z)

≤ ZT
1 (−k̄1C⋆ + Π1Ω)Z1 − λ‖Z‖2 + (‖Π1‖ + ‖S(J + ΩΠ1)Ω‖)‖Z1‖‖Z‖

≤ (−k̄1ξ + δ1)‖Z1‖2 − λ‖Z‖2 + δ2‖Z1‖‖Z‖,

where the constants δ1, δ2 > 0 do not depend on k̄1. Since

‖Z1‖‖Z‖ ≤ ε2‖Z1‖2 +
‖Z‖2

ε2

for every ε > 0, then

d

dt
W (Z1, Z) ≤

(

−k̄1ξ + δ1 +
δ2

ε2

)

‖Z1‖2 + (−λ + ε2δ2)‖Z‖2.

Choosing ε2 small enough in order to have −λ + ε2δ2 ≤ −λ/2 and k̄1 large enough, we have

d

dt
W (Z1, Z) ≤ −λ

2
(‖Z1‖2 + ‖Z‖2).

The proof is concluded, since (Z1, Z) and (Y1, Y ) are equivalent systems of coordinates on the
space Eh

m1,...,mr1+1
. �

The last step of the contradiction argument for the proof of Theorem 3.1 is now completed.
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4 Maximal rates of exponential convergence and divergence

Let (A, b) ∈ Mn(R) × Rn be a controllable pair, T ≥ µ > 0 and K ∈ Rn. For α ∈ G(T, µ) let
λ+(α,K) and λ−(α,K) be, respectively, the maximal and minimal Lyapunov exponents associated
with ẋ = (A − αbKT )x, i.e.,

λ+(α,K) = sup
‖x0‖=1

lim sup
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

, λ−(α,K) = inf
‖x0‖=1

lim inf
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

.

The rate of convergence (respectively, the rate of divergence) associated with the family of systems
ẋ = (A − αbKT )x, α ∈ G(T, µ), is defined as

rc(A, b, T, µ,K) = − sup
α∈G(T,µ)

λ+(α,K) (respectively, rd(A, b, T, µ,K) = inf
α∈G(T,µ)

λ−(α,K)). (24)

Notice that
rc(A, b, T, µ,K) ≤ min

ᾱ∈[µ/T,1]
min{−ℜ(σ(A − ᾱbKT ))}, (25)

and
rd(A, b, T, µ,K) ≤ min

ᾱ∈[µ/T,1]
min{ℜ(σ(A − ᾱbKT ))}.

Moreover, since a linear change of coordinates x′ = Px does not affect Lyapunov exponents, then

rc(A, b, T, µ,K) = rc(PAP−1, P b, T, µ, (P−1)T K), (26)

and
rd(A, b, T, µ,K) = rd(PAP−1, P b, T, µ, (P−1)T K). (27)

Define the maximal rate of convergence associated with the PE system ẋ = Ax+αbu, α ∈ G(T, µ),
as

RC(A,T, µ) = sup
K∈Rn

rc(A, b, T, µ,K), (28)

and similarly, the maximal rate of divergence as

RD(A,T, µ) = sup
K∈Rn

rd(A, b, T, µ,K). (29)

Notice that the definition makes sense, since neither RC(A,T, µ) nor RD(A,T, µ) depend on b,
as it follows from (26) and (27).

Remark 4.1 Let us collect some properties of RC and RD that follow directly from their definition.
First of all, one has

RC(A + λIdn, T, µ) = RC(A,T, µ) − λ, RD(A + λIdn, T, µ) = RD(A,T, µ) + λ. (30)

Then, a simple time-rescaling shows that

RC(A,T, ρT ) = RC(A/T, 1, ρ), RD(A,T, ρT ) = RD(A/T, 1, ρ). (31)

Notice moreover that, thanks to (11), both RC(Jn, T, ρT ) and RD(Jn, T, ρT ) only depend on ρ and
thus are equal to RC(Jn, 1, ρ) and RD(Jn, 1, ρ), respectively. Finally, because of point 2 in Lemma 2.4,
RC and RD are monotone with respect to their third argument.
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Remark 4.2 Given a controllable pair (A, b) and a class G(T, µ) of PE signals, whether or not RC
and RD are both infinite can be understood as whether or not a pole-shifting type property holds
true for the PE control system ẋ = Ax + αbu, α ∈ G(T, µ).

The study of the pole-shifting type property for two-dimensional PE systems actually reduces to
that of their maximal rates of convergence as a consequence of the following property.

Proposition 4.3 Consider the two-dimensional PE systems ẋ = Ax+αbu, α ∈ G(T, µ), with (A, b)
controllable. Then RC(A,T, µ) = +∞ if and only if RD(A,T, µ) = +∞.

Proof. According to (26), (27) and (30), it is enough to prove the result for (A, b) in companion
form and with Tr(A) = 0. Let then

A =

(

0 1
a 0

)

b =

(

0
1

)

, (32)

with a = − det A.
Assume that RC(A,T, µ) = +∞. By definition, for every C > 0 there exists K ∈ R2 such that

rc(A, b, T, µ, k) > C. Therefore, by definition of rc,

lim sup
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

< −C, ∀α ∈ G(T, µ),∀‖x0‖ = 1. (33)

Moreover, due to (25), for C large enough we can assume that k1, k2 and k1/k2 are large positive
numbers.

Let K− = (k1,−k2). We claim that if C is large enough then RD(A, b, T, µ,K−) ≥ C. Assume
by contradiction that there exists ᾱ ∈ G(T, µ) such that λ−(ᾱ,K−) < C. Then there exists x̄ ∈ R2

of norm one and an increasing sequence (tn)n∈N of positive times going to infinity such that

log(‖x(tn; 0, x̄,K−, ᾱ)‖)
tn

< C, ∀ ∈ N.

Notice that for every t ∈ [0, tn],

x(t; 0, x̄,K−, ᾱ(·)) = diag(1,−1)x(tn − t; 0, xn,K, ᾱ(tn − ·)),

where xn = diag(1,−1)x(tn; 0, x̄,K−, ᾱ).
Therefore, by homogeneity,

log
(∥

∥

∥x
(

tn; 0, xn

‖xn‖
,K, ᾱ(tn − ·)

)∥

∥

∥

)

tn
= − log(‖xn‖)

tn
= − log(‖x(tn; 0, x̄,K−, ᾱ)‖)

tn
> −C. (34)

This would contradict (33) if, for some positive integer n, xn/‖xn‖ = x̄ and the signal obtained
by repeating ᾱ|[0,tn) by periodicity over R≥0 belonged to G(T, µ). Indeed, in such a case,

log (‖x (ktn; 0, x̄,K, α̃(·))‖)
ktn

> −C (35)

for every k ≥ 1, where α̃ ∈ G(T, µ) denotes the signal obtained by repeating ᾱ|[0,tn)(tn − ·) by
periodicity over R≥0.

In order to recover the periodic case, we are going to extend ᾱ backwards in time over an
interval [−2µ − τn, 0) as follows. First set A−

1 = A − bKT
−. We take ᾱ = 1 on the intervals

[−µ, 0) and [−2µ − τn,−µ − τ − n) and we extend ᾱ on [−µ − τn,−µ) in such a way that the

13



trajectory corresponding to ᾱ|[−µ−τn,−µ) and to the gain K− connects the half-line R≥0x
+
n to x̄−,

where x+
n = exp(µA−

1 )diag(1,−1)xn and x̄− = exp(−µA−
1 )x̄. We show below that this can be done

fulfilling the PE condition and with τn upper bounded by a constant independent of n. Hence, the
signal obtained extending ᾱ[−2µ−τn,tn] by periodicity belongs to G(T, µ) and we have

x (tn + 2µ + τn; 0, xn,K, ᾱ(tn + 2µ + τn − ·)) ∈ R≥0xn

log

(∥

∥

∥

∥

x

(

tn + 2µ + τn; 0,
xn

‖xn‖
,K, ᾱ(tn + 2µ + τn − ·)

)∥

∥

∥

∥

)

= log (‖x̃‖) − log(‖x(tn; 0, x̄,K−, ᾱ)‖),

where x̃ = x(τn + 2µ; 0,diag(1,−1)x̄,K, ᾱ|[−2µ−τn,0](− ·)). Note that log(‖x̃‖) can be lower bounded
independently of n, because of the uniform boundedness of τn. Therefore,

log (‖x (tn + 2µ + τn; 0, xn,K, ᾱ(tn + 2µ + τn − ·))‖)
tn + 2µ + τn

>
log (‖x̃‖)

tn + 2µ + τn
− Ctn

tn + 2µ + τn

is larger than −C for n large enough and we can conclude as in (35).
We are left to prove that the control system on the unit circle whose admissible velocities are

the projections of the linear vector fields x 7→ (A − ξbKT
−)x, ξ ∈ [0, 1], is completely controllable

in finite time by controls ξ = ξ(t) satisfying the PE condition. Notice that the equilibria of the
projection of a linear vector field x 7→ A′x on the unit circle are given by the eigenvalues of A′. All
other trajectories are heteroclinic connections between the equilibria, unless the eigenvalues of A′ are
non-real, in which case the phase portrait is given by a single periodic trajectory.

Denote by θ a point on the unit circle, identified with R/2πZ. Then, the above mentioned control
system on the unit circle can be written

θ̇ = a cos2(θ) − sin2(θ) + ξ cos(θ) (k2 sin(θ) − k1 cos(θ)) , ξ ∈ [0, 1]. (36)

Note that the required controllability of (36) is proved if we exhibit a trajectory θ̄ of (36) corre-
sponding to a PE control ξ̄, starting at some θ0 ∈ R/2πZ, making a complete turn and going back
in finite time to θ0.

We next build an input function ξ̄ giving rise to such a trajectory θ̄. The PE condition will be
verified by checking that the control ξ̄ = 0 is applied for a total time that is smaller than T − µ.
Define the angle θK ∈ (0, π/2) by

tan (θK) = 2
k2

k1
.

Notice that the eigenvectors of A−
1 are proportional to the vectors (2, k2 ±

√

k2
2 − 4(k1 − a)). There-

fore, assuming that k1 is larger than a, the angle between any real eigenvector of A−
1 and the vertical

axis is smaller than θK .
Take θ0 = π/2 and apply ξ̄ = 0 until θ̄ reaches π/2 − θK . Since k2/k1 is small and θK is of the

same order as k2/k1, then we can assume that a cos2(θ) − sin2(θ) < −1/2 for θ ∈ [π/2 − θK , π/2].
Therefore, the time needed to go from π/2 to π/2−θK can be assumed to be smaller than (T −µ)/2.
When the trajectory θ̄ reaches π/2− θK , switch to ξ̄ = 1 and apply it until θ̄ reaches (in finite time)
−π/2. This is possible since either the eigenvectors of A−

1 are non-real or they are contained in the
cone

{(r cos θ, r sin θ) | r > 0, θ ∈ (π/2 − θK + mπ, π/2 + mπ), m ∈ Z}.
In both cases the dynamics of (36) with ξ = 1 describe a non-singular clockwise rotation on the arc
of the unit circle corresponding to [π/2, π/2 − θK ]. The trajectory is completed, by homogeneity,
taking ξ̄ = 0 until θ̄ reaches −π/2− θK and finally ξ̄ = 1 until θ̄ reaches −3π/2 = π/2 (mod 2π). As
required, the sum of the lengths of the intervals on which ξ̄ = 0 does not exceed T − µ.

This concludes the proof that RC(A,T, µ) = +∞ implies RD(A,T, µ) = +∞. The converse can
be proven by a perfectly analogous argument. �

14



Open problem 1 Does Proposition 4.3 still hold true in dimension bigger than two? Notice that
our argument essentially relies on the controllability of (36) in finite time.

4.1 Arbitrary rates of convergence and divergence for ρ large enough

This section aims at proving that for ρ large enough a permanently excited system can be either
stabilized with an arbitrarily large rate of exponential convergence or destabilized with an arbitrarily
large rate of exponential divergence. This will be done by adapting the classical high-gain technique.

Proposition 4.4 Let n be a positive integer. There exists ρ∗ ∈ (0, 1) (only depending on n) such
that for every controllable pair (A, b) ∈ Mn(R) × Rn, every T > 0 and every ρ ∈ (ρ∗, 1] one has
RC(A,T, ρT ) = RD(A,T, ρT ) = +∞.

Proof. Let T > 0 and (A, b) ∈ Mn(R) × Rn be a controllable pair in companion form. According
to (30), it is enough to establish the result with the extra hypothesis that Tr(A) = 0. We therefore
assume in the sequel that b = (0, . . . , 0, 1)T , A = Jn + bKT

A and KT
Ab = 0.

We first prove the stabilization result. Fix K ∈ Rn such that Jn − bKT is Hurwitz. Let P be
the unique positive definite n × n matrix that solves the Lyapunov equation

(Jn − bKT )T P + P (Jn − bKT ) = −Idn.

Define V (x) = xT Px. Then, for every α ∈ L∞(R, [0, 1]) and every solution of ẋ = (Jn − αbKT )x,
one has

d

dt
V (x(t)) ≤ −C1V (x(t)) + C2(1 − α(t))V (x(t)),

with C1, C2 two positive constants only depending on K. Choose ρ ∈ (0, 1) and assume that α is a
(T, Tρ)-signal. Then, for every t ≥ 0,

V (x(t + T )) ≤ V (x(t)) exp(−T (C1 − C2(1 − ρ))).

Therefore, if ρ > 1 − (C1/2C2) then RC(Jn, T, Tρ) ≥ C1/2 > 0. For every γ > 0, set Kγ = γDγK
(where, as in the previous section, Dγ = diag(γn−1, . . . , γ, 1)). Recall that Jn and Dγ satisfy (11).
Take a solution of ẋ = (A−αbKT

γ )x with α ∈ G(T, ρT ). Set z(·) = Dγx(·) and notice that for every
γ > 1

d

dt
V (z(t)) ≤ γ(−C1 + C2(1 − α(t)) + CA/γ2)V (z(t)),

where CA only depends on KA and P . Then clearly RC(A,T, Tρ) ≥ γC1/3 for ρ > 1 − (C1/2C2)
and γ large enough. Thus, RC(A,T, Tρ) = +∞ and one can choose ρ∗ ≥ 1 − (C1/2C2).

The destabilization result can be obtained by a similar argument based on the Lyapunov equation

(Jn − bLT )T Q + Q(Jn − bLT ) = Idn,

verified for some L ∈ Rn and some symmetric positive definite matrix Q. �

Open problem 2 It would be interesting to investigate the dependance of ρ∗ on the dimension n as
n → ∞.
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4.2 Finite maximal rate of convergence for ρ small enough

In this section we restrict our attention to the case n = 2.

Proposition 4.5 There exists ρ∗ ∈ (0, 1) such that for every controllable pair (A, b) ∈ M2(R)×R2,
every T > 0 and every ρ ∈ (0, ρ∗) one has RC(A,T, ρT ) < +∞.

Proof. Thanks to Remark 4.1, it suffices to show that there exists ρ∗ ∈ (0, 1) such that, for every
controllable pair (A, b) ∈ M2(R) × R2 with Tr(A) = 0, one has RC(A, 1, ρ∗) < +∞.

As in (32), take (A, b) in companion form, ie,

A = J2 + aH, b = (0, 1)T ,

with a = − det A and H =

(

0 0
1 0

)

.

For θ ∈ [−π, π) set eθ = (sin θ, cos θ)T and define y0 = (−1, 0)T . Every gain can be written as

Kθ,γ = γDγeθ,

with γ ≥ 0 and θ ∈ [−π, π).
Moreover, if A − bKT is Hurwitz with K = γDγeθ then the sum and the product of its two

eigenvalues are, respectively, γ cos θ > 0 and γ2 sin θ − a > 0. In particular, θ ∈ (−π/2, π/2) and
γ2 sin θ > a. If θ ∈ (−π/2, 0] with A− bKT Hurwitz, then |a− sin θγ2| ≤ |a| = −a and therefore the
convergence rate of A − bKT is upper bounded by a constant only depending on a.

Let Ω0 = (0, π/2) × (0,∞). We show in the following the existence of ρ > 0 and Ω ⊂ Ω0 such
that

if (θ, γ) ∈ Ω0 and Kθ,γ is a (1, ρ)-stabilizer of ẋ = Ax + αbu, then (θ, γ) ∈ Ω, (37)

and
sup

(θ,γ)∈Ω
min{−ℜ(σ(A − bKT

θ,γ))} < +∞, (38)

and the conclusion then follows from (25).
The strategy of the proof consists of determining ρ > 0 and a function γ(θ), defined on (0, π/2),

such that, for every gain Kθ,γ with γ > γ(θ), there exists a (1, ρ)-signal α and a trajectory of
ẋ = Ax − αbKT

θ,γ escaping to infinity. The set Ω is then defined as

Ω = {(θ, γ) | 0 < θ < π/2, 0 < γ < γ(θ)},

and one finally checks condition (38).
Fix θ ∈ (0, π/2). In order to find γ destabilizing

ẋ = Ax − αbKθ,γx, α ∈ G(1, ρ),

(i.e., such that there exist α ∈ G(1, ρ) and an initial condition x0 whose corresponding trajectory
escapes to infinity), we apply the transformation yγ(·) = Dγx(·/γ): the problem is now to determine
γ large enough so that there exist α ∈ G(γ, ργ) and a trajectory of

ẏ =

(

J2 +
a

γ2
H

)

y − αbeθy, (39)

escaping to infinity.
Due to the homogeneity of the system, the latter fact reduces to determine τ large enough and

α ∈ G(τ, 2ρτ) such that the solution y(· ; 0, y0, eθ, α) of (39) satisfies y(τ ; 0, y0, α) = −ξy0 with ξ > 1.
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Indeed, for every γ > τ the extension of α|[0,τ) by periodicity is a (γ, ργ)-signal (see point 4 in
Lemma 2.4) and the sequence ‖y(mτ ; 0, y0, α)‖ = ξm goes to infinity as m goes to infinity.

Set
Mθ = J2 − beT

θ , Na,θ,γ = J2 +
a

γ2
H − beT

θ .

Consider h > 0 small to be fixed later. We distinguish two cases depending on whether θ ∈ (0, h)
or not.

The case θ ∈ [h, π/2).

We construct a PE signal α as follows: starting at y0 take α = 1 until the trajectory y(· ; 0, y0, eθ, α)
of (39) reaches, at time T1, the switching line sin(θ)x + cos(θ)y = 0. In order to ensure that the
switching line is reached in finite time and, moreover, that T1 is lower and upper bounded by two pos-
itive constants only depending on h (and not on θ ∈ [h, π/2)), it suffices to choose γ > Γ1(a, h) > 0
with Γ1(a, h) only depending on a and h. (Indeed, the bounds hold for all matrices in a neighborhood
of {Mθ | θ ∈ [h, π/2)} and it suffices to ensure that Na,θ,γ belongs to such neighborhood.)

From y(T1; 0, y0, eθ, α) set α = 0 until the first coordinate of y(· ; 0, y0, eθ, α) takes, at time
T1 + T2, the value 1. Finally, take α = 1 until the second coordinate of y(· ; 0, y0, eθ, α) reaches, at
time T1 + T2 + T3, the value 0. (See Figure 1.)

−y0y0

sin(θ)x + cos(θ)y = 0

−ξy0

Figure 1: The trajectory y(· ; 0, y0, eθ, α) when θ ∈ [h, π/2)

Analogously to what happens for T1, the values T2 and T3 admit lower and upper positive bounds
only depending on h.

Define τ = T1 + T2 + T3 and notice that it admits an upper bound T1(h) only depending on h.
Finally T1+T3

T1+T2+T3
admits a lower bound ρ1 only depending on h. The construction of the required

(τ, ρ1τ)-signal is achieved and we set

γ(θ) ≡ max(Γ1(a, h),T1(h)). (40)

The case θ ∈ (0, h).

Notice that the condition for Na,θ,γ to be Hurwitz is that γ2 > |a|/ sin θ. Choose γ > Γ2(a, θ) =
M

√

|a|/ sin θ with M large (to be fixed later independently of all parameters). In particular, for M
large enough and h0 > 0 small enough (independent of all parameters), for every θ ∈ (0, h0) and
every γ > Γ2(a, θ) the matrix Na,θ,γ has two real eigenvalues, denoted by µ+(a, θ, γ) > µ−(a, θ, γ)
and

−2 < µ−(a, θ, γ) < −1/2, −2 sin θ < µ+(a, θ, γ) < − sin θ/2. (41)

From now on we assume h ∈ (0, h0).
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Similarly to what has been done above, we construct a PE signal α as follows: starting at
y0 take α = 1 in (39) for a time T1 = ρ̄M/|µ+(a, θ, γ)| with ρ̄ ∈ (0, 1) to be fixed later. Set
y1 = y(T1; 0, y0, eθ, α).

From y1 set α = 0 for a time T2 = M/|µ+(a, θ, γ)| and denote by y2 the point y(T1+T2; 0, y0, eθ, α).
Finally, take α = 1 until the second coordinate of y(· ; 0, y0, eθ, α) assumes, at time T1 + T2 + T3, the
value 0. (See Figure 2.)

−y0
y0

y1

−ξy0

y2

Figure 2: The trajectory y(· ; 0, y0, eθ, α) when θ ∈ (0, h)

We next show that there exist ρ̄ and M independent of θ and a such that T3 is well defined and
y(T1 + T2 + T3; 0, y0, eθ, α) = −ξy0 with ξ > 1.

An easy computation yields

y1 =
1

µ−(a, θ, γ) − µ+(a, θ, γ)

(

eµ−(a,θ,γ)T1µ+(a, θ, γ) − eµ+(a,θ,γ)T1µ−(a, θ, γ)

µ−(a, θ, γ)µ+(a, θ, γ)(eµ−(a,θ,γ)T1 − eµ+(a,θ,γ)T1)

)

= e−ρ̄M

(

−1
µ+(a, θ, γ)

)

+ O(θ2),

with ‖O(θ2)‖ ≤ Cθ2 and C only depending on M and ρ̄. (Similarly, in the sequel the symbol O(θ)
stands for a function of θ majorized by Cθ with C only depending on M and ρ̄.)

In addition, one also gets that the first coordinate of y2 is equal to















e−Mρ̄(M − 1) + O(θ) if a = 0,

e−Mρ̄
(

M µ+(a,θ,γ)
sin θ sinh

(

sin θ
µ+(a,θ,γ)

)

− cosh
(

sin θ
µ+(a,θ,γ)

))

+ O(θ) if a > 0,

e−Mρ̄
(

M µ+(a,θ,γ)
sin θ sin

(

sin θ
µ+(a,θ,γ)

)

− cos
(

sin θ
µ+(a,θ,γ)

))

+ O(θ) if a < 0.

Using (41) one deduces that the first coordinate of y2 is larger than

{

e−Mρ̄(M/2 sinh(1/2) − cosh(2)) + O(θ) if a > 0,
e−Mρ̄(M/2 sin(1/2) − cos(2)) + O(θ) if a < 0.

Then in all three cases the first coordinate of y2 becomes larger than

e−Mρ̄(MC0 − C1 + O(θ)),

and one also gets that the second coordinate of y2 can always be lower bounded by

sin θe−Mρ̄(C1 − C0/M + O(θ)),

with C0 > 0 and C1 > 0 independent of all the parameters.
Fix M large and ρ̄ ∈ (0, 1) such that

e−Mρ̄(MC0 − C1) ≥ 2, e−Mρ̄(C1 − C0/M) ≥ C1/2.
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Finally, by eventually reducing h in order to make each O(θ) uniformly small, one can ensure
that the first coordinate of y2 remains larger than one and that its second coordinate is positive.

Similar computations to the ones provided above show that it is possible to further ensure that
T3 ≤ 2T1.

Define τ = T1 + T2 + T3. Then M/(2 sin θ) < τ < 8M/ sin θ = T2(θ). Choose now

γ(θ) = M(8 +
√

a)/ sin θ ≥ max(T2(θ),Γ2(a, θ)). (42)

By construction, α ∈ G(τ, ρ̄τ). To conclude the proof it is clearly enough to check condition (38)
on

Ω∗ = {(θ, γ) | 0 < θ < h, 0 < γ < γ(θ)}.
For (θ, γ) ∈ Ω∗ define

Astab
θ,γ = A − bKT

γ,θ =

(

0 1
a − γ2 sin θ −γ cos θ

)

.

Then
0 < det(Astab

θ,γ ) ≤ C0|Tr(Astab
θ,γ )| + |a|,

with C0 = 2M(8 +
√

|a|). Then (38) easily follows. �

The following corollary is a direct consequence of Remark 4.1 and Proposition 4.5.

Corollary 4.6 Take ρ∗ as in the statement of Proposition 4.5. For every controllable pair (A, b) ∈
M2(R) × R2, every T > 0 and every ρ < ρ∗, if λ > 0 is large enough, then (A + λId2, b) is not
(T, ρT )-stabilizable. Moreover, if 0 < ρ < ρ∗ and λ > RC(J2, 1, ρ), then (J2 + λId2, b0) is not
(T, ρT )-stabilizable for every T > 0.

The above corollary establishes the existence of non-stabilizable PE systems if the ratio ρ = µ/T > 0
is small enough and regardless of T . This is especially intriguing when one recalls, on the one hand,
that any weak-⋆ limit point α⋆ of a sequence (αn), with αn ∈ G(Tn, ρTn) and limn→+∞ Tn = 0,
takes values in [ρ, 1] (see point 1 of Lemma 2.5) and, on the other hand, that the switching system
ẋ = J2x + α⋆b0u, u ∈ [ρ, 1], can be stabilized with an arbitrary rate of convergence by taking the
feedback law uγ = −γDγKx, where γ > 0 is arbitrarily large and K is provided by [11, Lemma 4.0].

Remark 4.7 One possible interpretation of Proposition 4.5 goes as follows. Consider the desta-
bilizing signals built in the argument of the proposition back in the original time-scale, i.e., as
(1, ρ)-signals. These signals take only the values 0, 1 over time intervals of length proportional to
1/γ. Therefore, the fundamental solution associated to ẋ = (A−αb0Kγ,θ)x is a power of the product
A1A2A3, where A1 = exp(T1(A − b0Kγ,θ)/γ), A2 = exp(T2A/γ) and A3 = exp(T3(A − b0Kγ,θ)/γ).
In some sense, the stabilizing effect of A − b0Kγ,θ is compensated by the overshoot phenomenon
occurring when the exponential of A−b0Kγ,θ is taken only over small intervals of time. Then Propo-
sition 4.5 says that, if γ is large enough, the procedure of systematically introducing the overshoot
eventually destabilizes ẋ = (A − αb0Kγ,θ)x.

Open problem 3 We conjecture that Proposition 4.5 should hold true in dimension n > 2. Note
however that the proof given in the 2D case cannot be easily extended to the case in which n > 2. In-
deed, our strategy is based on a complete parameterization of the candidate feedbacks for stabilization
and on the explicit construction of a destabilizing signal α for every value of the parameter θ, which
varies in a subset of the one-dimensional sphere. In the general case, the parameter would belong to
an (n − 1)-dimensional manifold and an explicit construction, if possible, would be more intricate.
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4.3 Further discussion on the maximal rate of convergence

Let (A, b) ∈ M(n,R) × Rn be a controllable pair. Define

ρ(A,T ) = inf{ρ ∈ (0, 1] | RC(A,T, Tρ) = +∞}.

Notice that ρ(A,T ) = ρ(A/T, 1) and does not depend on Tr(A) (see Remark 4.1).
Proposition 4.4 implies that ρ(A,T ) ≤ ρ∗ for some ρ∗ ∈ (0, 1) only depending on n. In the case

n = 2, moreover Proposition 4.5 establishes a uniform lower bound ρ(A,T ) ≥ ρ∗ > 0.
The following lemma collects some further properties of the function T 7→ ρ(A,T ), defined on

(0,+∞).

Lemma 4.8 Let (A, b) ∈ Mn(R) × Rn be a controllable pair. Then (i) T 7→ ρ(A,T ) is locally
Lipschitz; (ii) there exist limT→+∞ ρ(A,T ) = supT>0 ρ(A,T ) and limT→0 ρ(A,T ) = infT>0 ρ(A,T ).

Proof. In order to prove (i), notice that point 3 in Lemma 2.4 implies that if RC(A,T, ρT ) < +∞
then for every η ∈ (0, ρT ),

RC

(

A,T + η,
ρT

T + η
(T + η)

)

,RC

(

A,T − η,
ρT − η

T − η
(T − η)

)

< +∞.

Therefore, for η ∈ (0, ρ(A,T )T ),

ρ(A,T + η) ≥ ρ(A,T )T

T + η
, ρ(A,T − η) ≥ ρ(A,T )T − η

T − η
.

The second inequality can be rewritten as

ρ(A,T ) ≥ ρ(A,T + η)(T + η) − η

T

and holds for every η ∈ (0, ρ(A,T + η)(T + η)). We conclude that, for η small enough,

|ρ(A,T + η) − ρ(A,T )| ≤ η

T
.

As for point (ii), it suffices to deduce from point 5 in Lemma 2.4 that for 0 < ρ′ < ρ < 1 there
exists M > 0 such that whenever RC(A,T, ρT ) = +∞ one has RC(A, γ, ρ′γ) = +∞ for every γ > 0
such that γ/T > M . �

The case A = Jn can be tackled thanks to the equality (11) and the time-space transformation
(12): it easily follows that ρ(Jn, T ) is constant with respect to T (and positive in the case n = 2).

Open problem 4 It is a challenging question to determine whether the function T 7→ ρ(A,T ) is
constant for a general matrix A. If this is true, one may wonder whether the constant value depends
on A. Otherwise, a natural question would be to understand the dependence of limT→+∞ ρ(A,T ) ≤
ρ∗ < 1 on the matrix A.

4.4 Remarks on the pole shifting property for classes of PE control systems

Following Remark 4.2, one can interpret the results of the previous sections as follows. In dimension
two, the PE control system ẋ = Ax + αbu, α ∈ G(T, µ), does not have the pole-shifting property
for µ/T small. It makes therefore sense to investigate additional conditions to impose on the PE
signals (periodicity, positive dwell-time, uniform bounds on the derivative of the PE signal, etc) so
that the pole-shifting property holds true for these restricted classes of PE signals, regardless of the
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ratio µ/T . Proposition (4.3) guarantees that the issue reduces, at least in dimension two, to checking
that the rate of convergence can be made arbitrary large. First of all, the subclass of periodic PE
signals must be excluded, since the destabilizing inputs constructed in Proposition 4.5 are periodic.
It is also clear that, for the subclass of G(T, µ) given by all signals with a positive dwell time td > 0,
one gets arbitrary rate of convergence with a linear constant feedback, for every choice of T, µ, td.
We conclude with yet another conjecture.

Open problem 5 Given T,M > 0 and ρ ∈ (0, 1], let D(T, ρ,M) be the subset of G(T, ρT ) whose
signals are globally Lipschitz over [0,+∞) with Lipschitz constant bounded by M . Then, given a
controllable pair (A, b), we conjecture that it is possible to stabilize by a linear feedback the system
ẋ = Ax + αbu, α ∈ D(T, ρ,M), with an arbitrarily large rate of convergence, i.e., we conjecture that
for every C > 0 there exists a gain K such that for every α ∈ D(T, ρ,M) the maximal Lyapunov
exponent of ẋ = (A − αbKT )x is smaller than −C.

References

[1] D. Aeyels and J. Peuteman. A new asymptotic stability criterion for nonlinear time-variant
differential equations. IEEE Trans. Automat. Control, 43(7):968–971, 1998.

[2] D. Aeyels and J. Peuteman. On exponential stability of nonlinear time-varying differential
equations. Automatica J. IFAC, 35(6):1091–1100, 1999.

[3] B. Anderson, R. Bitmead, C. Johnson, P. Kokotovic, R. Kosut, I. Mareels, L. Praly, and
B. Riedle. Stability of adaptive systems: Passivity and averaging analysis. MIT Press, 1986.

[4] M. Balde and U. Boscain. Stability of planar switched systems: the nondiagonalizable case.
Commun. Pure Appl. Anal., 7(1):1–21, 2008.

[5] U. Boscain. Stability of planar switched systems: the linear single input case. SIAM J. Control
Optim., 41(1):89–112 (electronic), 2002.

[6] U. Boscain, G. Charlot, and M. Sigalotti. Stability of planar nonlinear switched systems. Discrete
Contin. Dyn. Syst., 15(2):415–432, 2006.

[7] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems. IEEE Trans. Automat. Control, 43(4):475–482, 1998. Hybrid control systems.

[8] H. Brezis. Analyse Fonctionnelle, Théorie et applications. Masson, 1983.
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