Minimal hypersurfaces in $\HH^n \times \R$, total curvature and index
Résumé
In this paper, we consider minimal hypersurfaces in the product space $\mathbb{H}^n \times \mathbb{R}$. We study the relation between the notions of finite total curvature and index of the stability operator. We study examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations; they serve as counter-examples and are useful barriers for many geometric problems.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|