
HAL Id: hal-00320882
https://hal.science/hal-00320882

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Integrate a Polynomial over a Simplex
Velleda Baldoni, Nicole Berline, Jesús A. de Loera, Matthias Köppe, Michèle

Vergne

To cite this version:
Velleda Baldoni, Nicole Berline, Jesús A. de Loera, Matthias Köppe, Michèle Vergne. How to In-
tegrate a Polynomial over a Simplex. Mathematics of Computation, 2011, 80 (273), pp.297-325.
�10.1090/S0025-5718-2010-02378-6�. �hal-00320882�

https://hal.science/hal-00320882
https://hal.archives-ouvertes.fr

HOW TO INTEGRATE

A POLYNOMIAL OVER A SIMPLEX

V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Abstract. This paper settles the computational complexity of
the problem of integrating a polynomial function f over a rational
simplex. We prove that the problem is NP-hard for arbitrary poly-
nomials via a generalization of a theorem of Motzkin and Straus.
On the other hand, if the polynomial depends only on a fixed num-
ber of variables, while its degree and the dimension of the simplex
are allowed to vary, we prove that integration can be done in poly-
nomial time. As a consequence, for polynomials of fixed total de-
gree, there is a polynomial time algorithm as well. We conclude
the article with extensions to other polytopes and discussion of
other available methods.

1. Introduction

Let ∆ be a d-dimensional rational simplex inside Rn and let f ∈
Q[x1, . . . , xn] be a polynomial with rational coefficients. We consider
the problem of how to efficiently compute the exact value of the in-
tegral of the polynomial f over ∆, which we denote by

∫

∆
f dm. We

use here the integral Lebesgue measure dm on the affine hull 〈∆〉 of
the simplex ∆, defined below in section 2.1. This normalization of the
measure occurs naturally in Euler–Maclaurin formulas for a polytope
P , which relate sums over the lattice points of P with certain inte-
grals over the various faces of P . For this measure, the volume of the
simplex and every integral of a polynomial function with rational co-
efficients are rational numbers. Thus the result has a representation
in the usual (Turing) model of computation. This is in contrast to
other normalizations, such as the induced Euclidean measure, where
irrational numbers appear.

The main goals of this article are to discuss the computational com-
plexity of the problem and to provide methods to do the computation
that are both theoretically efficient and have reasonable performance
in concrete examples.

Computation of integrals of polynomials over polytopes is funda-
mental for many applications. We already mentioned summation over
lattice points of a polytope. They also make an appearance in recent
results in optimization problems connected to moment matrices [20].
These integrals are also commonly computed in finite element methods,
where the domain is decomposed into cells (typically simplices) via a

1

2 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

mesh and complicated functions are approximated by polynomials (see
for instance [28]). When studying a random univariate polynomial p(x)
whose coefficients are independent random variables in certain inter-
vals, the probability distribution for the number of real zeros of p(x) is
given as an integral over a polytope [7]. Integrals over polytopes also
play a very important role in statistics, see, for instance, [22]. Remark
that among all polytopes, simplices are the fundamental case to con-
sider for integration since any convex polytope can be triangulated into
finitely many simplices.

Regarding the computational complexity of our problem, one can ask
what happens with integration over arbitrary polytopes. It is very ed-
ucational to look first at the case when f is the constant polynomial 1,
and the answer is simply a volume. It has been proved that already
computing the volume of polytopes of varying dimension is #P-hard
[13, 9, 17, 21], and that even approximating the volume is hard [14].
More recently in [25] it was proved that computing the centroid of a
polytope is #P-hard. In contrast, for a simplex, the volume is given
by a determinant, which can be computed in polynomial time. One
of the key contributions of this paper is to settle the computational
complexity of integrating a non-constant polynomial over a simplex.

Before we can state our results let us understand better the input
and output of our computations. Our output will always be the ratio-
nal number

∫

∆
f dm in the usual binary encoding. The d-dimensional

input simplex will be represented by its vertices s1, . . . , sd+1 (a V -
representation) but note that, in the case of a simplex, one can go from
its representation as a system of linear inequalities (an H-representation)
to a V -representation in polynomial time, simply by computing the in-
verse of a matrix.

Thus the encoding size of ∆ is given by the number of vertices, the di-
mension, and the largest binary encoding size of the coordinates among
vertices. Computations with polynomials also require that one specifies
concrete data structures for reading the input polynomial and to carry
on the calculations. There are several possible choices. One common
representation of a polynomial is as a sum of monomial terms with
rational coefficients. Some authors assume the representation is dense
(polynomials are given by a list of the coefficients of all monomials up
to a given total degree r), while other authors assume it is sparse (poly-
nomials are specified by a list of exponent vectors of monomials with
non-zero coefficients, together with their coefficients). Another popu-
lar representation is by straight-line programs. A straight-line program
which encodes a polynomial is, roughly speaking, a program without
branches which enables us to evaluate it at any given point (see [11, 23]
and references therein). As we explain in Section 2, general straight-
line programs are too compact for our purposes, so instead we restrict
to a subclass we call single-intermediate-use (division-free) straight-line

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 3

programs or SIU straight-line programs for short. The precise defini-
tion and explanation will appear in Section 2 but for now the reader
should think that polynomials are represented as fully parenthesized
arithmetic expressions involving binary operators + and ×.

Now we are ready to state our first result.

Theorem 1 (Integrating general polynomials over a simplex is hard).
The following problem is NP-hard. Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) an SIU straight-line program Φ encoding a polynomial f ∈ Q[x1, . . . , xn]

with rational coefficients.

Output, in binary encoding:

(O1) the rational number
∫

∆
f dm, where ∆ ⊆ Rn is the simplex with

vertices s1, . . . , sd+1 and dm is the integral Lebesgue measure
of the rational affine subspace 〈∆〉.

But we can also prove the following positive results.

Theorem 2 (Efficient integration of polynomials of fixed effective
number of variables). For every fixed number D ∈ N, there exists a
polynomial-time algorithm for the following problem.
Input:

(I1) numbers d, n, M ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) a polynomial f ∈ Q[X1, . . . , XD] represented by either an SIU

straight-line program Φ of formal degree at most M , or a sparse
or dense monomial representation of total degree at most M ,

(I4) a rational matrix L with D rows and n columns in binary en-
coding, the rows of which define D linear forms x 7→ 〈ℓj ,x〉 on
Rn.

Output, in binary encoding:

(O1) the rational number
∫

∆
f(〈ℓ1,x〉, . . . , 〈ℓD,x〉) dm, where ∆ ⊆

Rn is the simplex with vertices s1, . . . , sd+1 and dm is the inte-
gral Lebesgue measure of the rational affine subspace 〈∆〉.

In particular, the computation of the integral of a power of one linear
form can be done by a polynomial time algorithm. This becomes false
already if one considers powers of a quadratic form instead of powers
of a linear form. Actually, we prove Theorem 1 by looking at powers
QM of the Motzkin–Straus quadratic form of a graph.

As we will see later, when its degree is fixed, a polynomial has a
polynomial size representation in either the SIU straight-line program
encoding or the sparse or dense monomial representation and one can

4 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

switch between the two representations efficiently. The notion of formal
degree of an SIU straight-line program will be defined in Section 2.

Corollary 3 (Efficient integration of polynomials of fixed degree). For
every fixed number M ∈ N, there exists a polynomial-time algorithm
for the following problem. Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) a polynomial f ∈ Q[x1, . . . , xn] represented by either an SIU

straight-line program Φ of formal degree at most M , or a sparse
or dense monomial representation of total degree at most M .

Output, in binary encoding:

(O1) the rational number
∫

∆
f(x) dm, where ∆ ⊆ Rn is the sim-

plex with vertices s1, . . . , sd+1 and dm is the integral Lebesgue
measure of the rational affine subspace 〈∆〉.

Actually, we give two interesting algorithms that prove Corollary 3.
First, we simply observe that a monomial with total degree M involves
at most M variables. Our second algorithm is related to the polynomial
Waring problem: we decompose a homogeneous polynomial of total
degree M into a sum of M-th powers of linear forms.

In [19] Lasserre and Avrachenkov compute the integral
∫

∆
f(x) dm

when f is a homogeneous polynomial, in terms of the corresponding
polarized symmetric multilinear form (Proposition 16). We show that
their formula also leads to a proof of Corollary 3. Furthermore, sev-
eral other methods can be used for integration of polynomials of fixed
degree. We discuss them in Section 4.

This paper is organized as follows: After some preparation in Sec-
tion 2, the main theorems are proved in Section 3. In Section 4, we
discuss extensions to other convex polytopes and give a survey of the
complexity of other algorithms. Finally, in Section 5, we report on a
few computational experiments.

2. Preliminaries

In this section we prepare for the proofs of the main results.

2.1. Integral Lebesgue measure on a rational affine subspace of

Rn. On Rn itself we consider the standard Lebesgue measure, which
gives volume 1 to the fundamental domain of the lattice Zn. Let L
be a rational linear subspace of dimension d ≤ n. We normalize the
Lebesgue measure on L, so that the volume of the fundamental domain
of the intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define the integral Lebesgue measure dm by
translation. For example, the diagonal of the unit square has length 1
instead of

√
2.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 5

Table 1. The representation of (x2
1 + · · · + x2

n)k as a
straight-line program

Intermediate Comment

q1 = 0
q2 = x1

q3 = q2 · q2

q4 = q1 + q3 Thus q4 = x2
1.

q5 = x2

q6 = q5 · q5

q7 = q4 + q6 Now q7 = x2
1 + x2

2.
...

q3n−1 = xn

q3n = q3n−1 · q3n−1

q3n+1 = q3n−2 + q3n Now q3n+1 = x2
1 + · · · + x2

n.
q3n+2 = 1
q3n+3 = q3n+2 · q3n+1

q3n+4 = q3n+3 · q3n+1
...

q3n+k+2 = q3n+k+1 · q3n+1 Final result.

2.2. Encoding polynomials for integration. We now explain our
encoding of polynomials as SIU straight-line programs and justify our
use of this encoding. We say that a polynomial f is represented as a
(division-free) straight-line program Φ if there is a finite sequence of
polynomial functions of Q[x1, . . . , xn], namely q1, . . . , qk, the so-called
intermediate results, such that each qi is either a variable x1, . . . , xn, an
element of Q, or either the sum or the product of two preceding poly-
nomials in the sequence and such that qk = f . A straight-line program
allows us to describe in polynomial space polynomials which other-
wise would need to be described with exponentially many monomial
terms. For example, think of of the representation of (x2

1 + · · · + x2
n)k

as monomials versus its description with only 3n + k + 2 intermediate
results; see Table 2. The number of intermediate results of a straight
line program is called its length. To keep track of constants we define
the size of an intermediate result as one, unless the intermediate result
is a constant in which case its size is the binary encoding size of the
rational number. The size of a straight-line program is the sum of the
sizes of the intermediate results. The formal degree of an intermediate
result qi is defined recursively in the obvious way, namely as 0 if qi

is a constant of Q, as 1 if qi is a variable xj , as the maximum of the
formal degrees of the summands if qi is a sum, and the sum of the
formal degrees of the factors if qi is a product. The formal degree of

6 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Table 2. The representation of a straight-line program
for x2k

, using iterated squaring

Intermediate Comment

q1 = x
q2 = q1 · q1

q3 = q2 · q2
...

qk+1 = qk · qk Final result.

the straight-line program Φ is the formal degree of the final result qk.
Clearly the formal degree gives an upper bound on the degree of the
polynomial represented by it.

A favorite example to illustrate the benefits of a straight-line pro-
gram encoding is that of the symbolic determinant of an n×n matrix.
Its dense representation as monomials has size Θ(n!) but it can be com-
puted in O(n3) operations by Gaussian elimination. See the book [11]
as a reference for this concept.

From a monomial representation of a polynomial of degree M and
n variables it is easy to encode it as a straight-line program: first, by
going in increasing degree we can write a straight-line program that
generates all monomials of degree at most M in n variables. Then for
each of them compute the product of the monomial with its coefficient
so the length doubles. Finally successively add each term. This gives
a final length bounded above by four times the number of monomials
of degree at most M in n variables.

Straight-line programs are quite natural in the context of integra-
tion. One would certainly not expand (x2

1 + · · · + x2
n)k to carry on

numeric integration when we can easily evaluate it as a function. More
importantly, straight-line programs are suitable as an input and output
encoding and data structure in certain symbolic algorithms for com-
putations with polynomials, like factoring; see [11]. Since straight-line
programs can be very compact, the algorithms can handle polynomials
whose input and output encodings have an exponential size in a sparse
monomial representation.

However, a problem with straight-line programs is that this input
encoding can be so compact that the output of many computational
questions cannot be written down efficiently in the usual binary en-
coding. For example, while one can encode the polynomial x2k

with a
straight-line program with only k+1 intermediate results (see Table 2),

when we compute the value of x2k
for x = 2, or the integral

∫ 2

0
x2k

dx =

22k+1/(2k + 1), the binary encoding of the output has a size of Θ(2k).
Thus the output, given in binary, turns out to be exponentially bigger

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 7

Table 3. The representation of a single-intermediate-
use straight-line program for x2k

; note that the iterated
squaring method cannot be used

Intermediate Comment

q1 = x
q2 = x
q3 = q1 · q2 Now q3 = x2, and q1 and q2

cannot be used anymore.
q4 = x
q5 = q3 · q4 Thus q5 = x3.

...
q2k+1−2 = x
q2k+1−1 = q2k+1−3 · q2k+1−2 Final result.

than the input encoding. We remark that the same difficulty arises if
we choose a sparse input encoding of the polynomial where not only
the coefficients but also the exponent vectors are encoded in binary
(rather than the usual unary encoding for the exponent vectors).

This motivates the following variation of the notion of straight-
line program: We say a (division-free) straight-line program is single-
intermediate-use, or SIU for short, if every intermediate result is used
only once in the definition of other intermediate results. (However,
the variables x1, . . . , xn can be used arbitrarily often in the definition
of intermediate results.) With this definition, all ways to encode the

polynomial x2k
require at least 2k multiplications. An example SIU

straight-line program is shown in Table 3. Clearly single-intermediate-
use straight-line programs are equivalent, in terms of expressiveness
and encoding complexity, to fully parenthesized arithmetic expressions
using binary operators + and ×.

2.3. Efficient computation of truncated product of an arbi-

trary number of polynomials in a fixed number of variables.

The following result will be used in several situations.

Lemma 4. For every fixed number D ∈ N, there exists a polynomial
time algorithm for the following problem.
Input: a number M in unary encoding, a sequence of k polynomials
Pj ∈ Q[X1, . . . , XD] of total degree at most M , in dense monomial
representation.
Output: the product P1 · · ·Pk truncated at degree M .

Proof. We start with the product of the first two polynomials. We
compute the monomials of degree at most M in this product. This takes
O(M2D) elementary rational operations, and the maximum encoding

8 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

length of any coefficient in the product is also polynomial in the input
data length. Then we multiply this truncated product with the next
polynomial, truncating at degree M , and so on. The total computation
takes O(kM2D) elementary rational operations. �

3. Proofs of the main results

Our aim is to perform an efficient computation of
∫

∆
f dm where

∆ is a simplex and f a polynomial. We will prove first that this is
not possible for f of varying degree under the assumption that P 6=
NP. More precisely, we prove that, under this assumption, an efficient
computation of

∫

∆
QM dm is not possible, where Q is a quadratic form

and M is allowed to vary.
In the next subsection we present an algorithm to efficiently compute

the integral
∫

∆
f dm in some particular situations, most notably the

case of arbitrary powers of linear forms.

3.1. Hardness for polynomials of non-fixed degree. For the proof
of Theorem 1 we need to extend the following well-known result of
Motzkin and Straus [24]. In this section, we denote by ∆ the (n − 1)-
dimensional canonical simplex {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1 }, and

we denote by dm the Lebesgue measure on the hyperplane {x ∈ Rn :
∑n

i=1 xi = 1 }, normalized so that ∆ has volume 1. For a function f on
∆, denote as usual ‖f‖∞ = maxx∈∆ |f(x)| and ‖f‖p = (

∫

∆
|f |p dm)1/p,

for p ≥ 1. Recall that the clique number of a graph G is the largest
number of vertices of a complete subgraph of G.

Theorem 5 (Motzkin–Straus). Let G be a graph with n vertices and
clique number ω(G). Let QG(x) be the Motzkin–Straus quadratic form
1
2

∑

(i,j)∈E(G) xixj. Then ‖QG(x)‖∞ = 1
2
(1 − 1

ω(G)
).

Our first result might be of independent interest as it shows that in-
tegrals of polynomials over simplices can carry very interesting combi-
natorial information. This result builds on the theorem of Motzkin and
Straus, using the proof of the well-known relation ‖f‖∞ = limp→∞ ‖f‖p.

Lemma 6. Let G be a graph with n vertices and clique number ω(G).
Let QG(x) be the Motzkin–Straus quadratic form. Then for p ≥ 4(e −
1)n3 ln(32n2), the clique number ω(G) is equal to

⌈

1
1−2‖QG‖p

⌉

.

To prove Lemma 6 we will first prove the following intermediate
result.

Lemma 7. For ε > 0 we have

(‖QG‖∞ − ε)(
ε

4
)(n−1)/p ≤ ‖QG‖p ≤ ‖QG‖∞ .

Proof. The right-hand side inequality follows from the normalization
of the measure, as |Q(x)| ≤ ‖QG‖∞, for all x ∈ ∆.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 9

In order to obtain the other inequality, we use Hölder’s inequality
∫

∆
|fg| dm ≤ ‖f‖p ‖g‖q, where q is such that 1

p
+ 1

q
= 1. For any

(say) continuous function f on ∆, let us denote by ∆(f, ε) the set
{x ∈ ∆ : |f(x)| ≥ ‖f‖∞−ε }, and take for g the characteristic function
of ∆(f, ε). We obtain

(‖f‖∞ − ε)(vol ∆(f, ε))1/p ≤ ‖f‖p . (1)

Let a be a point of ∆ where the maximum of QG is attained. Since
∂QG

∂xi
=

∑

(i,j)∈E(G) xj we know that 0 ≤ ∂QG

∂xi
≤ 1 for x ∈ ∆. Since ∆ is

convex, we conclude that for any x ∈ ∆,

0 ≤ QG(a) − QG(x) ≤
n

∑

i=1

|ai − xi| .

Thus ∆(QG, ε) contains the set Cε = {x ∈ ∆ :
∑n

i=1 |ai − xi| < ε}.
We claim that vol(Cε) ≥ (ε

4
)n−1 . This claim proves the left inequality

of the lemma when we apply it to (1).

Consider the dilated simplex ε/2
1+ε/2

∆ and the translated set Pε =
a

1+ε/2
+ ε/2

1+ε/2
∆. Clearly Pε is contained in ∆. Moreover, for x ∈ Pε,

we have
∑n

i=1 |ai − xi| ≤ ε
1+ε/2

≤ ε, hence Pε is contained in Cε. Since

vol(∆) = 1 for the normalized measure, the volume of Pε is equal to

(ε/2
1+ε/2

)n−1. Hence vol(Pε) ≥ (ε/4)n−1. This finishes the proof. �

Proof of Lemma 6. In the inequalities of Lemma 7, we substitute the
relation ‖QG‖∞ = 1

2
(1 − 1

ω(G)
), given by Motzkin–Straus’s theorem

(Theorem 5). We obtain

(
1

2
(1 − 1

ω(G)
) − ε)(ε/4)

n−1
p ≤ ‖QG‖p ≤

1

2
(1 − 1

ω(G)
).

Let us rewrite these inequalities as

1

1 − 2 ‖QG‖p

≤ ω(G) ≤ 1

1 − 2‖QG‖p

(ε/4)(n−1)/p − 2ε
. (2)

We only need to prove that for ε = 1
8n2 and p ≥ 4(e− 1)n3 ln(32n2) we

have

0 ≤ L(p) :=
1

1 − 2‖QG‖p

(ε/4)
n−1

p
− 2ε

− 1

1 − 2 ‖QG‖p

< 1. (3)

Let us write

δp = ‖QG‖p (
1

(ε/4)
n−1

p

− 1) = ‖QG‖p ((32n2)
n−1

p − 1).

Thus L(p) in Equation 3 becomes now

L(p) =
1

1 − 2 ‖QG‖p

(1

1 − 2 δp+ε
1−2‖QG‖p

− 1
)

. (4)

10 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Since ‖QG‖p ≤ 1
2
(1 − 1

ω(G)
) ≤ 1

2
, we have a bound for δp

0 ≤ δp ≤ 1

2
((32n2)

n−1
p − 1).

Let A = (4
ε
)n−1 = (32n2)n−1. Since we assumed p ≥ 4(e−1)n3 ln(32n2),

we have 0 ≤ ln A
p

< 1, hence 0 ≤ A1/p − 1 < (e − 1) lnA
p

. We obtain

0 ≤ δp ≤ e − 1

2

(n − 1) log(32n2)

p
≤ 1

8n2
.

Since ω(G) ≤ n, we have 1 − 2 ‖QG‖p ≥ 1/n. Hence we have

2(δp + ε)

1 − 2 ‖QG‖p

≤ 1

2n
≤ 1

2
.

Finally for any number 0 < α < 1/2 we have 1
1−α

< 1 + 2α, hence

applying this fact to Equation 4 with α = 2 δp+ε
1−2‖QG‖p

we get

L(p) <
1

1 − 2 ‖QG‖p

(4(δ + ε)

1 − 2 ‖QG‖p

)

≤ 4n2(δp + ε) ≤ 1.

This proves Equation 3 and the lemma. �

Proof of Theorem 1. The problem of deciding whether the clique num-
ber ω(G) of a graph G is greater than a given number K is a well-known
NP-complete problem [15]. From Lemma 6 we see that checking this
is the same as checking that for p = 4(e − 1)n3 ln(32n2) the integral
part of

∫

∆
(QG)p dm is less than Kp. Note that the polynomial QG(x)p

is a power of a quadratic form and can be encoded as a SIU straight-
line program of length O(n3 log n · |E(G)|). If the computation of the
integral

∫

∆
f dm of a polynomial f could be done in polynomial time

in the input size of f , we could then verify the desired inequality in
polynomial time as well. �

3.2. An extension of a formula of Brion. In this section, we obtain
several expressions for the integrals

∫

∆
eℓ dm and

∫

∆
ℓM1
1 · · · ℓMD

D dm,
where ∆ ⊂ Rn is a simplex and ℓ, ℓj are linear forms on Rn. The
first formula, (5) in Lemma 8, is obtained by elementary iterated in-
tegration on the standard simplex. It leads to a computation of the
integral

∫

∆
ℓM1
1 · · · ℓMD

D dm in terms of the Taylor expansion of a certain
analytic function associated to ∆ (Corollary 14), hence to a proof of
the complexity result of Theorem 2.

In the case of one linear form ℓ which is regular, we recover in this
way the “short formula” of Brion as Corollary 11. This result was first
obtained by Brion as a particular case of his theorem on polyhedra [10].

Lemma 8. Let ∆ be the simplex that is the convex hull of (d+1) affinely
independent vertices s1, s2, . . . , sd+1 in Rn, and let ℓ be an arbitrary

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 11

linear form on Rn. Then
∫

∆

eℓ dm = d! vol(∆, dm)
∑

k∈Nd+1

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1

(|k| + d)!
, (5)

where |k| =
∑d+1

j=1 kj.

Proof. Using an affine change of variables, it is enough to prove (5)
when ∆ is the d-dimensional standard simplex ∆st ⊂ Rd defined by

∆st =

{

x ∈ Rd : xi ≥ 0,
d

∑

i=1

xi ≤ 1

}

.

The volume of ∆st is equal to 1
d!

. In the case of ∆st, the vertex sj is

the basis vector ej for 1 ≤ j ≤ d and sd+1 = 0. Let 〈ℓ, x〉 =
∑d

j=1 ajxj .

Then (5) becomes
∫

∆st

ea1x1+···+adxd dx =
∑

k∈Nd

ak1
1 · · ·akd

d

(|k| + d)!
.

We prove it by induction on d. For d = 1, we have
∫ 1

0

eax dx =
ea − 1

a
=

∑

k≥0

ak

(k + 1)!
.

Let d > 1. We write
∫

∆st

ea1x1+···+adxd dx =

∫ 1

0

eadxd

(
∫

xj≥0
x1+···+xd−1≤1−xd

ea1x1+···+ad−1xd−1 dx1 . . . dxd−1

)

dxd.

By the induction hypothesis and an obvious change of variables, the
inner integral is equal to

(1 − xd)
d−1

∑

k∈Nd−1

(1 − xd)
|k| ak1

1 · · ·akd−1

d−1

(|k| + d − 1)!
.

The result now follows from the relation
∫ 1

0

(1 − x)p

p!
eax dx =

∑

k≥0

ak

(k + p + 1)!
.

�

Remark 9. Let us replace ℓ by tℓ in (5) and expand in powers of t.
We obtain the following formula.
∫

∆

ℓM dm = d! vol(∆, dm)
M !

(M + d)!

∑

k∈Nd+1,|k|=M

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1.

(6)

12 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

This relation is a particular case of a result of Lasserre and Avrachenkov,
Proposition 16, as we will explain in section 4.3 below.

Theorem 10. Let ∆ be the simplex that is the convex hull of (d + 1)
affinely independent vertices s1, s2, . . . , sd+1 in Rn.

∑

M∈N

tM
(M + d)!

M !

∫

∆

ℓM dm = d! vol(∆, dm)
1

∏d+1
j=1(1 − t〈ℓ, sj〉)

. (7)

Proof. We apply Formula (6). Summing up from M = 0 to ∞, we
recognize the expansion of the right-hand side of (7) into a product of
geometric series:

∑

M∈N

tM
(M + d)!

M !

∫

∆

ℓM dm =

d! vol(∆, dm)
∑

M∈N

tM
∑

k∈Nd+1|,k|=M

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1.

�

Corollary 11 (Brion). Let ∆ be as in the previous theorem. Let ℓ be a
linear form which is regular w.r.t. ∆, i.e., 〈ℓ, si〉 6= 〈ℓ, sj〉 for any pair
i 6= j. Then we have the following relations.

∫

∆

ℓM dm = d! vol(∆, dm)
M !

(M + d)!

(

d+1
∑

i=1

〈ℓ, si〉M+d

∏

j 6=i〈ℓ, si − sj〉
)

. (8)

∫

∆

eℓ dm = d! vol(∆, dm)

d+1
∑

i=1

e〈ℓ,si〉

∏

j 6=i〈ℓ, si − sj〉
. (9)

Proof. We consider the right-hand side of (7) as a rational function of
t. The poles t = 1/〈ℓ, si〉 are simple precisely when ℓ is regular. In this
case, we obtain (8) by taking the expansion into partial fractions. The
second relation follows immediately by expanding eℓ. �

When ℓ is regular, Brion’s formula is very short, it is a sum of d + 1
terms. When ℓ is not regular, the expansion of (7) into partial fractions
leads to an expression of the integral as a sum of residues. Let K ⊆
{1, . . . , d + 1} be an index set of the different poles t = 1/〈ℓ, sk〉, and
for k ∈ K let mk denote the order of the pole, i.e.,

mk = #
{

i ∈ {1, . . . , d + 1} : 〈ℓ, si〉 = 〈ℓ, sk〉
}

.

With this notation, we have the following formula.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 13

Corollary 12.
∫

∆

ℓM dm =

d! vol(∆, dm)
M !

(M + d)!

∑

k∈K

Resε=0
(ε + 〈ℓ, sk〉)M+d

εmk
∏

i∈K
i6=k

(ε + 〈ℓ, sk − si〉)mi
(10)

Remark 13. It is worth remarking that Corollaries 11 and 12 can
be seen as a particular case of the localization theorem in equivariant
cohomology (see for instance [6]), although we did not use this fact and
instead gave a simple direct calculation. In our situation, the variety is
the complex projective space CPd, with action of a d-dimensional torus,
such that the image of the moment map is the simplex ∆. Brion’s
formula corresponds to the generic case of a one-parameter subgroup
acting with isolated fixed points. In the degenerate case when the
set of fixed points has components of positive dimension, the polar
parts in (10) coincide with the contributions of the components to the
localization formula.

Finally, we can extend the formula of Theorem 10 on integrating the
power of a linear form to the case of a product of powers of several
linear forms.

Corollary 14. Let ℓ1, . . . , ℓD be D linear forms on Rn. We have the
following Taylor expansion:

∑

M∈ND

tM1
1 . . . tMD

D

(|M| + d)!

d! vol(∆, dm)

∫

∆

ℓM1
1 · · · ℓMD

D

M1! . . .MD!
dm =

1
∏d+1

i=1 (1 − t1〈ℓ1, si〉 − · · · − tD〈ℓD, si〉)
. (11)

Proof. Replace tℓ with t1ℓ1 + · · ·+ tDℓD in (7) and take the expansion
in powers tM1

1 · · · tMD
D . �

3.3. Polynomial time algorithms for polynomial functions of a

fixed number of linear forms. We will present an algorithm which,
given a polynomial of the particular form f(〈ℓ1,x〉, · · · , 〈ℓD,x〉) where
f is a polynomial depending on a fixed number D of variables, and
〈ℓj,x〉 = Lj1x1 + · · ·+ Ljnxn, for j = 1, . . . , D, are linear forms on Rn,
computes its integral on a simplex, in time polynomial on the input
data. This algorithm relies on Corollary 14.

Proof of Theorem 2. The number of monomials of degree M in D vari-
ables is equal to

(

M+D−1
D−1

)

. Therefore, when D is fixed, the number

of monomials of degree at most M in D variables is O(MD). When
the number of variables D of a straight-line program Φ is fixed, it is

14 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

possible to compute a sparse or dense representation of the polynomial
represented by Φ in polynomial time, by a straight-forward execution
of the program. Indeed, all intermediate results can be stored as sparse
or dense polynomials with O(MD) monomials. Since the program Φ
is single-intermediate-use, the binary encoding size of all coefficients
of the monomials can be bounded polynomially by the input encoding
size. Thus it is enough to compute the integral of a monomial,

∫

∆

〈ℓ1,x〉M1 · · · 〈ℓD,x〉MD dm. (12)

From Theorem 14, it follows that

(|M| + d)!

d! vol(∆, dm)

∫

∆

ℓM1
1 · · · ℓMD

D

M1! · · ·MD!
dm

is the coefficient of tM1
1 · · · tMD

D in the Taylor expansion of

1
∏d+1

i=1 (1 − t1〈ℓ1, si〉 − · · · − tD〈ℓD, si〉)
.

Since D is fixed, this coefficient can be computed in time polynomial
with respect to M and the input data, by multiplying series truncated
at degree |M|, as explained in Lemma 4.

Finally, vol(∆, dm) needs to be computed. If ∆ = conv{s1, . . . , sd+1}
is full-dimensional (d = n), we can do so by computing the determinant
of the matrix formed by difference vectors of the vertices:

vol(∆, dm) =
1

n!
|det(s1 − sn+1, . . . , sn − sn+1)| .

If ∆ is lower-dimensional, we first compute a basis B ∈ Zn×d of the
intersection lattice Λ = lin(∆) ∩ Zn. This can be done in polynomial
time by applying an efficient algorithm for computing the Hermite nor-
mal form [16]. Then we express each difference vector vi = si − sd+1 ∈
lin(∆) for i = 1, . . . , d using the basis B as vi = Bv′

i, where vi ∈ Qd.
We obtain

vol(∆, dm) =
1

d!
|det(v′

1, . . . ,v
′
d)| ,

thus the volume computation is reduced to the calculation of a deter-
minant. This finishes the proof of Theorem 2. �

3.4. Polynomial time algorithms for polynomials of fixed de-

gree. In the present section, we assume that the total degree of the
input polynomial f we wish to integrate is a constant M .

Proof of Corollary 3. First of all, when the formal degree M of a straight-
line program Φ is fixed, it is possible to compute a sparse or dense
representation of the polynomial represented by Φ in polynomial time,
by a straight-forward execution of the program. Indeed, all intermedi-
ate results can be stored as sparse or dense polynomials with O(nM)

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 15

monomials. Since the program Φ is single-intermediate-use, the bi-
nary encoding size of all coefficients of the monomials can be bounded
polynomially by the input encoding size.

Now, the key observation is that a monomial of degree at most M
depends effectively on D ≤ M variables xi1 , . . . , xiD , thus it is of the
form

ℓM1
1 · · · ℓMD

D ,

where the linear forms ℓj(x) = xij are the coordinates that effectively
appear in the monomial. Thus, Corollary 3 follows immediately from
Theorem 2. �

In the following, we give another proof of Corollary 3, based on
decompositions of polynomials as sums of powers of linear forms.

Alternative proof of Corollary 3. From Corollaries 11 and 12, we derive
another efficient algorithm, as follows. The key idea now is that one
can decompose the polynomial f as a sum f :=

∑

ℓ cℓℓ
M
j with at most

2M terms in the sum. To handle the case where f is a monomial, we
use the well-known identity

xM1
1 xM2

2 · · ·xMn
n

=
1

|M|!
∑

0≤pi≤Mi

(−1)|M|−(p1+···+pn)

(

M1

p1

)

· · ·
(

Mn

pn

)

(p1x1+· · ·+pnxn)|M|,

(13)

where |M| = M1 + · · ·+ Mn ≤ M .
The number of terms in the sum is the product (M1 +1) · · · (Mn +1),

which is bounded by 2M1+···+Mn = 2|M| ≤ 2M . Since the number of
monomials of degree M in n variables is O(nM), we have a polynomial
time algorithm. �

Actually, in the implementation of this method, we group together
proportional linear forms, thus we often obtain a smaller number of
summands.

The problem of finding a decomposition with the smallest possible
number of summands is known as the polynomial Waring problem:
What is the smallest integer r(M, n) such that a generic homogeneous
polynomial f(x1, . . . , xn) of degree M in n variables is expressible as
the sum of r(M, n) M-th powers of linear forms? This problem was
solved by Alexander and Hirschowitz (see [1], and [8] for an extensive
survey), but there is no computational or constructive version of this
result.

Theorem 15. A generic homogeneous polynomial of degree M in n
variables is expressible as the sum of

r(M, n) =

⌈

(

n+M−1
M

)

n

⌉

16 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

M-th powers of linear forms, with the exception of the cases r(3, 5) = 8,
r(4, 3) = 6, r(4, 4) = 10, r(4, 5) = 15, and M = 2, where r(2, n) = n.

In the extreme case, when the polynomial f happens to be the power
of one linear form ℓ, one should certainly avoid applying the above
decomposition formula to each of the monomials of f . We remark that,
when the degree is fixed, we can decide in polynomial time whether a
polynomial f , given in sparse or dense monomial representation, is a
power of a linear form ℓ, and, if so, construct such a linear form.

4. Other algorithms for integration and extensions to

other polytopes

We conclude with a discussion of how to extend integration to other
polytopes and a review of the complexity of other methods to integrate
polynomials over polytopes.

4.1. A formul of Lasserre–Avrachenkov. Another nice formula is
the Lasserre–Avrachenkov formula for the integration of a homoge-
neous polynomial [19] on a simplex. As we explain below, this yields a
polynomial-time algorithm for the problem of integrating a polynomial
of fixed degree over a polytope in varying dimension, thus providing an
alternative proof of Corollary 3.

Proposition 16 ([19]). Let H be a symmetric multilinear form defined
on (Rd)M . Let s1, s1, . . . , sd+1 be the vertices of a d-dimensional simplex
∆. Then one has
∫

∆

H(x,x, . . . ,x)dx =
vol(∆)
(

M+d
M

)

∑

1≤i1≤i2≤···iM≤d+1

H(si1 , si2, . . . , siM). (14)

Remark 17. By reindexing the summation in (14), as H is symmetric,
we obtain

∫

∆

H(x,x, . . . ,x)dx =

vol(∆)
(

M+d
M

)

∑

k1+···+kd+1=M

H(s1, . . . , s1, . . . , sd+1, . . . , sd+1), (15)

where s1 is repeated k1 times, s2 is repeated k2 times, etc. When H
is of the form H =

∏M
i=1〈ℓ,xi〉, for a single linear form ℓ, then (15)

coincides with Formula (6) in Remark 9.

Now any polynomial f which is homogeneous of degree M can be
written as f(x) = Hf (x,x, . . . ,x) for a unique multilinear form Hf . If

f = ℓM then Hf =
∏M

i=1〈ℓ,xi〉. Thus for fixed M the computation of
Hf can be done by decomposing f into a linear combination of powers

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 17

of linear forms, as we did in the proof of Corollary 3. Alternatively one
can use the well-known polarization formula,

Hf(x1, . . . ,xM) =
1

2MM !

∑

ε∈{±1}M

ε1ε2 · · · εMf
(

M
∑

i=1

εixi

)

, (16)

Thus from (14) we get the following corollary.

Corollary 18. Let f be a homogeneous polynomial of degree M in
d variables, and let s1, s2, . . . , sd+1 be the vertices of a d-dimensional
simplex ∆. Then

∫

∆

f(y) dy =

vol(∆)

2MM !
(

M+d
M

)

∑

1≤i1≤i2≤···≤iM≤d+1

∑

ε∈{±1}M

ε1ε2 · · · εMf
(

M
∑

k=1

εksik

)

. (17)

We remark that when we fix the degree M of the homogeneous poly-
nomial f , the length of the polarization formula (thus the length of the
second sum in (17) is a constant. The length of the first sum in (17) is
O(nM). Thus, for fixed degree in varying dimension, we obtain another
polynomial-time algorithm for integrating over a simplex.

4.2. Traditional conversion of the integral as iterated univari-

ate integrals. Let P ⊆ Rd be a full-dimensional polytope and f a
polynomial. The traditional method we teach our calculus students
to compute multivariate integrals over a bounded region requires them
to write the integral

∫

P
f dm is a sum of sequences of one-dimensional

integrals
K

∑

j=1

∫ b1j

a1j

∫ b2j

a2j

· · ·
∫ bdj

adj

f dxi1 dxi2 . . . dxid (18)

for which we know the limits of integration aij , bij explicitly. The prob-
lem of finding the limits of integration and the sum has interesting com-
plexity related to the well-known Fourier-Motzkin elimination method
(see Chapter One in [27] for a short introduction).

Given a system of linear inequalities Ax ≤ b, describing a polytope
P ⊂ Rd, Fourier–Motzkin elimination is an algorithm that computes a
new larger system of inequalities Âx ≤ b̂ with the property that those
inequalities that do not contain the variable xd describe the projection
of P into the hyperplane xd = 0. We will not explain the details, but
Fourier-Motzkin elimination is quite similar to Gaussian elimination
in the sense that the main operations necessary to eliminate the last
variable xd require to rearrange, scale, and add rows of the matrix
(A,b), but unlike Gaussian elimination, new inequalities are added to
the system.

18 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

It was first observed by Schechter [26] that Fourier-Motzkin elim-
ination provides a way to generate the traditional iterated integrals.
More precisely, let us call Pd the projection of P into the the hyper-
plane xd = 0. Clearly when integrating over a polytopal region we
expect that the limits of integration will be affine functions. From
the output of Fourier-Motzkin Âx ≤ b̂, we have x ∈ P if and only if
(x1, . . . , xd−1) ∈ Pd and for the first k + r inequalites of the system

xd ≤ b̂i −
d−1
∑

j=1

âijxj = Au
i (x1, . . . , xd−1)

for i = 1, . . . k as well as

xd ≥ b̂k+i −
d−1
∑

j=1

âk+ijxj , = Al
i(x1, . . . , xd−1)

for i = 1, . . . , r. Then, if we define

m(x1, . . . , xd) = max{Al
j(x1, . . . , xd−1), j = 1, . . . , r}

and

M(x1, . . . , xd) = min{Au
j (x1, . . . , xd−1), j = 1, . . . , r},

we can write
∫

P

f(x) dm =

∫

Pd

∫ M

m

f(x) dx1 dx2 · · · dxd

Finally the convex polytope Pd can be decomposed into polyhedral
regions where the functions m, M become simply affine functions from
among the list. Since the integral is additive we get an expression

∫

P

f(x) dm =
∑

i,j

∫

P ij
d

∫ Au
j

Al
j

f(x) dx1 dx2 · · · dxd.

Finally by repeating the elimination of variables we recover the full
iterated list in (18). As it was observed in [26], this algorithm is unfor-
tunately not efficient because the iterated Fourier-Motzkin elimination
procedure can produce exponentially many inequalities for the descrip-
tion of the projection (when the dimension d varies). Thus the number
of summands considered can in fact grow exponentially.

4.3. Two formulas for integral computation. We would like to
review two formulas that are nice and could speed up computation in
particular cases although they do not seem to yield efficient algorithms
just on their own.

First, one may reduce the computation of
∫

P
f dm to integrals on

the facets of P , by applying Stokes formula. We must be careful to use
a rational Lebesgue measure on each facet. As shown in ([4]), we have
the following result.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 19

Theorem 19. Let {Fi}i=1,...,m be the set of facets of a full-dimensional
polytope P ⊆ Rn. For each i, let ni be a rational vector which is
transverse to the facet Fi and pointing outwards P and let dµi be the
Lebesgue measure on the affine hull of Fi which is defined by contracting
the standard volume form of Rn with ni. Then

IP (a) =

∫

P

e〈a,x〉 dx =
1

〈a,y〉

m
∑

i=1

〈ni,y〉
∫

Fi

e〈a,x〉 dµi

for all a ∈ Cn and y ∈ Rn such that 〈y, a〉 6= 0.

It is clear that, by considering the expansion of the analytic function
∫

P
e〈a,x〉 dx, we can again obtain an analogous result for polynomials.

An alternative proof was provided by [18]. The above theorem, how-
ever, does not necessarily reduce the computational burden because,
depending on the representation of the polytope, the number of facets
can be large and also the facets themselves can be complicated poly-
topes. Yet, together with our results we obtain the following corollary
for two special cases.

Corollary 20. There is a polynomial-time algorithm for the following
problem. Input:

(I1) the dimension n ∈ N in unary encoding,
(I2) a list of rational vectors in binary encoding, namely

(i) either vectors (h1, h1,0), . . . , (hm, hm,0) ∈ Qn+1 that describe
the facet-defining inequalities 〈hi,x〉 ≤ hi,0 of a simplicial
full-dimensional rational polytope P ,

(ii) or vectors s1, . . . , sN ∈ Qn that are the vertices of a simple
full-dimensional rational polytope P ,

(I3) a rational vector a ∈ Qn in binary encoding,
(I4) an exponent M ∈ N in unary encoding.

Output, in binary encoding,

(O1) the rational number
∫

P

f(x) dm where f(x) = 〈a,x〉M

and where dm is the standard Lebesgue measure on Rn.

Proof. In the case (i) of simplicial polytopes P given by facet-defining
inequalities, we can use linear programming to compute in polynomial
time a V -representation for each simplex Fi that is a facet of P . By
applying Theorem 19 with ta in place of a and extracting the coefficient
of tM in the Taylor expansion of the analytic function t 7→ IP (ta), we
obtain the formula

∫

P

〈a,x〉M dx =
1

(M + 1)〈y, a〉

m
∑

i=1

〈y,ni〉
∫

Fi

〈a,x〉M+1 dµi,

20 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

which holds for all y ∈ Rn with 〈y, a〉 6= 0. It is known that a suit-
able y ∈ Qn can be constructed in polynomial time. The integrals
on the right-hand side can now be evaluated in polynomial time using
Theorem 2.

In the case (ii) of simple polytopes P given by their vertices, we make
use of the fact that a variant of Brion’s formula (9) actually holds for
arbitrary rational polytopes. For a simple polytope P , it takes the
following form.

∫

P

ℓM dx =
M !

(M + n)!

N
∑

i=1

∆i
〈ℓ, si〉M+n

∏

sj∈N(si)
〈ℓ, si − sj〉

, (19)

where N(si) denotes the set of vertices adjacent to si in P , and ∆i =
|det(si − sj)j∈N(si)|. The right-hand side is a sum of rational functions
of ℓ, where the denominators cancel out so that the sum is actually
polynomial. If ℓ is regular, that is to say 〈ℓ, si − sj〉 6= 0 for any i and
j ∈ N(si), then the integral can be computed by (19) which is a very
short formula. However it becomes difficult to extend the method which
we used in the case of a simplex. Instead, we can do a perturbation. In
(19), we replace ℓ by ℓ + εℓ′, where ℓ′ is such that ℓ + εℓ′ is regular for
ε 6= 0. The algorithm for choosing ℓ′ is bounded polynomially. Then
we do expansions in powers of ε as explained in Lemma 4. �

4.4. Triangulation of arbitrary polytopes. It is well-known that
any convex polytope can be triangulated into finitely many simplices.
Thus we can use our result to extend the integration of polynomials
over any convex polytope. The complexity of doing it this way will
directly depend on the number of simplices in a triangulation. This
raises the issue of finding the smallest triangulation possible of a given
polytope. Unfortunately this problem was proved to be NP-hard even
for fixed dimension three (see [12]). Thus it is in general not a good idea
to spend time finding the smallest triangulation possible. A cautionary
remark is that one can naively assume that triangulations help for non-
convex polyhedral regions, while in reality it does not because there
exist nonconvex polyhedra that are not triangulable unless one adds
new points. Deciding how many new points are necessary is an NP-
hard problem [12].

5. Some computational experiments

We have written Maple programs to perform some initial experiments
with the methods described in this paper. The programs are available
at [3].1

1All algorithms are implemented in the file integration.lib and illustrated in
files called test-*.maple. The tables in this section have been created using the
files tables-*.maple.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 21

Table 4. Decomposition of polynomials into powers of
linear forms, monomial-by-monomial construction

Degree M

n 1 2 5 10 20 30 40 50

2 2 5 28 145 963 3047 7019 13503
3 3 12 162 2094 40041 252367
4 4 22 572 15476
5 5 35 1546 78786
8 8 92 13168

10 10 145 37192
15 15 330 252813
20 20 590
30 30 1335
40 40 2380
50 50 3725

5.1. Decomposition of polynomials into powers of linear forms.

We have written a Maple program that decomposes a homogeneous
polynomial f as a sum f =

∑

ℓ cℓℓ
M with at most 2M powers of linear

forms ℓ for each monomial, using the formula (13) from the construction
in the alternative proof of Corollary 3.2

Actually, in the implementation of this method, we group together
proportional linear forms, thus we often obtain a smaller number of
summands. Table 4 shows the number of terms in the resulting for-
mula when f is a dense polynomial, for different values of M (degree)
and n (dimension). In Table 5, we compare these numbers with those
guaranteed by the Alexander–Hirschowitz theorem. The numbers il-
lustrate that there is a big space for improvement, using a possible
constructive solution of the polynomial Waring problem rather than
the simple explicit construction of formula (13).

5.2. Integration of a power of a linear form over a simplex.

We have written a Maple program that implements the method of Sec-
tion 3.3 for the efficient integration of a power of one linear form over a
simplex,

∫

∆
ℓM dm.3 In a computational experiment, for a given dimen-

sion n and degree M , we picked random full-dimensional simplices ∆
and random linear forms ℓ and used the Maple program to compute
the integral. Table 6 shows the computation times.4

2The decomposition is done by the Maple procedure from monome to linear and
is illustrated by the program test-decomposition-powerlinform.maple.

3The integration is done by the Maple procedure without basic simplex integral.
4All experiments were done with Maple 10 on a Sun Fire V440 with UltraSPARC-

IIIi processors running at 1.6GHz. The computation times are given in CPU sec-
onds. All experiments were subject to a time limit of 600 seconds per example.

22 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Table 5. Decomposition of polynomials into powers of
linear forms, Alexander–Hirschowitz bounds

Degree M

n 1 2 5 10 20 30 40 50

2 1 2 3 6 11 16 21 26
3 1 3 7 22 77 166 287 442
4 1 4 14 72 443 1364 3086 5857
5 1 5 26 201 2126 9276 27151 63251
8 1 8 99 2431 111004 1.3 · 106 7.9 · 106 3.3 · 107

10 1 10 201 9238 1.0 · 106 2.1 · 107 2.1 · 108 1.3 · 109

15 1 15 776 130751 9.3 · 107 7.7 · 109 2.2 · 1011 3.2 · 1012

20 1 20 2126 1.0 · 106 3.4 · 109 9.4 · 1011 7.0 · 1013 2.3 · 1015

30 1 30 9276 2.1 · 107 9.4 · 1011 2.0 · 1015 7.9 · 1017 1.1 · 1020

40 1 40 27151 2.1 · 108 7.0 · 1013 7.9 · 1017 1.3 · 1021 6.7 · 1023

50 1 50 63251 1.3 · 109 2.3 · 1015 1.1 · 1020 6.7 · 1023 1.0 · 1027

Table 6. Integration of powers of linear forms over simplices

Degree M

n 2 10 20 50 100 300 1000

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0
20 0.1 0.2 0.1 0.2 0.1 0.2 0.2
50 1.0 1.4 1.4 1.6 1.6 1.6 1.7

100 5.1 8.4 8.7 9.2 9.5 10.0 11.0
200 36 71 84 88 97 110 120
300 150 320 400 470 520 530
400 500

1000

5.3. Integration of a monomial over a simplex. Finally, we tested
the algorithms discussed in this paper, for the case of the integration of
a monomial over a simplex. For our experiments, we considered random
simplices ∆ of dimension n. We consider a random monomial xm where
m = (m1, . . . , md) with exponents mi between M and M +1. For each
choice of n and M , we picked 50 combinations of simplices ∆ and
exponent vectors m.

First we decompose a given monomial into a sum of powers of linear
forms and integrate each summand using the Maple program discussed
above.5 Table 7 shows the minimum, average, and maximum compu-
tation times.

5This method is implemented in the Maple procedure without from monome
to linear integral.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 23

Table 7. Integration of a monomial by decomposition
into a sum of powers of linear forms

Degree M

n 1 2 5 10 20 30 40 50 100 200 300

2 0.0
0.0

0.1

0.0
0.0

0.1

0.0
0.1

0.2

0.3
0.3

0.4

1.2
1.5

1.7

3.2
3.5

3.8

6.3
6.9

7.6

9.7
11.0

11.0

44
52

54

270
320

350

3 0.0
0.1

0.2

0.1
0.2

0.3

0.9
1.3

1.8

7.1
8.5

10.0

58
67

74

260
300

320

4 0.1
0.2

0.6

0.5
1.0

1.7

10
14

19

140
180

220

5 0.3
0.8

2.3

2.4
5.3

8.4

99
150

230

8 8.4
37.0

110.0

10

Second, we have implemented the Lasserre–Avrachenko polarization
formula (17) of Corollary 18, as described in Section 4.1 6. The running
times are shown in Table 8.

6. Conclusions

We discussed various algorithms for the exact integration of polyno-
mials over simplicial regions. Beside their theoretical efficiency, the sim-
ple rough experiments we performed clearly demonstrated that these
methods are robust enough to attack rather difficult problems. Our
investigations opened several doors for further development, which we
will present in a forthcoming paper.

First, we have some theoretical issues expanding on our results. As
in the case of volumes and the computation of centroids, it is likely that
our hardness result, Theorem 1, can be extended into an inapproxima-
bility result as those obtained in [25]. Another goal is to study other
families of polytopes for which exact integration can be done efficiently.
Furthermore, we will present a natural extension of the computation of
integrals, the efficient computation of the highest degree coefficients of

6This method is implemented in the Maple procedure integrate with polarization.

24 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Table 8. Integration of a monomial using polarization

Degree M

n 1 2 5 10 20 30 40 50 100 200 300

2 0.0
0.0

0.1

0.0
0.1

0.4

15
51

110

3 0.0
0.3

1.1

1.0
7.2

28.0

4 0.2
5.1

31.0

5

a weighted Ehrhart quasipolynomial of a simplex. Besides the methods
of the present article, these last computations are based on the results
of [2] and [5].

Second, our intention has been all along to develop algorithms with
a good chance of becoming practical and that allow for clear imple-
mentation. Thus we have also some practical improvements to discuss.
Instead of Corollary 14, we can use Brion’s formula (9) and a proper
use of iterated Laurent expansion to compute

∫

∆
f dm in polynomial

time when the degree of f is fixed. We expect that it will speed up the
current techniques we have implemented in practice. Finally, in order
to develop practical integration software, it appears that our methods
should be coupled with fast techniques for decomposing domains into
polyhedral regions (e.g. triangulations).

7. Acknowledgements

A part of the work for this paper was done while the five authors
visited Centro di Ricerca Matematica Ennio De Giorgi at the Scuola
Normale Superiore of Pisa, Italy. We are grateful for the hospitality
of CRM and the support we received. The third author was also sup-
ported by NSF grant DMS-0608785. We are grateful for comments
from Jean-Bernard Lasserre and Bernd Sturmfels.

References

[1] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables,
J. Algebraic Geom. 4 (1995), 201–222.

[2] V. Baldoni, N. Berline, and M. Vergne, Euler-Maclaurin expansion of Barvi-
nok valuations and Ehrhart coefficients of rational polytopes, Contemporary
Mathematics 452 (2008), 15–33.

HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 25

[3] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe,
and M. Vergne, Maple programs accompanying the man-
uscript How to integrate a polynomial over a simplex,
http://www.math.ucdavis.edu/~mkoeppe/art/pisa-integration-experiments/,
2008.

[4] A. Barvinok, Exponential integrals and sums over convex polyhedra (in Rus-
sian), Funktsional. Anal. i Prilozhen. 26 (1992), no. 2, 64–66, translated in
Funct. Anal. Appl. 26 (1992), no. 2, pp. 127–129.

[5] N. Berline and M. Vergne, Local Euler-Maclaurin formula for polytopes,
Moscow Math.J. 7 (2007), 355–386.

[6] N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992.

[7] A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Academic
Press, Orlando, Florida, 1986.

[8] M. C. Brambilla and G. Ottaviani, On the Alexander–Hirschowitz theorem,
e-print arXiv:math.AG/0701409v2, 2007.

[9] G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991),
no. 3, 225–242.

[10] M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. École Norm.
Sup. 21 (1988), no. 4, 653–663.

[11] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory,
Grundlehren der mathematischen Wissenschaften, no. 315, Springer, Berlin,
1997.

[12] J. A. De Loera, J. Rambau, and F. Santos, Triangulations: Structures and
algorithms, Book manuscript, 2008.

[13] M. E. Dyer and A. M. Frieze, On the complexity of computing the volume of a
polyhedron, SIAM J. Comput. 17 (1988), no. 5, 967–974.

[14] G. Elekes, A geometric inequality and the complexity of computing volume,
Discrete Comput. Geom. 1 (1986), no. 4, 289–292.

[15] M. R. Garey and D. S. Johnson, Computers and intractibility: A guide to the
theory of NP-completeness, W. H. Freeman and Co., San Francisco, California,
1979.

[16] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979),
no. 4, 499–507.

[17] L. Khachiyan, Complexity of polytope volume computation, New trends in dis-
crete and computational geometry, Algorithms Combin., vol. 10, Springer,
Berlin, 1993, pp. 91–101.

[18] J. B. Lasserre, Integration on a convex polytope, Proceedings of the AMS 126

(1998), no. 8, 2433–2441.

[19] J. B. Lasserre and K. Avrachenkov, The multidimensional version of
∫ b

a
xp dx,

American Mathematical Monthly 108 (2001), no. 2, 151–154.
[20] M. Laurent, Sums of squares, moment matrices, and optimization over poly-

nomials, In “Emerging applications of algebraic geometry (Minneapolis, Min-
nesota) (M. Putinar and S. Sullivant, eds.), IMA volumes in Mathematics and
its Applications, 2008.

[21] J. Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195,
259–271.

[22] S. Lin, B. Sturmfels, and Z. Xu, Marginal likelihood integrals for mixtures of
independence models, e-print arXiv:0805.3602 [stat.CO], 2008.

http://www.math.ucdavis.edu/~mkoeppe/art/pisa-integration-experiments/

26 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

[23] G. Matera, Integration of multivariate rational functions given by straight-line
programs, Proceedings of the 11th international symposium on applied algebra,
algebraic algorithms and error-correcting codes (London), Lecture notes in
Computer Science, vol. 948, Springer, 1995, pp. 347–364.

[24] T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a
theorem of Turán, Canadian Journal of Mathematics 17 (1965), 533–540.

[25] L. Rademacher, Approximating the centroid is hard, Proceedings of 23th annual
ACM Symposium of Computational Geometry, Gyeongju, South Korea, June
6-8, 2007, 2007, pp. 302–305.

[26] M. Schechter, Integration over a polyhedron: An application of the Fourier–
Motzkin elimination method, American Mathematical Monthly 105 (1998),
no. 3, 246–251.

[27] G. M. Ziegler, Lectures on polytopes, Graduate texts in Mathematics, no. 152,
Springer, New York, 1995.

[28] O. C. Zienkiewicz and R. L. Taylor, The finite element method, McGraw-Hill,
London, 1988.

Velleda Baldoni: Dipartimento di Matematica, Università degli studi

di Roma “Tor Vergata”, Via della ricerca scientifica 1, I-00133, Italy

E-mail address : baldoni@mat.uniroma2.it

Nicole Berline: Centre de Mathématiques Laurent Schwartz, École

Polytechnique, 91128 Palaiseau Cedex, France

E-mail address : nicole.berline@math.polytechnique.fr

Jesús A. De Loera: Department of Mathematics, University of Cal-

ifornia, Davis, One Shields Avenue, Davis, CA, 95616, USA

E-mail address : deloera@math.ucdavis.edu

Matthias Köppe: Department of Mathematics, University of Cali-

fornia, Davis, One Shields Avenue, Davis, CA, 95616, USA

E-mail address : mkoeppe@math.ucdavis.edu

Michèle Vergne: Centre de Mathématiques Laurent Schwartz, École

Polytechnique, 91128 Palaiseau Cedex, France

E-mail address : vergne@math.polytechnique.fr

	1. Introduction
	2. Preliminaries
	2.1. Integral Lebesgue measure on a rational affine subspace of Rn
	2.2. Encoding polynomials for integration
	2.3. Efficient computation of truncated product of an arbitrary number of polynomials in a fixed number of variables

	3. Proofs of the main results
	3.1. Hardness for polynomials of non-fixed degree
	3.2. An extension of a formula of Brion
	3.3. Polynomial time algorithms for polynomial functions of a fixed number of linear forms
	3.4. Polynomial time algorithms for polynomials of fixed degree

	4. Other algorithms for integration and extensions to other polytopes
	4.1. A formul of Lasserre--Avrachenkov
	4.2. Traditional conversion of the integral as iterated univariate integrals
	4.3. Two formulas for integral computation
	4.4. Triangulation of arbitrary polytopes

	5. Some computational experiments
	5.1. Decomposition of polynomials into powers of linear forms
	5.2. Integration of a power of a linear form over a simplex
	5.3. Integration of a monomial over a simplex

	6. Conclusions
	7. Acknowledgements
	References

