How to Integrate a Polynomial over a Simplex - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2011

How to Integrate a Polynomial over a Simplex

Résumé

This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes and discussion of other available methods.
Fichier principal
Vignette du fichier
Manuscript.pdf (325.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00320882 , version 1 (11-09-2008)

Identifiants

Citer

Velleda Baldoni, Nicole Berline, Jesús A. de Loera, Matthias Köppe, Michèle Vergne. How to Integrate a Polynomial over a Simplex. Mathematics of Computation, 2011, 80 (273), pp.297-325. ⟨10.1090/S0025-5718-2010-02378-6⟩. ⟨hal-00320882⟩
613 Consultations
2800 Téléchargements

Altmetric

Partager

More