On the geometry of predictive control with nonlinear constraints - Archive ouverte HAL
Chapitre D'ouvrage Année : 2008

On the geometry of predictive control with nonlinear constraints

Sorin Olaru
Didier Dumur
Simona Dobre
  • Fonction : Auteur
  • PersonId : 837330

Résumé

This paper proposes a geometrical analysis of the polyhedral feasible domains for the predictive control laws under constraints. The state vector is interpreted as a vector of parameters for the optimization problem to be solved at each sampling instant and its influence can be fully described by the use of parameterized polyhedra and their dual constraints/generators representation. The construction of the associated explicit control laws at least for linear or quadratic cost functions can thus receive fully geometrical solutions. Convex nonlinear constraints can be approximated using a description based on the parameterized vertices. In the case of nonconvex regions the explicit solutions can be obtained using Voronoi partitions based on a collection of points distributed over the borders of the feasible domain.
Fichier principal
Vignette du fichier
llncs.pdf (481.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00322997 , version 1 (19-09-2009)

Identifiants

Citer

Sorin Olaru, Didier Dumur, Simona Dobre. On the geometry of predictive control with nonlinear constraints. Joaquim Filipe, Juan Andrade Cetto and Jean-Louis Ferrier. Informatics in Control, Automation and Robotics. Selected Papers from the International Conference on Informatics in Control, Automation and Robotics 2007, Springer, pp.301-314, 2008, Lecture Notes in Electrical Engineering, ⟨10.1007/978-3-540-85640-5_23⟩. ⟨hal-00322997⟩
140 Consultations
203 Téléchargements

Altmetric

Partager

More