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Abstract. This paper proposes a geometrical analysis of the polyhedral
feasible domains for the predictive control laws under constraints. The
state vector is interpreted as a vector of parameters for the optimization
problem to be solved at each sampling instant and its influence can
be fully described by the use of parameterized polyhedra and their dual
constraints/generators representation. The construction of the associated
explicit control laws at least for linear or quadratic cost functions can
thus receive fully geometrical solutions. Convex nonlinear constraints can
be approximated using a description based on the parameterized vertices.
In the case of nonconvex regions the explicit solutions can be obtained
using Voronoi partitions based on a collection of points distributed over
the borders of the feasible domain.

1 Introduction

The philosophy behind Model-based Predictive Control (MPC) is to exploit in
a ”receding horizon” manner the simplicity of the open-loop optimal control.
The control action ut for a given state xt is obtained from the control sequence
k∗

u = [uT
t , . . . , uT

t+N−1
]T as a result of the optimization problem:

min
ku

ϕ(xt+N ) +
N−1∑
k=0

l(xt+k, ut+k)

subj. to : xt+1 = f(xt) + g(xt)ut;
h(xt,ku) ≤ 0

(1)

constructed for a finite prediction horizon N , cost per stage l(.), terminal weight
ϕ(.), the system dynamics described by f(.), g(.) and the constraints written in
a compact form using elementwise inequalities on functions linking the states
and the control actions, h(.).

The control sequence k∗
u is optimal for an initial condition - xt and produces

an open-loop trajectory which contrasts with the need for a feedback control
law. This drawback is overcome by solving the local optimization (1) for every
encountered (measured) state, thus indirectly producing a state feedback law.
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For the optimization problem (1) within MPC, the current state serves as
an initial condition and influences both the objective function and the topol-
ogy of the feasible domain. Globally, the system state can be interpreted as a
vector of parameters, and the problems to be solved are part of the multipara-
metric optimization programming family. From the cost function point of view,
the parametrization is somehow easier to deal with and eventually can be en-
tirely translated toward the set of constraints to be satisfied (the MPC literature
contains references to schemes based on suboptimality or even to algorithms re-
straining the demands to feasible solution of the receding horizon optimization
[1]). Unfortunately, similar observation cannot be made about the feasible do-
main and its adjustment with respect to the parameters evolution. The optimal
solution is thus often influenced by the constraints activation, the process being
forced to operate at the designed constraints for best performance. The distor-
tion of the feasible domain during the parameters evolution will consequently
affect the structure of the optimal solution. Starting from this observation the
present paper focuses on the analysis of the geometry of the domains described
by the MPC constraints.

The structure of the feasible domain is depending on the model and the set
of constraints taken into consideration in (1). If the model is linear, the linear
constraints on inputs and states can be easily expressed by a system of linear
inequalities. In the case of nonlinear systems, these properties are lost but there
are several approaches to transform the dynamics to those of a linear system over
the operating range as for example by piecewise linear approximation, feedback
linearisation or the use of time-varying linear models.

In the present paper, the feasible domains will be analyzed with a focus on
the parametrization mainly upon the concept of parameterized polyhedra [2],
which appears in the MPC formulations like:

min
ku

F (xt,ku)

subj. to :





Ainku ≤ bin + Binxt

Aeqku = beq + Beqxt

h(xt,ku) ≤ 0

(2)

where the objective function F (xt,ku) is usually linear or quadratic. Secondly
it will be shown that the optimization problem may take advantage during the
real-time implementation from the construction of the explicit solution.

In the presence of nonlinearities h(xt,ku) ≤ 0 two cases can be treated:

– feasible domain are convex - the approximation in terms of parameterized
polyhedra leads to an approximate explicit solution using the same argu-
ments as for the exact solutions;

– feasible domain is non-convex - an algorithmic construction of explicit control
laws upon Voronoi partition of the parameters space will be used.

In the following, Section 2 introduces the basic concepts related to the param-
eterized polyhedra. Section 3 presents the use of the feasible domain analysis
for the construction of the explicit solution for linear and quadratic objective
functions. In Section 4 an extension to nonlinear type of constraints is addressed.
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2 Parametrization of polyhedral domains

2.1 Double representation

A mixed system of linear equalities and inequalities defines a polyhedron [3]. In
the parameter free case, it is represented by the equivalent dual (Minkowski)
formulation:

P = {ku ∈ R
p |Aeq ku = beq;Ainku ≤ bin}

⇐⇒ P = conv.hullV + coneR + lin.spaceL︸ ︷︷ ︸
generators

(3)

where conv.hullV denotes the set of convex combinations of vertices V = {v1, . . . ,vϑ},
coneR denotes nonnegative combinations of unidirectional rays in R = {r1, . . . , rρ}
and lin.spaceL = {l1, . . . , lλ} represents a linear combination of bidirectional
rays (with ϑ, ρ and λ the cardinals of the related sets). This dual representation
[4] in terms of generators can be rewritten as:

P =

{
ku ∈ R

p|ku =
ϑ∑

i=1

αivi +
ρ∑

i=1

βiri +
λ∑

i=1

γili;

0 ≤ αi ≤ 1,
ϑ∑

i=1

αi = 1 , βi ≥ 0 , ∀γi

} (4)

with αi, βi, γi the coefficients describing the convex, non-negative and linear
combinations in (3). Numerical methods like the Chernikova algorithm [5] are
implemented for constructing the double description, either starting from con-
straints (3) either from the generators (4) representation.

2.2 The parametrization

A parameterized polyhedron [6] is defined in the implicit form by a finite number
of inequalities and equalities with the note that the affine part depends linearly
on a vector of parameters x ∈ R

n for both equalities and inequalities:

P(x) =
{
ku(x) ∈ R

p |Aeq ku = Beqx + beq; Ainku ≤ Binx + bin}
=

{
ku(x)| ku(x) =

ϑ∑
i=1

αi(x)vi(x) +
ρ∑

i=1

βiri +
λ∑

i=1

γili

}

0 ≤ αi(x) ≤ 1,
ϑ∑

i=1

αi(x) = 1 , βi ≥ 0 , ∀γi.

(5)

This dual representation of the parameterized polyhedral domain reveals the
fact that only the vertices are concerned by the parametrization (resulting the
so-called parameterized vertices - vi(x)), whereas the rays and the lines do not
change with the parameters’ variation. In order to effectively use the gener-
ators representation in (5), several aspects have to be clarified regarding the
parametrization of the vertices (see for exemple [6]). The idea is to identify the
parameterized polyhedron by a non-parameterized one in an augmented space:

P̃ =

{[
ku

x

]
∈ R

p+n| [Aeq| −Beq]

[
ku

x

]
= beq; [Ain| −Bin]

[
ku

x

]
≤ bin

}
(6)
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The original polyhedron in (5) can be found for any particular value of the pa-

rameters vector x through P (x) = Projku

(
P̃ ∩H(x)

)
, for any given hyperplane

H(x0) =

{(
ku

x

)
∈ R

p+n|x = x0

}
and using Projku

(.) as the projection from

R
p+n to the first p coordinates R

p.
Within the polyhedral domains P̃, the correspondent of the parameterized

vertices in (5) can be found among the faces of dimension n. After enumer-

ating these n-faces:
{

Fn
1 (P̃), . . . Fn

j (P̃), . . . , Fn
ς (P̃)

}
, one can write: ∀i,∃j ∈

{1, . . . , ς} s.t.
[
vi(x)T xT

]T ∈ Fn
j (P̃) or equivalently:

vi(x) = Projku

(
Fn

j (P̃) ∩H(x)
)

(7)

From this relation it can be seen that not all the n-faces correspond to param-
eterized vertices. However it is still easy to identify those which can be ignored
in the process of construction of parameterized vertices based on the relation

Projx

(
Fn

j (P̃ )
)

< n with Projx (.) the projection from R
p+n to the last n co-

ordinates R
n (corresponding to the parameters’ space). Indeed the projections

are to be computed for all the n-faces, those which are degenerated are to be
discarded and all the others are stored as validity domains - Dvi

∈ R
n, for the

parameterized vertices that they are identifying:

Dvi
= Projn

(
Fn

j (P̃ )
)

(8)

Once the parameterized vertices identified and their validity domain stored, the
dependence on the parameters vector can be found using the supporting hyper-
planes for each n-face:

vi(x) =

[
Aeq

Āinj

]−1 [
Beq

B̄inj

]
x +

[
beq

b̄inj

]
(9)

where Āinj
, B̄inj

, b̄inj
represent the subset of the inequalities, satisfied by

saturation for Fn
j (P̃ ). The inversion is well defined as long as the faces with

degenerate projections are discarded.

2.3 The interpretation from the predictive control point of view

The double representation of the parameterized polyhedra offers a complete
description of the feasible domain for the MPC law as long as this is based
on a multiparametric optimization with linear constraints. Using the generators
representation one can compute the region of the parameters space where no
parameterized vertex is defined:

ℵ = R
n\ {∪Dvi

; i = 1 . . . ϑ} (10)
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5

representing the set of infeasible states for which no control sequence can be
designed due to the fact that the limitations are overly constraining. As a con-
sequence the complete description of the infeasibility is obtained.

The vertices of the feasible domain cannot be expressed as convex combi-
nations of other distinct points and, due to the fact that from the MPC point
of view, they represent sequences of control actions, one can interpret them in
terms of extremal performances of the controlled system (for example in the
tracking applications the maximal/minimal admissible setpoint [7]).

3 Toward explicit solutions for polyhedral domains

In the case of sufficiently large memory resources, construction of the explicit
solution for the multiparametric optimization problem (2) can be an interesting
alternative to the iterative optimization routines. In this direction recent results
were presented at least for the case of linear and quadratic cost functions (see
[8],[9],[10],[11],[12]). In the following it will be shown that a geometrical approach
based on the parameterized polyhedra can bring a useful insight as well.

3.1 Linear cost function

The linear cost functions are extensively used in connection with model based
predictive control and especially for robust case ([13], [14]). In a compact form,
the multiparametric optimization problem is:

ku
∗(xt) = min

ku

fT ku

subject to Ainku ≤ Binxt + bin

(11)

The problem deals with a polyhedral feasible domain which can be described
as previously in a double representation. Further the explicit solution can be
constructed based on the relation between the parameterized vertices and the
linear cost function (as in [5]). The next result resumes this idea.

Proposition: The solution for a multiparametric linear problem is charac-
terized as follows:

a) For the subdomain ℵ ∈ R
n where the associated parameterized polyhedron

has no valid parameterized vertex the problem is infeasible;
b) If there exists a bidirectional ray l such that fT l 6= 0 or a unidirectional

ray r such that fT r ≤ 0, then the minimum is unbounded;
c) If all bidirectional rays l are such that fT l = 0 and all unidirectional rays

r are such that fT r ≥ 0 then there exists a cutting of the parameters in zones

where the parameterized polyhedron has a regular shape
⋃

j=1...ρ

Rj = R
n − ℵ.

For each region Rj the minimum is computed with respect to the given linear
cost function and for all the valid parameterized vertices:

m(x) = min
{
fT vi(x)|vi(x) vertex of P(x)

}
(12)
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6

The minimum m(x) is attained by constant subsets of parameterized vertices
of P(x) over a finite number of polyhedral zones in the parameters space Rij

(∪Rij = Rj). The complete optimal solution of the multiparametric optimization
is given for each Rij by:

SRij
(x) = conv.hull {v∗

1(x), . . . ,v∗
s(x)}+ cone {r∗1, . . . , r∗r}+ lin.spaceP (13)

where v∗
i are the vertices corresponding to the minimum m(x) over Rij and r∗i

are such that fT r∗i = 0�

This result provides the entire family of solutions for the linear multipara-
metric optimization, even for the cases where this family is not finite (for ex-
ample there are several vertices attaining the minimum). For the control point
of view a continuous piecewise candidate is preferred, eventually by minimizing
the number of partitions in the parameters space [15].

3.2 Quadratic cost function

The case of a quadratic cost function is one of the most popular for the linear
nominal MPC. The explicit solution based on the exploration of the parameters
space ([9], [11], [12]) is extensively studied lately. Alternative methods based on
geometrical arguments or dynamic programming ([10], [8]) improved also the
awareness of the explicit MPC formulations. The parameterized polyhedra can
serve as a base in the construction of such explicit solution [2], for a quadratic
multiparametric problem:

ku
∗(xt) = arg min

ku

kT
u Hku + 2ku

T Fxt

subject to Ainku ≤ Binxt + bin

(14)

In this case the main idea is to consider the unconstrained optimum:

ksc
u (xt) = H−1Fxt

and its position with respect to the feasible domain given by a parameterized
polyhedron as in (5).

If a simple transformation is performed:

k̃u = H1/2ku

then the isocost curves of the quadratic function are transformed from ellipsoid
into circles centered in k̃sc

u (xt) = H−1/2Fxt. Further one can use the Euclidean
projection in order to retrieve the multiparametric quadratic explicit solution.

Indeed if the unconstrained optimum k̃sc
u (xt) is contained in the feasible

domain P̃(xt) then it is also the solution of the constrained case, otherwise
existence and uniqueness are assured as follows:

Proposition: For any exterior point k̃u(xt) /∈ P̃(xt), there exists an unique
point characterized by a minimal distance with respect to k̃sc

u (xt). This point
satisfies:

(k̃sc
u (xt)− k̃∗

u(xt))
T (k̃u − k̃∗

u(xt)) 6 0,∀k̃u ∈ P̃(xt)�

ha
l-0

03
22

99
7,

 v
er

si
on

 1
 - 

19
 S

ep
 2

00
8

ha
l-0

03
22

99
7,

 v
er

si
on

 1
 - 

19
 S

ep
 2

00
8



7

The construction mechanism uses the parameterized vertices in order to split
the regions neighboring the feasible domain in zones characterized by the same
type of projection.

4 Generalization to nonlinear constraints

If the feasible domain is described by a mixed linear/nonlinear set of constraints
then the convexity properties are lost and a procedure for the construction of
exact explicit solutions does not exist for the general case.

Consider now the case of mixed type of constraints (linear/nonlinear):

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx (15)

{
h (x,ku) 6 0

Ainku ≤ bin + Binx

4.1 Optimality conditions for nonlinear constraints

Let x̄ be a feasible parameter vector. The KKT optimality conditions can still
be formulated as:

– Primal feasibility: {
h (x̄,ku) 6 0
Ainku ≤ bin + Binx̄

(16)

– Dual feasibility:

Hku + FT x̄ + AT
inµ +∇ku

h(x̄,ku)T ν = 0; µ > 0, ν > 0 (17)

– Complementary slackness:

[µT νT ]

[
Ainku −Binx̄− bin

h (x̄,ku)

]
= 0 (18)

The difference resides in the fact that the KKT conditions are only necessary
and not sufficient for optimality due to the presence of nonlinearity.

4.2 The topology of the feasible domain

Indeed the sufficiency is lost due to the lack of constraint qualification (the
Abadie constraint qualification holds automatically for the linear constraints
but needs additional assumptions for the nonlinear case, see the next theorem).

Theorem (KKT sufficient conditions) [10]: Let x = x̄ and the associated
feasible domain U(x̄) be a nonempty set in R

Nm described by the constraints
in (15), with hi(ku) = hi(x̄,ku) : R

Nm → R, the components of h(ku). Let k∗
u ∈
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U(x̄) and let I = {i : hi(x̄,k∗
u) = 0} ,J =

{
j : Ainj

k∗
u −Binj

x̄− binj
= 0)

}
.

Suppose the KKT conditions hold, such that:

Hk∗
u + FT x̄ +

∑
µjA

T
inj

+
∑

γi∇ku
hi(x̄,k∗

u)T = 0 (19)

If hi is quasiconvex at k∗
u∀i ∈ I, then this represents a global solution to (15)�

Due to these problems, up to date, the explicit solutions for the general
nonlinear multiparametric programming case were not tackled. Only for convex
nonlinearities approximate explicit solutions were proposed [16]. In the following
a solution based on linear approximation of feasible domains is proposed. This
will answer the question regarding the optimality of a solution with piecewise
linear structure.

4.3 Preliminaries for linear approximations of mixed
linear/nonlinear feasible domains

The idea is to exploit the existence of linear constraints in (15) and construct
exact solutions as long as the unconstrained optimum can be projected on them.
In a second stage if the unconstrained optimum is projected on the convex part
of the nonlinear constraints, then an approximate solution is obtained by their
linearization. Finally if the unconstrained optimum has to be projected on the
nonconvex constraints then a Voronoi partition is used to construct the explicit
solution. Before detailing the algorithms several useful tools are introduced.

Gridding of the parameter space: The parameters (state) space is sam-
pled in order to obtain a representative grid G. The way of distributing the points
in the state space may follow a uniform distribution, logarithmic or tailored ac-
cording to the a-priori knowledge of the nonlinearities.

For each point of the grid x ∈ G a set of points on the frontier of the feasible
domain D(x) can be obtained - Vx by the same kind of parceling. By collecting Vx

for all x ∈ G a distribution of points VG in the extended arguments+parameters
space is obtained.

Convex hulls: A basic operation is the construction of the convex hull
(or a adequate approximation) for the feasible domain in (15). Writing this
parameterized feasible domain as:

D(x) =
{
ku

∣∣h (x,ku) 6 0; Ainku ≤ bin + Binx
}

(20)

and using the distribution of points on the frontier VG , one can define in the
extended (argument+parameters) space a convex hull CVG

:

CVG
=

{[
ku

x

]
∈ R

mN+n

∣∣∣∣∃
[
kui

xi

]
, i = 1..mN + n + 1,kui

∈ VG ,

s.t.

[
ku

x

]
=

mN+n+1∑
i=1

λi

[
kui

xi

]
,

mN+n+1∑
i=1

λi = 1;λi ≥ 0 }
(21)

Voronoi partition: The Voronoi partition is the decomposition of a metric
space R

n in regions associated with a specified discrete set of points.
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Let S = {s1, s2, ..., sν} be a collection of ν points in Rn. For each point si a
set Vi is associated such that

⋃
i Vi = Rn. The definition of Vi will be:

Vi = {x ∈ Rn|‖x− vi‖2 ≤ ‖x− vi‖2,∀j 6= i} (22)

It can be observed that each frontier of Vi is part of the bisection hyperplane
between si and one of the neighbor points sj . As a consequence of this fact, the
regions Vi are polyhedrons. Globally, the Voronoi partition is a decomposition
of space Rn in ν polyhedral regions.

4.4 Nonparameterized case

In the following F(X) (and Int(X)) represents the frontier (and the interior
respectively) for a compact set X.

Consider the nonparameterized optimization problem:

k∗
u = arg min

ku

0.5kT
u ku + cT ku (23)

{
h (ku) 6 0

Ainku ≤ bin + Binx

In relation with the feasible domain D of 23 we define:

RL(D) The set of linear constraints in the definition of D
RNL(D) The set of nonlinear constraints in the definition of D
S(R∗,ku) The subset of constraints in R∗ (either RL, either RNL) saturated

by the vector ku

B(R∗,ku) The subset of constraints in R∗ violated by the vector ku

Algorithm:

1. Obtain a set of points (V) on the frontier of the feasible domain D
2. Construct the convex hull CV
3. Split the set V as Ṽ ∪ VL ∪ VNL ∪ V̂

– Ṽ ∈ F(CV) and CV = CV\Ṽ (in words, Ṽ contains those points in V which

lie on the frontier of CV but are not vertices);

– VL ∈ V \ Ṽ, VL ∈ F(CV) and VL saturates at least one linear constraint

– VNL ∈ V \ Ṽ, VNL ∈ F(CV) and VNL saturates only nonlinear constraints

– V̂ ∈ Int(CV)
4. Construct the dual representation of CV . This will be represented as an

intersection of halfspaces H.
5. Split H in H ∪ Ĥ

– Ĥ ⊂ H such that ∃x ∈ CV with S(Ĥ, x) 6= ∅ and B(RNL, x) 6= ∅
– H = H \ Ĥ

6. Project the unconstrained optimum ku = −c on CV :

k∗
u ← Proj

CV
{−c}

ha
l-0

03
22

99
7,

 v
er

si
on

 1
 - 

19
 S

ep
 2

00
8

ha
l-0

03
22

99
7,

 v
er

si
on

 1
 - 

19
 S

ep
 2

00
8



10

7. If k∗
u saturates a subset of constraints K ⊂ Ĥ

(a) Retain the set of points:

S =
{

v ∈ V̂|∀ku ∈ CV s.t.Sat(Ĥ,ku) = K; B(RNL,ku) = Sat(RNL, v)}

(b) Construct the Voronoi partition for the collection of points in S
(c) Position k∗

u w.r.t. this partition and map the suboptimal solution k∗
u ← v

where v is the vertex corresponding to the active region
8. If the quality of the solution is not satisfactory, improve the distribution of

the points V by augmenting the resolution around k∗
u and restart from (2).

4.5 Explicit solution - taking into account the parametrization

Consider now the multiparametric optimization:

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx (24)

and the feasible combinations defined by the set:

D =

{[
ku

x

]
∈ R

mN+n

∣∣∣∣
h (x,ku) 6 0

Ainku ≤ bin + Binx

}

Algorithm:

1. Grid the parameters space R
n and retain the feasible nodes G

2. Obtain in the extended argument+parameters space a set of points (VG)
lying on the frontier of D

3. Construct the convex hull CV for the points in VG
4. Split the set VG as Ṽ ∪ VL ∪ VNL ∪ V̂

– Ṽ ∈ F(CV) and CV = CV\Ṽ (in words, Ṽ contains those points in V which

lie on the frontier of CV but are not vertices);

– VL ∈ VG \ Ṽ, VL ∈ F(CV) and VL saturates at least one linear constraint

– VNL ∈ VG \ Ṽ, VNL ∈ F(CV) and VNL saturates only nonlinear con-
straints

– V̂ ∈ Int(CV)
5. Construct the dual representation of CV . This will be represented as a inter-

section of halfspaces H.
6. Split H in H ∪ Ĥ

– Ĥ ⊂ H such that ∃x ∈ CV with S(Ĥ, x) 6= ∅ and B(RNL, x) 6= ∅
– H = H \ Ĥ

7. Project the set

U =

{[
ku

x

]∣∣∣∣
[
ku

x

]
=

[
H−1F

I

]
x,∀x ∈ R

n

}

on CV :
U∗ ← Proj

CV
U
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8. If ∃x0 such that the point:

[
k∗

u

x0

]
= U∗ ∩

{[
ku

x

]∣∣∣∣ x = x0

}

saturates a subset of constraints

K(x0) = S

(
H,

[
ku

x0

])
⊂ Ĥ

then :

(a) Construct

UNL(x0) =

{[
ku

x

]
∈ U

∣∣∣∣
[
k∗

u

x

]
∈ U∗ s.t. S

(
H,

[
ku

x0

])
= K(x0)

}

(b) Perform:

U∗ = U∗ \
{[

ku

x

]∣∣∣∣ S

(
H,

[
ku

x0

])
= K(x0)

}

(c) Retain the set of points:

S =

{
v ∈ V̂|∀

[
ku

x

]
∈ CV with S(Ĥ,

[
ku

x

]
) = K(x0) ⇒

B(RNL, x) = S(RNL, v)}

(d) Construct the Voronoi partition for the collection of points in S

(e) Position UNL(x0) w.r.t. this partition and map the suboptimal solution
U∗

NL(x0)← UNL(x0) by using the vertex v for each active region.

[
k∗

u

x

]
= v ←

[
ku

x

]

else : jump to (10)

9. Return to point (8)

10. If the quality of the solution is not satisfactory, improve the distribution of
the points VG and restart from (2).

5 Numerical example

Consider the MPC problem implemented using the first control action of the
optimal sequence:

k∗
u = arg min

ku

N−1∑

i=0

xT
t+k|t Qxt+k|t + uT

t+k|t Rut+k|t + xT
t+N |t Pxt+N |t (25)
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xt+k+1|t =

[
1 1
0 1

]
xt+k|t +

[
1 0
2 1

]
ut+k|t k > 0

[
−2
−2

]
6 ut+k|t 6

[
2
2

]
,

√
(u1

t+k|t )
2 +

(
u2

t+k|t ± 2
)2

>
√

3; 0 6 k 6 Nu − 1

ut+k|t =

[
0.59 0.76
- 0.42 - 0.16

]

︸ ︷︷ ︸
KLQR

xt+k|t Nu 6 k 6 Ny − 1

with

Q =

[
10 0
0 1

]
;R =

[
2 0
0 3

]
;P =

[
13.73 2.46
2.46 2.99

]
;Nu = 1;N = 2

By following the previous algorithm, in the first stage, the partition of the state
space is performed by considering only the linear constraints (figure 1(a)). Each
such region corresponds with a specific projection law. By simply verifying the
regions where this projection law obeys the nonlinear constraints, the exact part
of the explicit solution is obtained (figure 1(b)).

(a) (b)

Fig. 1. a) Partition of the arguments space (linear constraints only). b) Retention of
the regions with feasible linear projections.

Further, a distribution of points on the nonlinear frontier of the feasible
domain has to be obtained with the associated Voronoi partition. By superposing
it to the regions non covered at the previous step a complete partition of the
arguments space is realized. Figures 2(a)-2(a) depict such a partitions for 10 and
100 points for each nonlinear constraint.

By correspondence, the figures 3(a) and 3(b) describe the partition of the
state space for the explicit solution. Finally the complete explicit solution for
the two cases are described in figures 4(a) and 4(b). The discontinuities are
observable as well as the increase in resolution over the nonlineairity with the
augmentation of the number of points in the Voronoi partition. In order to give
an image of the complexity it must be said that the explicit solutions have 31
and 211 regions respectively and the computational effort was less than 2s in
the first case and 80s in the second case, mainly spent in the construction of
supplementary regions in the Voronoi partition.
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(a) (b)

Fig. 2. Partition of the arguments space (nonlinear case) - a) 10 points per active
nonlinear constraint; b) 100 points per nonlinear constraint.

(a) (b)

Fig. 3. Partition of the state space - a) 10 points per nonlinear constraint; b) 100 points
per nonlinear constraint.

6 Conclusion

The parameterized polyhedra offer a transparent characterization of the MPC
degrees of freedom. Once the complete description of the feasible domain as a
parameterized polyhedron is obtained, explicit MPC laws can be constructed
using the projection of the unconstrained optimum. The topology of the feasible
domain can lead to explicit solution even if nonlinear constraints are taken into
consideration. The price to be paid is found in the degree of suboptimality.
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